1
|
Battaglia A, De Meerleer G, Tosco L, Moris
L, Van den Broeck T, Devos G, Everaerts W and Joniau S: Novel
insights into the management of oligometastatic prostate cancer: A
comprehensive review. Eur Urol Oncol. 2:174–188. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jacob A, Raj R, Allison DB and Myint ZW:
Androgen receptor signaling in prostate cancer and therapeutic
strategies. Cancers (Basel). 13:54172021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sadaghiani MS, Sheikhbahaei S, Werner RA,
Pienta KJ, Pomper MG, Solnes LB, Gorin MA, Wang NY and Rowe SP: A
systematic review and meta-analysis of the effectiveness and
toxicities of lutetium-177-labeled prostate-specific membrane
antigen-targeted radioligand therapy in metastatic
castration-resistant prostate cancer. Eur Urol. 80:82–94. 2021.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Thang SP, Violet J, Sandhu S, Iravani A,
Akhurst T, Kong G, Ravi Kumar A, Murphy DG, Williams SG, Hicks RJ
and Hofman MS: Poor outcomes for patients with metastatic
castration-resistant prostate cancer with low prostate-specific
membrane antigen (PSMA) expression deemed ineligible for
177Lu-labelled PSMA radioligand therapy. Eur Urol Oncol.
2:670–676. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rosar F, Hau F, Bartholomä M, Maus S,
Stemler T, Linxweiler J, Ezziddin S and Khreish F: Molecular
imaging and biochemical response assessment after a single cycle of
[225Ac]Ac-PSMA-617/[177Lu]Lu-PSMA-617 tandem therapy in
mCRPC patients who have progressed on [177Lu]Lu-PSMA-617
monotherapy. Theranostics. 11:4050–4060. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Munz M, Baeuerle PA and Gires O: The
emerging role of EpCAM in cancer and stem cell signaling. Cancer
Res. 69:5627–5629. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Massoner P, Thomm T, Mack B, Untergasser
G, Martowicz A, Bobowski K, Klocker H, Gires O and Puhr M: EpCAM is
overexpressed in local and metastatic prostate cancer, suppressed
by chemotherapy and modulated by MET-associated miRNA-200c/205. Br
J Cancer. 111:955–964. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Poczatek RB, Myers RB, Manne U,
Oelschlager DK, Weiss HL, Bostwick DG and Grizzle WE: Ep-Cam levels
in prostatic adenocarcinoma and prostatic intraepithelial
neoplasia. J Urol. 162:1462–1466. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Went PT, Lugli A, Meier S, Bundi M,
Mirlacher M, Sauter G and Dirnhofer S: Frequent EpCam protein
expression in human carcinomas. Hum Pathol. 35:122–128. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Benko G, Spajić B, Krušlin B and Tomas D:
Impact of the EpCAM expression on biochemical recurrence-free
survival in clinically localized prostate cancer. Urol Oncol.
31:468–474. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hu Y, Wu Q, Gao J, Zhang Y and Wang Y: A
meta-analysis and the cancer genome atlas data of prostate cancer
risk and prognosis using epithelial cell adhesion molecule (EpCAM)
expression. BMC Urol. 19:672019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ni J, Cozzi P, Hao J, Beretov J, Chang L,
Duan W, Shigdar S, Delprado W, Graham P, Bucci J, et al: Epithelial
cell adhesion molecule (EpCAM) is associated with prostate cancer
metastasis and chemo/radioresistance via the PI3K/Akt/mTOR
signaling pathway. Int J Biochem Cell Biol. 45:2736–2748. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Simon M, Stefan N, Plückthun A and
Zangemeister-Wittke U: Epithelial cell adhesion molecule-targeted
drug delivery for cancer therapy. Expert Opin Drug Deliv.
10:451–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schmidt M, Scheulen ME, Dittrich C, Obrist
P, Marschner N, Dirix L, Schmidt M, Rüttinger D, Schuler M,
Reinhardt C and Awada A: An open-label, randomized phase II study
of adecatumumab, a fully human anti-EpCAM antibody, as monotherapy
in patients with metastatic breast cancer. Ann Oncol. 21:275–282.
2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Marschner N, Rüttinger D, Zugmaier G,
Nemere G, Lehmann J, Obrist P, Baeuerle PA, Wolf A, Schmidt M,
Abrahamsson PA, et al: Phase II study of the human anti-epithelial
cell adhesion molecule antibody adecatumumab in prostate cancer
patients with increasing serum levels of prostate-specific antigen
after radical prostatectomy. Urol Int. 85:386–395. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Seimetz D, Lindhofer H and Bokemeyer C:
Development and approval of the trifunctional antibody catumaxomab
(anti-EpCAM × anti-CD3) as a targeted cancer immunotherapy. Cancer
Treat Rev. 36:458–467. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Macdonald J, Henri J, Roy K, Hays E, Bauer
M, Veedu RN, Pouliot N and Shigdar S: EpCAM Immunotherapy versus
specific targeted delivery of drugs. Cancers (Basel). 10:192018.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Di Paolo C, Willuda J, Kubetzko S, Lauffer
I, Tschudi D, Waibel R, Plückthun A, Stahel RA and
Zangemeister-Wittke U: A recombinant immunotoxin derived from a
humanized epithelial cell adhesion molecule-specific single-chain
antibody fragment has potent and selective antitumor activity. Clin
Cancer Res. 9:2837–2848. 2003.PubMed/NCBI
|
19
|
MacDonald GC, Rasamoelisolo M, Entwistle
J, Cuthbert W, Kowalski M, Spearman MA and Glover N: A phase I
clinical study of intratumorally administered VB4-845, an
anti-epithelial cell adhesion molecule recombinant fusion protein,
in patients with squamous cell carcinoma of the head and neck. Med
Oncol. 26:257–264. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Andersson Y, Engebraaten O, Juell S,
Aamdal S, Brunsvig P, Fodstad Ø and Dueland S: Phase I trial of
EpCAM-targeting immunotoxin MOC31PE, alone and in combination with
cyclosporin. Br J Cancer. 113:1548–1555. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Frøysnes IS, Andersson Y, Larsen SG,
Davidson B, Øien JT, Olsen KH, Giercksky KE, Julsrud L, Fodstad Ø,
Dueland S and Flatmark K: Novel treatment with intraperitoneal
MOC31PE immunotoxin in colorectal peritoneal metastasis: results
from the ImmunoPeCa phase 1 trial. Ann Surg Oncol. 24:1916–1922.
2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cizeau J, Grenkow DM, Brown JG, Entwistle
J and MacDonald GC: Engineering and biological characterization of
VB6-845, an anti-EpCAM immunotoxin containing a T-cell
epitope-depleted variant of the plant toxin bouganin. J Immunother.
32:574–584. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Plückthun A: Designed ankyrin repeat
proteins (DARPins): Binding proteins for research, diagnostics, and
therapy. Annu Rev Pharmacol Toxicol. 55:489–511. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Thurber GM, Schmidt MM and Wittrup KD:
Antibody tumor penetration: Transport opposed by systemic and
antigen-mediated clearance. Adv Drug Deliv Rev. 60:1421–1434. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Goldstein R, Sosabowski J, Livanos M,
Leyton J, Vigor K, Bhavsar G, Nagy-Davidescu G, Rashid M, Miranda
E, Yeung J, et al: Development of the designed ankyrin repeat
protein (DARPin) G3 for HER2 molecular imaging. Eur J Nucl Med Mol
Imaging. 42:288–301. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Deyev S, Vorobyeva A, Schulga A, Proshkina
G, Güler R, Löfblom J, Mitran B, Garousi J, Altai M, Buijs J, et
al: Comparative evaluation of two DARPin variants: Effect of
affinity, size, and label on tumor targeting properties. Mol Pharm.
16:995–1008. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Vorobyeva A, Sсhulga A, Konovalova E,
Güler R, Mitran B, Garousi J, Rinne S, Löfblom J, Orlova A, Deyev S
and Tolmachev V: Comparison of tumor-targeting properties of
directly and indirectly radioiodinated designed ankyrin repeat
protein (DARPin) G3 variants for molecular imaging of HER2. Int J
Oncol. 54:1209–1220. 2019.PubMed/NCBI
|
28
|
Vorobyeva A, Schulga A, Rinne SS, Günther
T, Orlova A, Deyev S and Tolmachev V: Indirect radioiodination of
DARPin G3 using N-succinimidyl-para-iodobenzoate improves the
contrast of HER2 molecular imaging. Int J Mol Sci. 20:30472019.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Deyev SM, Vorobyeva A, Schulga A,
Abouzayed A, Günther T, Garousi J, Konovalova E, Ding H, Gräslund
T, Orlova A and Tolmachev V: Effect of a radiolabel biochemical
nature on tumor-targeting properties of EpCAM-binding engineered
scaffold protein DARPin Ec1. Int J Biol Macromol. 145:216–225.
2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Vorobyeva A, Konovalova E, Xu T, Schulga
A, Altai M, Garousi J, Rinne SS, Orlova A, Tolmachev V and Deyev S:
Feasibility of imaging EpCAM expression in ovarian cancer using
radiolabeled DARPin Ec1. Int J Mol Sci. 21:33102020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Vorobyeva A, Bezverkhniaia E, Konovalova
E, Schulga A, Garousi J, Vorontsova O, Abouzayed A, Orlova A, Deyev
S and Tolmachev V: Radionuclide molecular imaging of EpCAM
expression in triple-negative breast cancer using the scaffold
protein DARPin Ec1. Molecules. 25:47192020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Deyev SM, Xu T, Liu Y, Schulga A,
Konovalova E, Garousi J, Rinne SS, Larkina M, Ding H, Gräslund T,
et al: Influence of the position and composition of radiometals and
radioiodine labels on imaging of Epcam expression in prostate
cancer model using the DARPin Ec1. Cancers (Basel). 13:35892021.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bragina O, Chernov V, Schulga A,
Konovalova E, Garbukov E, Vorobyeva A, Orlova A, Tashireva L,
Sorensen J, Zelchan R, et al: Phase I trial of
99mTc-(HE)3-G3, a DARPin-based probe for
imaging of HER2 expression in breast cancer. J Nucl Med.
Aug 12–2021.(Epub ahead of print). View Article : Google Scholar
|
34
|
Shilova O, Shramova E, Proshkina G and
Deyev S: Natural and designed toxins for precise therapy: Modern
approaches in experimental oncology. Int J Mol Sci. 22:49752021.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Stefan N, Martin-Killias P, Wyss-Stoeckle
S, Honegger A, Zangemeister-Wittke U and Plückthun A: DARPins
recognizing the tumor-associated antigen EpCAM selected by phage
and ribosome display and engineered for multivalency. J Mol Biol.
413:826–843. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu W, Onda M, Lee B, Kreitman RJ, Hassan
R, Xiang L and Pastan I: Recombinant immunotoxin engineered for low
immunogenicity and antigenicity by identifying and silencing human
B-cell epitopes. Proc Natl Acad Sci USA. 109:11782–11787. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Sokolova EA, Shilova ON, Kiseleva DV,
Schulga AA, Balalaeva IV and Deyev SM: HER2-specific targeted toxin
DARPin-LoPE: Immunogenicity and antitumor effect on intraperitoneal
ovarian cancer xenograft model. Int J Mol Sci. 20:23992019.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Xu T, Vorobyeva A, Schulga A, Konovalova
E, Vorontsova O, Ding H, Gräslund T, Tashireva LA, Orlova A,
Tolmachev V and Deyev SM: Imaging-guided therapy simultaneously
targeting HER2 and EpCAM with trastuzumab and EpCAM-directed toxin
provides additive effect in ovarian cancer model. Cancers (Basel).
13:39392021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wållberg H and Orlova A: Slow
internalization of anti-HER2 synthetic affibody monomer
111In-DOTA-ZHER2:342-pep2: Implications for development of labeled
tracers. Cancer Biother Radiopharm. 23:435–442. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cornford P, van den Bergh RCN, Briers E,
Van den Broeck T, Cumberbatch MG, De Santis M, Fanti S, Fossati N,
Gandaglia G, Gillessen S, et al: EAU-EANM-ESTRO-ESUR-SIOG
guidelines on prostate cancer. Part II-2020 update: Treatment of
relapsing and metastatic prostate cancer. Eur Urol. 79:263–282.
2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Drago JZ, Modi S and Chandarlapaty S:
Unlocking the potential of antibody-drug conjugates for cancer
therapy. Nat Rev Clin Oncol. 18:327–344. 2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Altai M, Liu H, Orlova A, Tolmachev V and
Gräslund T: Influence of molecular design on biodistribution and
targeting properties of an Affibody-fused HER2-recognising
anticancer toxin. Int J Oncol. 49:1185–1194. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ding H, Altai M, Yin W, Lindbo S, Liu H,
Garousi J, Xu T, Orlova A, Tolmachev V, Hober S and Gräslund T:
HER2-specific Pseudomonas exotoxin A PE25 based fusions:
Influence of targeting domain on target binding, toxicity, and in
vivo biodistribution. Pharmaceutics. 12:3912020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sokolova E, Proshkina G, Kutova O, Shilova
O, Ryabova A, Schulga A, Stremovskiy O, Zdobnova T, Balalaeva I and
Deyev S: Recombinant targeted toxin based on HER2-specific DARPin
possesses a strong selective cytotoxic effect in vitro and a potent
antitumor activity in vivo. J Control Release. 233:48–56. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Martin-Killias P, Stefan N, Rothschild S,
Plückthun A and Zangemeister-Wittke U: A novel fusion toxin derived
from an EpCAM-specific designed ankyrin repeat protein has potent
antitumor activity. Clin Cancer Res. 17:100–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Simon M, Stefan N, Borsig L, Plückthun A
and Zangemeister-Wittke U: Increasing the antitumor effect of an
EpCAM-targeting fusion toxin by facile click PEGylation. Mol Cancer
Ther. 13:375–385. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Proshkina GM, Kiseleva DV, Shilova O,
Ryabova AV, Shramova EI, Stremovskiy OA and Deyev SM: Bifunctional
toxin DARP-LoPE based on the HER2-specific innovative module of a
non-immunoglobulin scaffold as a promising agent for theranostics.
Mol Biol. 51:865–873. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Shramova E, Proshkina G, Shipunova V,
Ryabova A, Kamyshinsky R, Konevega A, Schulga A, Konovalova E,
Telegin G and Deyev S: Dual targeting of cancer cells with
DARPin-based toxins for overcoming tumor escape. Cancers (Basel).
12:30142020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Altai M, Liu H, Ding H, Mitran B, Edqvist
PH, Tolmachev V, Orlova A and Gräslund T: Affibody-derived drug
conjugates: Potent cytotoxic molecules for treatment of HER2
over-expressing tumors. J Control Release. 288:84–95. 2018.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu H, Seijsing J, Frejd FY, Tolmachev V
and Gräslund T: Target-specific cytotoxic effects on
HER2-expressing cells by the tripartite fusion toxin
ZHER2:2891-ABD-PE38X8, including a targeting affibody molecule and
a half-life extension domain. Int J Oncol. 47:601–609. 2015.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Garousi J, Ding H, von Witting E, Xu T,
Vorobyeva A, Oroujeni M, Orlova A, Hober S, Gräslund T and
Tolmachev V: Targeting HER2 expressing tumors with a potent drug
conjugate based on an albumin binding domain-derived affinity
protein. Pharmaceutics. 13:18472021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Schmidt M, Rüttinger D, Sebastian M,
Hanusch CA, Marschner N, Baeuerle PA, Wolf A, Göppel G, Oruzio D,
Schlimok G, et al: Phase IB study of the EpCAM antibody
adecatumumab combined with docetaxel in patients with
EpCAM-positive relapsed or refractory advanced-stage breast cancer.
Ann Oncol. 23:2306–2313. 2012. View Article : Google Scholar : PubMed/NCBI
|