Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review)
- Authors:
- Weizheng Wu
- Kunming Wen
-
Affiliations: Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: July 15, 2022 https://doi.org/10.3892/or.2022.8365
- Article Number: 153
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar | |
Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar | |
Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B and Gillies RJ: Acid-mediated tumor invasion: A multidisciplinary study. Cancer Res. 66:5216–5223. 2006. View Article : Google Scholar : PubMed/NCBI | |
Koppenol WH, Bounds PL and Dang CV: Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 11:325–337. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mueckler M and Thorens B: The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 34:121–138. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ancey PB, Contat C and Meylan E: Glucose transporters in cancer-from tumor cells to the tumor microenvironment. FEBS J. 285:2926–2943. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, Li Y, You W, Dong Q, Hong T, et al: Transcriptional regulation of the warburg effect in cancer by SIX1. Cancer Cell. 33:368–385.e7. 2018. View Article : Google Scholar | |
Akins NS, Nielson TC and Le HV: Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer. Curr Top Med Chem. 18:494–504. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Liu P, Wang N, Wang S, Yang B, Li M, Chen J, Situ H, Xie M, Lin Y and Wang Z: Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway. Oxid Med Cell Longev. 2019:87816902019. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W and Guo C: Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 39:1262020. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Li H, Chu F, Zhou X, Xie R, Wei Q, Yang S, Li T, Liang S and Lü M: Long noncoding RNAs: Key regulators involved in metabolic reprogramming in cancer (Review). Oncol Rep. 45:542021. View Article : Google Scholar : PubMed/NCBI | |
Li Z and Sun X: Non-coding RNAs Operate in the crosstalk between cancer metabolic reprogramming and metastasis. Front Oncol. 10:8102020. View Article : Google Scholar | |
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar | |
Hentze MW, Castello A, Schwarzl T and Preiss T: A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 19:327–341. 2018. View Article : Google Scholar | |
Ferre F, Colantoni A and Helmer-Citterich M: Revealing protein-lncRNA interaction. Brief Bioinform. 17:106–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Fan Q, Yang L, Zhang X, Ma Y, Zong Z, Hua X, Su D, Sun H, Li H and Liu Z: Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. Oncol Rep. 38:1902–1908. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song H, Liu Y, Li X, Chen S, Xie R, Chen D, Gao H, Wang G, Cai B and Yang X: Long noncoding RNA CASC11 promotes hepatocarcinogenesis and HCC progression through EIF4A3-mediated E2F1 activation. Clin Transl Med. 10:e2202020. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Wang H, Wang L, Wang G, Yao Y, Xie K, Li X, Xu L, Shen Y and Ren B: lncRNA GAS6-AS1 inhibits progression and glucose metabolism reprogramming in LUAD via repressing E2F1-mediated transcription of GLUT1. Mol Ther Nucleic Acids. 25:11–24. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu WT, Wilczynska A, Smith E and Bushell M: The diverse roles of the eIF4A family: you are the company you keep. Biochem Soc Trans. 42:166–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J and Dreyfuss G: eIF4A3 is a novel component of the exon junction complex. RNA. 10:200–209. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Seto E and Zhang J: E2F1 enhances glycolysis through suppressing Sirt6 transcription in cancer cells. Oncotarget. 6:11252–11263. 2015. View Article : Google Scholar | |
Chen HZ, Tsai SY and Leone G: Emerging roles of E2Fs in cancer: An exit from cell cycle control. Nat Rev Cancer. 9:785–797. 2009. View Article : Google Scholar : PubMed/NCBI | |
Farra R, Grassi G, Tonon F, Abrami M, Grassi M, Pozzato G, Fiotti N, Forte G and Dapas B: The role of the transcription factor E2F1 in hepatocellular carcinoma. Curr Drug Deliv. 14:272–281. 2017.PubMed/NCBI | |
Lis P, Dylag M, Niedzwiecka K, Ko YH, Pedersen PL, Goffeau A and Ułaszewski S: The HK2 dependent ‘Warburg Effect’ and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-Bromopyruvate. Molecules. 21:17302016. View Article : Google Scholar | |
Gong L, Cui Z, Chen P, Han H, Peng J and Leng X: Reduced survival of patients with hepatocellular carcinoma expressing hexokinase II. Med Oncol. 29:909–914. 2012. View Article : Google Scholar | |
Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C and Guha A: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 208:313–326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wolf A, Agnihotri S and Guha A: Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget. 1:552–562. 2010. View Article : Google Scholar | |
Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, et al: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 24:213–228. 2013. View Article : Google Scholar | |
Kanai S, Shimada T, Narita T and Okabayashi K: Phosphofructokinase-1 subunit composition and activity in the skeletal muscle, liver, and brain of dogs. J Vet Med Sci. 81:712–716. 2019. View Article : Google Scholar | |
Al Hasawi N, Alkandari MF and Luqmani YA: Phosphofructokinase: A mediator of glycolytic flux in cancer progression. Crit Rev Oncol Hematol. 92:312–321. 2014. View Article : Google Scholar | |
Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A and Navarro-Sabaté À: The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets. 22:659–674. 2018. View Article : Google Scholar : PubMed/NCBI | |
van Niekerk G and Engelbrecht AM: Role of PKM2 in directing the metabolic fate of glucose in cancer: A potential therapeutic target. Cell Oncol (Dordr). 41:343–351. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shang RZ, Qu SB and Wang DS: Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects. World J Gastroenterol. 22:9933–9943. 2016. View Article : Google Scholar | |
Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, et al: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 8:839–847. 2012. View Article : Google Scholar | |
Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T and Seufferlein T: PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 15:32016. View Article : Google Scholar : PubMed/NCBI | |
He Y, Luo Y, Zhang D, Wang X, Zhang P, Li H, Ejaz S and Liang S: PGK1-mediated cancer progression and drug resistance. Am J Cancer Res. 9:2280–2302. 2019.PubMed/NCBI | |
Daly EB, Wind T, Jiang XM, Sun L and Hogg PJ: Secretion of phosphoglycerate kinase from tumour cells is controlled by oxygen-sensing hydroxylases. Biochim Biophys Acta. 1691:17–22. 2004. View Article : Google Scholar | |
Hu H, Zhu W, Qin J, Chen M, Gong L, Li L, Liu X, Tao Y, Yin H, Zhou H, et al: Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology. 65:515–528. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Xiong Y, Qiao T, Li X, Jia L and Han Y: Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7:6124–6136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Hitosugi T, Chung TW, Xie J, Ge Q, Gu TL, Polakiewicz RD, Chen GZ, Boggon TJ, Lonial S, et al: Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol Cell Biol. 31:4938–4950. 2011. View Article : Google Scholar | |
Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, et al: Tyrosine phosphorylation inhibits PKM2 to promote the warburg effect and tumor growth. Sci Signal. 2:ra732009. View Article : Google Scholar | |
Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI | |
Hu R, Zhong P, Xiong L and Duan L: Long Noncoding RNA cancer susceptibility candidate 8 suppresses the proliferation of bladder cancer cells via regulating glycolysis. DNA Cell Biol. 36:767–774. 2017. View Article : Google Scholar | |
Chen H, Pei H, Hu W, Ma J, Zhang J, Mao W, Nie J, Xu C, Li B, Hei TK, et al: Long non-coding RNA CRYBG3 regulates glycolysis of lung cancer cells by interacting with lactate dehydrogenase A. J Cancer. 9:2580–2588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dai F, Wu Y, Lu Y, An C, Zheng X, Dai L, Guo Y, Zhang L, Li H, Xu W and Gao W: Crosstalk between RNA m6A Modification and Non-coding RNA Contributes to Cancer Growth and Progression. Mol Ther Nucleic Acids. 22:62–71. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Liu J, Zhao S and Tian F: NN 6-Methyladenosine METTL3 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract. Mol Ther Nucleic Acids. 20:111–116. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhong L, He X, Song H, Sun Y, Chen G, Si X, Sun J, Chen X, Liao W, Liao Y and Bin J: METTL3 Induces AAA development and progression by modulating N6-methyladenosine-dependent primary miR34a processing. Mol Ther Nucleic Acids. 21:394–411. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Chen L and Qiang P: The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 21:992021. View Article : Google Scholar | |
Lu S, Han L, Hu X, Sun T, Xu D, Li Y, Chen Q, Yao W, He M, Wang Z, et al: N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: Implication in colorectal cancer. J Hematol Oncol. 14:1882021. View Article : Google Scholar | |
Liu H, Qin S, Liu C, Jiang L, Li C, Yang J, Zhang S, Yan Z, Liu X, Yang J and Sun X: m 6 A reader IGF2BP2-stabilized CASC9 accelerates glioblastoma aerobic glycolysis by enhancing HK2 mRNA stability. Cell Death Discov. 7:2922021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao L, Yang S, Cen Y, Zhu T, Wang L, Xia L, Liu Y, Zou J, Xu J, et al: CircCDKN2B-AS1 interacts with IMP3 to stabilize hexokinase 2 mRNA and facilitate cervical squamous cell carcinoma aerobic glycolysis progression. J Exp Clin Cancer Res. 39:2812020. View Article : Google Scholar : PubMed/NCBI | |
Jiang D, Zhang Y, Yang L, Lu W, Mai L, Guo H and Liu X: Long noncoding RNA HCG22 suppresses proliferation and metastasis of bladder cancer cells by regulation of PTBP1. J Cell Physiol. 235:1711–1722. 2020. View Article : Google Scholar | |
Minami K, Taniguchi K, Sugito N, Kuranaga Y, Inamoto T, Takahara K, Takai T, Yoshikawa Y, Kiyama S, Akao Y and Azuma H: MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget. 8:33064–33077. 2017. View Article : Google Scholar | |
Taniguchi K, Sakai M, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakayama T, Ueda H, Nakagawa Y, Ito Y, et al: PTBP1-associated microRNA-1 and −133b suppress the Warburg effect in colorectal tumors. Oncotarget. 7:18940–18952. 2016. View Article : Google Scholar | |
Wang J and Maldonado MA: The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 3:255–261. 2006. | |
Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H, Liu Q, Liu Q, Zhao C, et al: A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol. 11:772018. View Article : Google Scholar | |
Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J and Levine B: Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 338:956–959. 2012. View Article : Google Scholar : PubMed/NCBI | |
Le Grand M, Berges R, Pasquier E, Montero MP, Borge L, Carrier A, Vasseur S, Bourgarel V, Buric D, André N, et al: Akt targeting as a strategy to boost chemotherapy efficacy in non-small cell lung cancer through metabolism suppression. Sci Rep. 7:451362017. View Article : Google Scholar : PubMed/NCBI | |
Polivka J Jr and Janku F: Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 142:164–175. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Wei M, Wang C, Sun D, Liu P, Zhong X and Yu W: Long noncoding RNA KCNQ1OT1 promotes colorectal carcinogenesis by enhancing aerobic glycolysis via hexokinase-2. Aging (Albany NY). 12:11685–11697. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W, et al: LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 24:4808–4819. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Chen Y, Xia F and Li X: PTCSC3-mediated glycolysis suppresses thyroid cancer progression via interfering with PGK1 degradation. J Cell Mol Med. 25:8454–8463. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ullah K, Chen S, Lu J, Wang X, Liu Q, Zhang Y, Long Y, Hu Z and Xu G: The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J Biol Chem. 295:4696–4708. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chu Z, Huo N, Zhu X, Liu H, Cong R, Ma L, Kang X, Xue C, Li J, Li Q, et al: FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect. Mol Ther. 29:2737–2753. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Zhang J and Manley JL: Turning on a fuel switch of cancer: HnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res. 70:8977–8980. 2010. View Article : Google Scholar : PubMed/NCBI | |
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230–233. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lan Z, Yao X, Sun K, Li A, Liu S and Wang X: The interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aerobic glycolysis through the regulation of alternative splicing of PKM. Front Oncol. 10:3632020. View Article : Google Scholar | |
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H and Li P: Emerging roles of SRSF3 as a therapeutic target for cancer. Front Oncol. 10:5776362020. View Article : Google Scholar | |
Jia G, Wang Y, Lin C, Lai S, Dai H, Wang Z, Dai L, Su H, Song Y, Zhang N, et al: LNCAROD enhances hepatocellular carcinoma malignancy by activating glycolysis through induction of pyruvate kinase isoform PKM2. J Exp Clin Cancer Res. 40:2992021. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Liu X, Zheng J, Song J, Liu Y, Ruan X, Shen S, Shao L, Yang C, Wang D, et al: Lin28A promotes IRF6-regulated aerobic glycolysis in glioma cells by stabilizing SNHG14. Cell Death Dis. 11:4472020. View Article : Google Scholar : PubMed/NCBI | |
Ferretti E, Li B, Zewdu R, Wells V, Hebert JM, Karner C, Anderson MJ, Williams T, Dixon J, Dixon MJ, et al: A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell. 21:627–641. 2011. View Article : Google Scholar | |
Rotondo JC, Borghi A, Selvatici R, Magri E, Bianchini E, Montinari E, Corazza M, Virgili A, Tognon M and Martini F: Hypermethylation-Induced inactivation of the IRF6 gene as a possible early event in progression of vulvar squamous cell carcinoma associated with lichen sclerosus. JAMA Dermatol. 152:928–933. 2016. View Article : Google Scholar | |
Bailey CM, Abbott DE, Margaryan NV, Khalkhali-Ellis Z and Hendrix MJ: Interferon regulatory factor 6 promotes cell cycle arrest and is regulated by the proteasome in a cell cycle-dependent manner. Mol Cell Biol. 28:2235–2243. 2008. View Article : Google Scholar | |
Song H, Li D, Wang X, Fang E, Yang F, Hu A, Wang J, Guo Y, Liu Y, Li H, et al: HNF4A-AS1/hnRNPU/CTCF axis as a therapeutic target for aerobic glycolysis and neuroblastoma progression. J Hematol Oncol. 13:242020. View Article : Google Scholar | |
Ma F, Liu X, Zhou S, Li W, Liu C, Chadwick M and Qian C: Long non-coding RNA FGF13-AS1 inhibits glycolysis and stemness properties of breast cancer cells through FGF13-AS1/IGF2BPs/Myc feedback loop. Cancer Lett. 450:63–75. 2019. View Article : Google Scholar | |
Ruan K, Song G and Ouyang G: Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 107:1053–1062. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar | |
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science. 292:464–468. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI | |
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER and Ratcliffe PJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399:271–275. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yao J, Man S, Dong H, Yang L, Ma L and Gao W: Combinatorial treatment of Rhizoma Paridis saponins and sorafenib overcomes the intolerance of sorafenib. J Steroid Biochem Mol Biol. 183:159–166. 2018. View Article : Google Scholar | |
Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S and Moreno-Sánchez R: HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem. 9:1084–1101. 2009. View Article : Google Scholar | |
Zheng F, Chen J, Zhang X, Wang Z, Chen J, Lin X, Huang H, Fu W, Liang J, Wu W, et al: The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 12:13412021. View Article : Google Scholar : PubMed/NCBI | |
Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yeung SJ, Pan J and Lee MH: Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer. Cell Mol Life Sci. 65:3981–3999. 2008. View Article : Google Scholar | |
Su X, Li G and Liu W: The long noncoding RNA cancer susceptibility candidate 9 promotes nasopharyngeal carcinogenesis via stabilizing HIF1α. DNA Cell Biol. 36:394–400. 2017. View Article : Google Scholar | |
Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S, Zhang Y, et al: The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol. 18:213–224. 2016. View Article : Google Scholar | |
Yang F, Zhang H, Mei Y and Wu M: Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell. 53:88–100. 2014. View Article : Google Scholar | |
Liu D and Li H: Long non-coding RNA GEHT1 promoted the proliferation of ovarian cancer cells via modulating the protein stability of HIF1α. Biosci Rep. 39:2019. | |
Liao M, Liao W, Xu N, Li B, Liu F, Zhang S, Wang Y, Wang S, Zhu Y, Chen D, et al: LncRNA EPB41L4A-AS1 regulates glycolysis and glutaminolysis by mediating nucleolar translocation of HDAC2. EBioMedicine. 41:200–213. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yoshida GJ: Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res. 37:1732018. View Article : Google Scholar : PubMed/NCBI | |
Dang CV: Gene regulation: Fine-tuned amplification in cells. Nature. 511:417–418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sabò A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, Morelli MJ, Bora P, Doni M, Verrecchia A, et al: Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 511:488–492. 2014. View Article : Google Scholar | |
Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, Rycak L, Dumay-Odelot H, Karim S, Bartkuhn M, et al: Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 511:483–487. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dang CV, Kim JW, Gao P and Yustein J: The interplay between MYC and HIF in cancer. Nat Rev Cancer. 8:51–56. 2008. View Article : Google Scholar : PubMed/NCBI | |
Grüning NM, Lehrach H and Ralser M: Regulatory crosstalk of the metabolic network. Trends Biochem Sci. 35:220–227. 2010. View Article : Google Scholar | |
Kim JW, Gao P, Liu YC, Semenza GL and Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 27:7381–7393. 2007. View Article : Google Scholar | |
Xiao ZD, Han L, Lee H, Zhuang L, Zhang Y, Baddour J, Nagrath D, Wood CG, Gu J, Wu X, et al: Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nat Commun. 8:7832017. View Article : Google Scholar : PubMed/NCBI | |
Liao B, Hu Y and Brewer G: Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat Struct Mol Biol. 14:511–518. 2007. View Article : Google Scholar | |
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar | |
Guo C, Shi H, Shang Y, Zhang Y, Cui J and Yu H: LncRNA LINC00261 overexpression suppresses the growth and metastasis of lung cancer via regulating miR-1269a/FOXO1 axis. Cancer Cell Int. 20:2752020. View Article : Google Scholar | |
Yu Y, Li L, Zheng Z, Chen S, Chen E and Hu Y: Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J Cell Mol Med. 21:955–967. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan D, Liu W, Liu Y and Luo M: LINC00261 suppresses human colon cancer progression via sponging miR-324-3p and inactivating the Wnt/β-catenin pathway. J Cell Physiol. 234:22648–22656. 2019. View Article : Google Scholar | |
Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B and Deng X: Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene. 40:277–291. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, et al: LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 18:1742019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Li Y, Wang N, Li X, Zheng J and Ge L: UPF1 inhibits the hepatocellular carcinoma progression by targeting long non-coding RNA UCA1. Sci Rep. 9:66522019. View Article : Google Scholar : PubMed/NCBI | |
Koller-Eichhorn R, Marquardt T, Gail R, Wittinghofer A, Kostrewa D, Kutay U and Kambach C: Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J Biol Chem. 282:19928–19937. 2007. View Article : Google Scholar : PubMed/NCBI | |
Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, et al: Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: Visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 10:4047–4064. 2011. View Article : Google Scholar : PubMed/NCBI |