Defucosylated mouse‑dog chimeric anti‑HER2 monoclonal antibody exerts antitumor activities in mouse xenograft models of canine tumors
- Authors:
- Hiroyuki Suzuki
- Tomokazu Ohishi
- Teizo Asano
- Tomohiro Tanaka
- Masaki Saito
- Takuya Mizuno
- Takeo Yoshikawa
- Manabu Kawada
- Mika K. Kaneko
- Yukinari Kato
-
Affiliations: Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan, Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan, Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753‑8515, Japan, Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan - Published online on: July 15, 2022 https://doi.org/10.3892/or.2022.8366
- Article Number: 154
-
Copyright: © Suzuki et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A and McGuire WL: Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI | |
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, et al: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet. 376:687–697. 2010. View Article : Google Scholar | |
Moasser MM and Krop IE: The evolving landscape of HER2 targeting in breast cancer. JAMA Oncol. 1:1154–1161. 2015. View Article : Google Scholar | |
Moasser MM: Two dimensions in targeting HER2. J Clin Oncol. 32:2074–2077. 2014. View Article : Google Scholar | |
Weigelt B, Lo AT, Park CC, Gray JW and Bissell MJ: HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat. 122:35–43. 2010. View Article : Google Scholar | |
Le XF, Pruefer F and Bast RC Jr: HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle. 4:87–95. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S and Arteaga CL: Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 62:4132–4141. 2002.PubMed/NCBI | |
Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, Untch M, Rusnak DW, Spehar G, Mullin RJ, et al: Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 66:1630–1639. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, Keith BR, Murray DM, Knight WB, Mullin RJ and Gilmer TM: The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther. 1:85–94. 2001.PubMed/NCBI | |
Maadi H, Soheilifar MH, Choi WS, Moshtaghian A and Wang Z: Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers (Basel). 13:35402021. View Article : Google Scholar : PubMed/NCBI | |
Tsao LC, Force J and Hartman ZC: Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Res. 81:4641–4651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Musolino A, Gradishar WJ, Rugo HS, Nordstrom JL, Rock EP, Arnaldez F and Pegram MD: Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer. 10:e0031712022. View Article : Google Scholar : PubMed/NCBI | |
Nordstrom JL, Gorlatov S, Zhang W, Yang Y, Huang L, Burke S, Li H, Ciccarone V, Zhang T, Stavenhagen J, et al: Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res. 13:R1232011. View Article : Google Scholar : PubMed/NCBI | |
McAndrew NP: Updates on targeting human epidermal growth factor receptor 2-positive breast cancer: What's to know in 2021. Curr Opin Obstet Gynecol. 34:41–45. 2022. View Article : Google Scholar | |
Rugo HS, Im SA, Cardoso F, Cortés J, Curigliano G, Musolino A, Pegram MD, Wright GS, Saura C, Escrivá-de-Romaní S, et al: Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-Positive advanced breast cancer: A phase 3 randomized clinical trial. JAMA Oncol. 7:573–584. 2021. View Article : Google Scholar | |
Golay J and Taylor RP: The role of complement in the mechanism of action of therapeutic anti-cancer mAbs. Antibodies (Basel). 9:582020. View Article : Google Scholar | |
Reis ES, Mastellos DC, Ricklin D, Mantovani A and Lambris JD: Complement in cancer: Untangling an intricate relationship. Nat Rev Immunol. 18:5–18. 2018. View Article : Google Scholar | |
Salas Y, Márquez A, Diaz D and Romero L: Epidemiological study of mammary tumors in female dogs diagnosed during the period 2002–2012: A growing animal health problem. PLoS One. 10:e01273812015. View Article : Google Scholar : PubMed/NCBI | |
Gray M, Meehan J, Martínez-Pérez C, Kay C, Turnbull AK, Morrison LR, Pang LY and Argyle D: Naturally-occurring canine mammary tumors as a translational model for human breast cancer. Front Oncol. 10:6172020. View Article : Google Scholar | |
Kaszak I, Ruszczak A, Kanafa S, Kacprzak K, Król M and Jurka P: Current biomarkers of canine mammary tumors. Acta Vet Scand. 60:662018. View Article : Google Scholar : PubMed/NCBI | |
Gama A, Alves A and Schmitt F: Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: Application of the human classification. Virchows Arch. 453:123–132. 2008. View Article : Google Scholar : PubMed/NCBI | |
Flint AF, U'Ren L, Legare ME, Withrow SJ, Dernell W and Hanneman WH: Overexpression of the erbB-2 proto-oncogene in canine osteosarcoma cell lines and tumors. Vet Pathol. 41:291–296. 2004. View Article : Google Scholar | |
Millanta F, Impellizeri J, McSherry L, Rocchigiani G, Aurisicchio L and Lubas G: Overexpression of HER-2 via immunohistochemistry in canine urinary bladder transitional cell carcinoma-A marker of malignancy and possible therapeutic target. Vet Comp Oncol. 16:297–300. 2018. View Article : Google Scholar | |
Yoshimoto S, Kato D, Kamoto S, Yamamoto K, Tsuboi M, Shinada M, Ikeda N, Tanaka Y, Yoshitake R, Eto S, et al: Detection of human epidermal growth factor receptor 2 overexpression in canine anal sac gland carcinoma. J Vet Med Sci. 81:1034–1039. 2019. View Article : Google Scholar | |
Campos LC, Silva JO, Santos FS, Araújo MR, Lavalle GE, Ferreira E and Cassali GD: Prognostic significance of tissue and serum HER2 and MUC1 in canine mammary cancer. J Vet Diagn Invest. 27:531–535. 2015. View Article : Google Scholar | |
Brunetti B, Bacci B, Sarli G, Pancioni E and Muscatello LV: Immunohistochemical screening of HER2 in canine carcinomas: A preliminary study. Animals (Basel). 11:10062021. View Article : Google Scholar : PubMed/NCBI | |
Mason NJ, Gnanandarajah JS, Engiles JB, Gray F, Laughlin D, Gaurnier-Hausser A, Wallecha A, Huebner M and Paterson Y: Immunotherapy with a HER2-targeting listeria induces HER2-Specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma. Clin Cancer Res. 22:4380–4390. 2016. View Article : Google Scholar : PubMed/NCBI | |
Itai S, Fujii Y, Kaneko MK, Yamada S, Nakamura T, Yanaka M, Saidoh N, Chang YW, Handa S, Takahashi M, et al: H2Mab-77 is a sensitive and specific Anti-HER2 monoclonal antibody against breast cancer. Monoclon Antib Immunodiagn Immunother. 36:143–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Osaki T, Sunden Y, Sugiyama A, Azuma K, Murahata Y, Tsuka T, Ito N, Imagawa T and Okamoto Y: Establishment of a canine mammary gland tumor cell line and characterization of its miRNA expression. J Vet Sci. 17:385–390. 2016. View Article : Google Scholar | |
Tateyama N, Asano T, Ohishi T, Takei J, Hosono H, Nanamiya R, Tanaka T, Sano M, Saito M, Kawada M, et al: An Anti-HER2 monoclonal antibody H2Mab-41 exerts antitumor activities in mouse xenograft model using dog HER2-overexpressed cells. Monoclon Antib Immunodiagn Immunother. 40:184–190. 2021. View Article : Google Scholar : PubMed/NCBI | |
Asano T, Kaneko MK and Kato Y: RIEDL tag: A novel pentapeptide tagging system for transmembrane protein purification. Biochem Biophys Rep. 23:1007802020.PubMed/NCBI | |
Asano T, Kaneko MK and Kato Y: Development of a novel epitope mapping system: RIEDL insertion for epitope mapping method. Monoclon Antib Immunodiagn Immunother. 40:162–167. 2021. View Article : Google Scholar : PubMed/NCBI | |
Asano T, Kaneko MK, Takei J, Tateyama N and Kato Y: Epitope mapping of the Anti-CD44 monoclonal antibody (C44Mab-46) using the REMAP Method. Monoclon Antib Immunodiagn Immunother. 40:156–161. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nanamiya R, Sano M, Asano T, Yanaka M, Nakamura T, Saito M, Tanaka T, Hosono H, Tateyama N, Kaneko MK and Kato Y: Epitope mapping of an anti-human epidermal growth factor receptor monoclonal antibody (EMab-51) using the RIEDL insertion for epitope mapping method. Monoclon Antib Immunodiagn Immunother. 40:149–155. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sano M, Kaneko MK, Aasano T and Kato Y: Epitope mapping of an antihuman EGFR monoclonal antibody (EMab-134) Using the REMAP method. Monoclon Antib Immunodiagn Immunother. 40:191–195. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li G, Ohishi T, Kaneko MK, Takei J, Mizuno T, Kawada M, Saito M, Suzuki H and Kato Y: Defucosylated mouse-dog chimeric Anti-EGFR antibody exerts antitumor activities in mouse xenograft models of canine tumors. Cells. 10:35992021. View Article : Google Scholar : PubMed/NCBI | |
Mizuno T, Kato Y, Kaneko MK, Sakai Y, Shiga T, Kato M, Tsukui T, Takemoto H, Tokimasa A, Baba K, et al: Generation of a canine anti-canine CD20 antibody for canine lymphoma treatment. Sci Rep. 10:114762020. View Article : Google Scholar : PubMed/NCBI | |
Takei J, Kaneko MK, Ohishi T, Hosono H, Nakamura T, Yanaka M, Sano M, Asano T, Sayama Y, Kawada M, et al: A defucosylated anti-CD44 monoclonal antibody 5-mG2a-f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Oncol Rep. 44:1949–1960. 2020.PubMed/NCBI | |
Takei J, Ohishi T, Kaneko MK, Harada H, Kawada M and Kato Y: A defucosylated anti-PD-L1 monoclonal antibody 13-mG2a-f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Biochem Biophys Rep. 24:1008012020.PubMed/NCBI | |
Tateyama N, Nanamiya R, Ohishi T, Takei J, Nakamura T, Yanaka M, Hosono H, Saito M, Asano T, Tanaka T, et al: Defucosylated anti-epidermal growth factor receptor monoclonal antibody 134-mG2a-f exerts antitumor activities in mouse xenograft models of dog epidermal growth factor receptor-overexpressed cells. Monoclon Antib Immunodiagn Immunother. 40:177–183. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Mizuno T, Yamada S, Nakamura T, Itai S, Yanaka M, Sano M and Kaneko MK: Establishment of P38Bf, a core-fucose-deficient mouse-canine chimeric antibody against dog podoplanin. Monoclon Antib Immunodiagn Immunother. 37:218–223. 2018. View Article : Google Scholar : PubMed/NCBI | |
Asano T, Ohishi T, Takei J, Nakamura T, Nanamiya R, Hosono H, Tanaka T, Sano M, Harada H, Kawada M, et al: AntiHER3 monoclonal antibody exerts antitumor activity in a mouse model of colorectal adenocarcinoma. Oncol Rep. 46:1732021. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Ohishi T, Asano T, Takei J, Nanamiya R, Hosono H, Sano M, Harada H, Kawada M, Kaneko MK and Kato Y: An antiTROP2 monoclonal antibody TrMab6 exerts antitumor activity in breast cancer mouse xenograft models. Oncol Rep. 46:1322021. View Article : Google Scholar : PubMed/NCBI | |
Hosono H, Ohishi T, Takei J, Asano T, Sayama Y, Kawada M, Kaneko MK and Kato Y: The anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody EpMab-16 exerts antitumor activity in a mouse model of colorectal adenocarcinoma. Oncol Lett. 20:3832020. View Article : Google Scholar | |
Kaneko MK, Ohishi T, Takei J, Sano M, Nakamura T, Hosono H, Yanaka M, Asano T, Sayama Y, Harada H, et al: AntiEpCAM monoclonal antibody exerts antitumor activity against oral squamous cell carcinomas. Oncol Rep. 44:2517–2526. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kaneko MK, Ohishi T, Nakamura T, Inoue H, Takei J, Sano M, Asano T, Sayama Y, Hosono H, Suzuki H, et al: Development of core-fucose-deficient humanized and chimeric anti-human podoplanin antibodies. Monoclon Antib Immunodiagn Immunother. 39:167–174. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hosono H, Takei J, Ohishi T, Sano M, Asano T, Sayama Y, Nakamura T, Yanaka M, Kawada M, Harada H, et al: AntiEGFR monoclonal antibody 134mG2a exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Int J Mol Med. 46:1443–1452. 2020.PubMed/NCBI | |
Ohishi T, Kato Y, Kaneko MK, Ohba SI, Inoue H, Harakawa A and Kawada M: Anti-metastatic activity of an anti-EGFR monoclonal antibody against metastatic colorectal cancer with KRAS p.G13D mutation. Int J Mol Sci. 21:60372020. View Article : Google Scholar | |
Takei J, Kaneko MK, Ohishi T, Kawada M, Harada H and Kato Y: H2Mab-19, an anti-human epidermal growth factor receptor 2 monoclonal antibody exerts antitumor activity in mouse oral cancer xenografts. Exp Ther Med. 20:846–853. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Ohishi T, Takei J, Nakamura T, Sano M, Asano T, Sayama Y, Hosono H, Kawada M and Kaneko MK: An anti-human epidermal growth factor receptor 2 monoclonal antibody H2Mab-19 exerts antitumor activity in mouse colon cancer xenografts. Monoclon Antib Immunodiagn Immunother. 39:123–128. 2020. View Article : Google Scholar : PubMed/NCBI | |
Takei J, Kaneko MK, Ohishi T, Kawada M, Harada H and Kato Y: A novel anti-EGFR monoclonal antibody (EMab-17) exerts antitumor activity against oral squamous cell carcinomas via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Oncol Lett. 19:2809–2816. 2020. | |
Itai S, Ohishi T, Kaneko MK, Yamada S, Abe S, Nakamura T, Yanaka M, Chang YW, Ohba SI, Nishioka Y, et al: Anti-podocalyxin antibody exerts antitumor effects via antibody-dependent cellular cytotoxicity in mouse xenograft models of oral squamous cell carcinoma. Oncotarget. 9:22480–22497. 2018. View Article : Google Scholar | |
Kato Y, Ohishi T, Yamada S, Itai S, Takei J, Sano M, Nakamura T, Harada H, Kawada M and Kaneko MK: Anti-Human epidermal growth factor receptor 2 monoclonal antibody H2Mab-41 exerts antitumor activity in a mouse xenograft model of colon cancer. Monoclon Antib Immunodiagn Immunother. 38:157–161. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singer J, Weichselbaumer M, Stockner T, Mechtcheriakova D, Sobanov Y, Bajna E, Wrba F, Horvat R, Thalhammer JG, Willmann M and Jensen-Jarolim E: Comparative oncology: ErbB-1 and ErbB-2 homologues in canine cancer are susceptible to cetuximab and trastuzumab targeting. Mol Immunol. 50:200–209. 2012. View Article : Google Scholar | |
Collins DM, O'Donovan N, McGowan PM, O'Sullivan F, Duffy MJ and Crown J: Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann Oncol. 23:1788–1795. 2012. View Article : Google Scholar | |
Klingemann H: Immunotherapy for dogs: Still running behind humans. Front Immunol. 12:6657842021. View Article : Google Scholar | |
Bergeron LM, McCandless EE, Dunham S, Dunkle B, Zhu Y, Shelly J, Lightle S, Gonzales A and Bainbridge G: Comparative functional characterization of canine IgG subclasses. Vet Immunol Immunopathol. 157:31–41. 2014. View Article : Google Scholar | |
Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, et al: The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 278:3466–3473. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K and Hanai N: Engineered therapeutic antibodies with improved effector functions. Cancer Sci. 100:1566–1572. 2009. View Article : Google Scholar | |
Mizuno T, Takeda Y, Tsukui T and Igase M: Development of a cell line-based assay to measure the antibody-dependent cellular cytotoxicity of a canine therapeutic antibody. Vet Immunol Immunopathol. 240:1103152021. View Article : Google Scholar | |
Scott AM, Wolchok JD and Old LJ: Antibody therapy of cancer. Nat Rev Cancer. 12:278–287. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zahavi D and Weiner L: Monoclonal antibodies in cancer therapy. Antibodies (Basel). 9:342020. View Article : Google Scholar | |
Takegawa N, Nonagase Y, Yonesaka K, Sakai K, Maenishi O, Ogitani Y, Tamura T, Nishio K, Nakagawa K and Tsurutani J: DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer. 141:1682–1689. 2017. View Article : Google Scholar : PubMed/NCBI | |
Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, Andre F, Iwata H, Ito Y, Tsurutani J, et al: Trastuzumab deruxtecan in previously treated HER2-Positive Breast Cancer. N Engl J Med. 382:610–621. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazières J, Nagasaka M, Bazhenova L, Saltos AN, Felip E, et al: Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer. N Engl J Med. 386:241–251. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Bang YJ, Iwasa S, Sugimoto N, Ryu MH, Sakai D, Chung HC, Kawakami H, Yabusaki H, Lee J, et al: Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 382:2419–2430. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kaneko MK, Honma R, Ogasawara S, Fujii Y, Nakamura T, Saidoh N, Takagi M, Kagawa Y, Konnai S and Kato Y: PMab-38 recognizes canine podoplanin of squamous cell carcinomas. Monoclon Antib Immunodiagn Immunother. 35:263–266. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ito A, Ohta M, Kato Y, Inada S, Kato T, Nakata S, Yatabe Y, Goto M, Kaneda N, Kurita K, et al: A real-time near-infrared fluorescence imaging method for the detection of oral cancers in mice using an indocyanine green-labeled podoplanin antibody. Technol Cancer Res Treat. 17:15330338187679362018. View Article : Google Scholar | |
Kato Y, Ohishi T, Kawada M, Maekawa N, Konnai S, Itai S, Yamada S and Kaneko MK: The mouse-canine chimeric anti-dog podoplanin antibody P38B exerts antitumor activity in mouse xenograft models. Biochem Biophys Rep. 17:23–26. 2019.PubMed/NCBI | |
Kato Y, Ito Y, Ohishi T, Kawada M, Nakamura T, Sayama Y, Sano M, Asano T, Yanaka M, Okamoto S, et al: Antibody-drug conjugates using mouse-canine chimeric anti-dog podoplanin antibody exerts antitumor activity in a mouse xenograft model. Monoclon Antib Immunodiagn Immunother. 39:37–44. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pantelyushin S, Ranninger E, Guerrera D, Hutter G, Maake C, Markkanen E, Bettschart-Wolfensberger R, Rohrer Bley C, Läubli H and Vom Berg J: Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs. Cancers (Basel). 13:7852021. View Article : Google Scholar : PubMed/NCBI | |
Maekawa N, Konnai S, Nishimura M, Kagawa Y, Takagi S, Hosoya K, Ohta H, Kim S, Okagawa T, Izumi Y, et al: PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral malignant melanoma. NPJ Precis Oncol. 5:102021. View Article : Google Scholar | |
Klingemann H: Immunotherapy for dogs: Running behind humans. Front Immunol. 9:1332018. View Article : Google Scholar | |
Muhammadnejad A, Keyhani E, Mortazavi P, Behjati F and Haghdoost IS: Overexpression of her-2/neu in malignant mammary tumors; translation of clinicopathological features from dog to human. Asian Pac J Cancer Prev. 13:6415–6421. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ressel L, Puleio R, Loria GR, Vannozzi I, Millanta F, Caracappa S and Poli A: HER-2 expression in canine morphologically normal, hyperplastic and neoplastic mammary tissues and its correlation with the clinical outcome. Res Vet Sci. 94:299–305. 2013. View Article : Google Scholar | |
Kim TM, Yang IS, Seung BJ, Lee S, Kim D, Ha YJ, Seo MK, Kim KK, Kim HS, Cheong JH, et al: Cross-species oncogenic signatures of breast cancer in canine mammary tumors. Nat Commun. 11:36162020. View Article : Google Scholar : PubMed/NCBI |