Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review)
- Authors:
- Kai Yang
- Xiaoxiang Liang
- Kunming Wen
-
Affiliations: Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: August 19, 2022 https://doi.org/10.3892/or.2022.8390
- Article Number: 175
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lee JK, Choi YL, Kwon M and Park PJ: Mechanisms and consequences of cancer genome instability: Lessons from genome sequencing studies. Annu Rev Pathol. 11:283–312. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aguilera A and Gómez-González B: Genome instability: A mechanistic view of its causes and consequences. Nat Rev Genet. 9:204–217. 2008. View Article : Google Scholar : PubMed/NCBI | |
Salmaninejad A, Ilkhani K, Marzban H, Navashenaq JG, Rahimirad S, Radnia F, Yousefi M, Bahmanpour Z, Azhdari S and Sahebkar A: Genomic instability in cancer: Molecular mechanisms and therapeutic potentials. Curr Pharm Des. 27:3161–3169. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mehrotra S and Mittra I: Origin of genome instability and determinants of mutational landscape in cancer cells. Genes (Basel). 11:11012020. View Article : Google Scholar : PubMed/NCBI | |
Andor N, Maley CC and Ji HP: Genomic instability in cancer: Teetering on the limit of tolerance. Cancer Res. 77:2179–2185. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abbas T, Keaton MA and Dutta A: Genomic instability in cancer. Cold Spring Harb Perspect Biol. 5:a0129142013. View Article : Google Scholar : PubMed/NCBI | |
O'Connor MJ: Targeting the DNA damage response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sansregret L, Vanhaesebroeck B and Swanton C: Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol. 15:139–150. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maciejowski J and de Lange T: Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lord CJ and Ashworth A: The DNA damage response and cancer therapy. Nature. 481:287–294. 2012. View Article : Google Scholar : PubMed/NCBI | |
Choi JD and Lee JS: Interplay between epigenetics and genetics in cancer. Genomics Inform. 11:164–173. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Guan X and Tang J: The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif. 54:e129662021. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Xie Y, Jiang S, Han W, Zeng F and Li D: The lncRNA signatures of genome instability to predict survival in patients with renal cancer. J Healthc Eng. 2021:10906982021. View Article : Google Scholar : PubMed/NCBI | |
Yin T, Zhao D and Yao S: Identification of a genome instability-associated LncRNA signature for prognosis prediction in colon cancer. Front Genet. 12:6791502021. View Article : Google Scholar : PubMed/NCBI | |
Kopp F and Mendell JT: Functional classification and experimental dissection of long noncoding RNAs. Cell. 172:393–407. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR and Mattick JS: Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 20:300–307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI, Clohessy JG and Pandolfi PP: mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 541:228–232. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guttman M and Rinn JL: Modular regulatory principles of large non-coding RNAs. Nature. 482:339–346. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hentze MW, Castello A, Schwarzl T and Preiss T: A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 19:327–341. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Dragomir MP, Fabris L, Bayraktar R, Knutsen E, Liu X, Tang C, Li Y, Shimura T, Ivkovic TC, et al: The long noncoding RNA CCAT2 induces chromosomal instability through BOP1-AURKB signaling. Gastroenterology. 159:2146–2162.e33. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Dai Y, Hu W, Zhang Y, Cao Z, Pei W, Liu N, Nie J, Wu A, Mao W, et al: The long noncoding RNA CRYBG3 induces aneuploidy by interfering with spindle assembly checkpoint via direct binding with Bub3. Oncogene. 40:1821–1835. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, Yuan J, Shan W, Li C, Hu X, et al: Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 23:522–530. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao K, Wang X, Xue X, Li L and Hu Y: A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers. PLoS Biol. 18:e30006662020. View Article : Google Scholar : PubMed/NCBI | |
Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, Xu XE, Liao LD, Xie YM, Song YM, Li EM and Xu LY: The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res. 46:1793–1809. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dong Z, Li S, Wu X, Niu Y, Liang X, Yang L, Guo Y, Shen S, Liang J and Guo W: Aberrant hypermethylation-mediated downregulation of antisense lncRNA ZNF667-AS1 and its sense gene ZNF667 correlate with progression and prognosis of esophageal squamous cell carcinoma. Cell Death Dis. 10:9302019. View Article : Google Scholar : PubMed/NCBI | |
Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, et al: Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 30:413–421. 2012. View Article : Google Scholar : PubMed/NCBI | |
Negrini S, Gorgoulis VG and Halazonetis TD: Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 11:220–228. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jo M, Kusano Y and Hirota T: Unraveling pathologies underlying chromosomal instability in cancers. Cancer Sci. 112:2975–2983. 2021. View Article : Google Scholar : PubMed/NCBI | |
Piemonte KM, Anstine LJ and Keri RA: Centrosome aberrations as drivers of chromosomal instability in breast cancer. Endocrinology. 162:bqab2082021. View Article : Google Scholar : PubMed/NCBI | |
Hara M and Fukagawa T: Dynamics of kinetochore structure and its regulations during mitotic progression. Cell Mol Life Sci. 77:2981–2995. 2020. View Article : Google Scholar : PubMed/NCBI | |
Monda JK and Cheeseman IM: The kinetochore-microtubule interface at a glance. J Cell Sci. 131:jcs2145772018. View Article : Google Scholar : PubMed/NCBI | |
Welburn JP, Vleugel M, Liu D, Yates JR III, Lampson MA, Fukagawa T and Cheeseman IM: Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell. 38:383–392. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sacristan C and Kops GJ: Joined at the hip: Kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol. 25:21–28. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Lin J, Fan X, Zhong Y, Chen Y, Liu K, Ren Y, Chen X, Lai D, Li X, et al: LncRNA CDKN2B-AS1 stabilized by IGF2BP3 drives the malignancy of renal clear cell carcinoma through epigenetically activating NUF2 transcription. Cell Death Dis. 12:2012021. View Article : Google Scholar : PubMed/NCBI | |
DeLuca JG, Dong Y, Hergert P, Strauss J, Hickey JM, Salmon ED and McEwen BF: Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell. 16:519–531. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stojic L, Lun ATL, Mascalchi P, Ernst C, Redmond AM, Mangei J, Barr AR, Bousgouni V, Bakal C, Marioni JC, et al: A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat Commun. 11:18512020. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y and Mendell JT: Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 164:69–80. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schmidt JC and Cech TR: Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev. 29:1095–1105. 2015. View Article : Google Scholar : PubMed/NCBI | |
Frias C, Pampalona J, Genesca A and Tusell L: Telomere dysfunction and genome instability. Front Biosci (Landmark Ed). 17:2181–2196. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schoeftner S and Blasco MA: Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 10:228–236. 2008. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Norseen J, Wiedmer A, Riethman H and Lieberman PM: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell. 35:403–413. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mei Y, Deng Z, Vladimirova O, Gulve N, Johnson FB, Drosopoulos WC, Schildkraut CL and Lieberman PM: TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci Rep. 11:35092021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zeng D, Cao J, Wang M, Shu B, Kuang G, Ou TM, Tan JH, Gu LQ, Huang ZS and Li D: Interaction of Quindoline derivative with telomeric repeat-containing RNA induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2. Biochim Biophys Acta Gen Subj. 1861:3246–3256. 2017. View Article : Google Scholar : PubMed/NCBI | |
Takahama K, Takada A, Tada S, Shimizu M, Sayama K, Kurokawa R and Oyoshi T: Regulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS. Chem Biol. 20:341–350. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blasco MA: Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet. 6:611–622. 2005. View Article : Google Scholar : PubMed/NCBI | |
Benetti R, García-Cao M and Blasco MA: Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 39:243–250. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang QS, Manche L, Xu RM and Krainer AR: hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA. 12:1116–1128. 2006. View Article : Google Scholar : PubMed/NCBI | |
Redon S, Zemp I and Lingner J: A three-state model for the regulation of telomerase by TERRA and hnRNPA1. Nucleic Acids Res. 41:9117–9128. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vohhodina J, Goehring LJ, Liu B, Kong Q, Botchkarev VV Jr, Huynh M, Liu Z, Abderazzaq FO, Clark AP, Ficarro SB, et al: BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage. Nat Commun. 12:35422021. View Article : Google Scholar : PubMed/NCBI | |
Feretzaki M, Pospisilova M, Valador Fernandes R, Lunardi T, Krejci L and Lingner J: RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. Nature. 587:303–308. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gala K and Khattar E: Long non-coding RNAs at work on telomeres: Functions and implications in cancer therapy. Cancer Lett. 502:120–132. 2021. View Article : Google Scholar : PubMed/NCBI | |
Podlevsky JD and Chen JJ: Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 13:720–732. 2016. View Article : Google Scholar : PubMed/NCBI | |
Redon S, Reichenbach P and Lingner J: The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 38:5797–5806. 2010. View Article : Google Scholar : PubMed/NCBI | |
Banik SS and Counter CM: Characterization of interactions between PinX1 and human telomerase subunits hTERT and hTR. J Biol Chem. 279:51745–51748. 2004. View Article : Google Scholar : PubMed/NCBI | |
Raghunandan M and Decottignies A: The multifaceted hTR telomerase RNA from a structural perspective: Distinct domains of hTR differentially interact with protein partners to orchestrate its telomerase-independent functions. Bioessays. 43:e21000992021. View Article : Google Scholar : PubMed/NCBI | |
Sui JD, Tang Z, Chen BPC, Huang P, Yang MQ, Wang NH, Yang HN, Tu HL, Jiang QM, Zhang J, et al: Protein phosphatase 2A-dependent mitotic hnRNPA1 dephosphorylation and TERRA formation facilitate telomere capping. Mol Cancer Res. 20:583–595. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pu H, Zheng Q, Li H, Wu M, An J, Gui X, Li T and Lu D: CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc. Oncotarget. 6:40775–40798. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu M, An J, Zheng Q, Xin X, Lin Z, Li X, Li H and Lu D: Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR. Oncotarget. 7:66525–66539. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Lin Z, Li X, Xin X, An J, Zheng Q, Yang Y and Lu D: HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2. Sci Rep. 6:360452016. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Wang L, Xie S, Chen Y, Song S, Lu Y and Lu D: Long noncoding RNA MEG3 blocks telomerase activity in human liver cancer stem cells epigenetically. Stem Cell Res Ther. 11:5182020. View Article : Google Scholar : PubMed/NCBI | |
Hoeijmakers JH: DNA damage, aging, and cancer. N Engl J Med. 361:1475–1485. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Fuemmeler BF and Shen J: DNA repair in cancer development and aging. Aging (Albany NY). 13:23435–23436. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tian H, Gao Z, Li H, Zhang B, Wang G, Zhang Q, Pei D and Zheng J: DNA damage response-a double-edged sword in cancer prevention and cancer therapy. Cancer Lett. 358:8–16. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bever KM and Le DT: DNA repair defects and implications for immunotherapy. J Clin Invest. 128:4236–4242. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y and Chen S: Targeting DNA double-strand break (DSB) repair to counteract tumor radio-resistance. Curr Drug Targets. 20:891–902. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ceccaldi R, Rondinelli B and D'Andrea AD: Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26:52–64. 2016. View Article : Google Scholar : PubMed/NCBI | |
Scully R, Panday A, Elango R and Willis NA: DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019. View Article : Google Scholar : PubMed/NCBI | |
Burma S, Chen BP and Chen DJ: Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst). 5:1042–1048. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Löbrich M and Jeggo PA: Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J. 30:1079–1092. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stinson BM and Loparo JJ: Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem. 90:137–164. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ghosh D and Raghavan SC: Nonhomologous end joining: New accessory factors fine tune the machinery. Trends Genet. 37:582–599. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhou Z, Wu E, Ouyang C, Wei G, Wang Y, He D, Cui Y, Zhang D, Chen X, et al: LRIK interacts with the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair. Cell Death Differ. 27:3337–3353. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thapar R, Wang JL, Hammel M, Ye R, Liang K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, et al: Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res. 48:10953–10972. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Wang YH, Xu H, Yuan CS, Zhou HH, Huang WH, Wang H and Zhang W: LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma. Cell Death Dis. 12:692021. View Article : Google Scholar : PubMed/NCBI | |
Decottignies A: Alternative end-joining mechanisms: A historical perspective. Front Genet. 4:482013. View Article : Google Scholar : PubMed/NCBI | |
Chiruvella KK, Liang Z and Wilson TE: Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol. 5:a0127572013. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, et al: Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia. 32:2250–2262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deng B, Xu W, Wang Z, Liu C, Lin P, Li B, Huang Q, Yang J, Zhou H and Qu L: An LTR retrotransposon-derived lncRNA interacts with RNF169 to promote homologous recombination. EMBO Rep. 20:e476502019. View Article : Google Scholar : PubMed/NCBI | |
Han T, Jing X, Bao J, Zhao L, Zhang A, Miao R, Guo H, Zhou B, Zhang S, Sun J and Shi J: H. pylori infection alters repair of DNA double-strand breaks via SNHG17. J Clin Invest. 130:3901–3918. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ranjha L, Howard SM and Cejka P: Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma. 127:187–214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto H and Hirasawa A: Homologous recombination deficiencies and hereditary tumors. Int J Mol Sci. 23:3482021. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Chen W, Yu F, Yuan Y, Chen Y, Hurst DR, Li Y, Li L and Liu Z: Long noncoding RNA HITTERS protects oral squamous cell carcinoma cells from endoplasmic reticulum stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex formation. Adv Sci (Weinh). 7:20027472020. View Article : Google Scholar : PubMed/NCBI | |
Paull TT: Mechanisms of ATM activation. Annu Rev Biochem. 84:711–738. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD and Wu M: GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol. 20:492–502. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Mi S, Zhao T, Peng Y, Chen L, Zhu W, Yao Y, Song Q, Li X, Li X, et al: BGL3 lncRNA mediates retention of the BRCA1/BARD1 complex at DNA damage sites. EMBO J. 39:e1041332020. View Article : Google Scholar : PubMed/NCBI | |
Sharma V, Khurana S, Kubben N, Abdelmohsen K, Oberdoerffer P, Gorospe M and Misteli T: A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Rep. 16:1520–1534. 2015. View Article : Google Scholar : PubMed/NCBI | |
Coleman KA and Greenberg RA: The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem. 286:13669–13680. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012. View Article : Google Scholar : PubMed/NCBI | |
Costa-Pinheiro P, Montezuma D, Henrique R and Jerónimo C: Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics. 7:1003–1015. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Huo X, Yang XR, He J, Cheng L, Wang N, Deng X, Jin H, Wang N, Wang C, et al: STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer. 16:1362017. View Article : Google Scholar : PubMed/NCBI | |
Kim JJ, Lee SY and Miller KM: Preserving genome integrity and function: The DNA damage response and histone modifications. Crit Rev Biochem Mol Biol. 54:208–241. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iacobuzio-Donahue CA: Epigenetic changes in cancer. Annu Rev Pathol. 4:229–249. 2009. View Article : Google Scholar : PubMed/NCBI | |
Luo RX and Dean DC: Chromatin remodeling and transcriptional regulation. J Natl Cancer Inst. 91:1288–1294. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu S and Tao Y: Regulation of chromatin remodeling through RNA polymerase II stalling in the immune system. Mol Immunol. 108:75–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koreman E, Sun X and Lu QR: Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Mol Cell Neurosci. 87:18–26. 2018. View Article : Google Scholar : PubMed/NCBI | |
Strahl BD and Allis CD: The language of covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fang K, Huang W, Sun YM, Chen TQ, Zeng ZC, Yang QQ, Pan Q, Han C, Sun LY, Luo XQ, et al: Cis-acting lnc-eRNA SEELA directly binds histone H4 to promote histone recognition and leukemia progression. Genome Biol. 21:2692020. View Article : Google Scholar : PubMed/NCBI | |
Wang YQ, Jiang DM, Hu SS, Zhao L, Wang L, Yang MH, Ai ML, Jiang HJ, Han Y, Ding YQ and Wang S: SATB2-AS1 suppresses colorectal carcinoma aggressiveness by inhibiting SATB2-dependent snail transcription and epithelial-mesenchymal transition. Cancer Res. 79:3542–3556. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chu C, Qu K, Zhong FL, Artandi SE and Chang HY: Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 44:667–678. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Su Z, Xu X, Liu G, Song X, Wang R, Sui X, Liu T, Chang X and Huang D: AS1DHRS4, a head-to-head natural antisense transcript, silences the DHRS4 gene cluster in cis and trans. Proc Natl Acad Sci USA. 109:14110–14115. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hui B, Ji H, Xu Y, Wang J, Ma Z, Zhang C, Wang K and Zhou Y: RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis. 10:2072019. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Li X, Song Z, Zhu X and Zhao S: Long non-coding RNA AGAP2-AS1 exerts oncogenic properties in glioblastoma by epigenetically silencing TFPI2 through EZH2 and LSD1. Aging (Albany NY). 11:3811–3823. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li W, Sun M, Zang C, Ma P, He J, Zhang M, Huang Z, Ding Y and Shu Y: Upregulated long non-coding RNA AGAP2-AS1 represses LATS2 and KLF2 expression through interacting with EZH2 and LSD1 in non-small-cell lung cancer cells. Cell Death Dis. 7:e22252016. View Article : Google Scholar : PubMed/NCBI | |
Qi F, Liu X, Wu H, Yu X, Wei C, Huang X, Ji G, Nie F and Wang K: Long noncoding AGAP2-AS1 is activated by SP1 and promotes cell proliferation and invasion in gastric cancer. J Hematol Oncol. 10:482017. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zheng Y, Zhang Y, Zhang J, Xie F, Guo S, Gu J, Yang J, Zheng P, Lai J, et al: Methylation-mediated LINC00261 suppresses pancreatic cancer progression by epigenetically inhibiting c-Myc transcription. Theranostics. 10:10634–10651. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salerno D, Chiodo L, Alfano V, Floriot O, Cottone G, Paturel A, Pallocca M, Plissonnier ML, Jeddari S, Belloni L, et al: Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut. 69:2016–2024. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hota SK and Bruneau BG: ATP-dependent chromatin remodeling during mammalian development. Development. 143:2882–2897. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhu P, Luo J, Wang J, Liu Z, Wu W, Du Y, Ye B, Wang D, He L, et al: LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J. 38:e1011102019. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, et al: Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer. 16:422017. View Article : Google Scholar : PubMed/NCBI | |
Ma X and Kang S: Functional implications of DNA methylation in adipose biology. Diabetes. 68:871–878. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama A and Nakanishi M: Navigating the DNA methylation landscape of cancer. Trends Genet. 37:1012–1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schübeler D: ESCI award lecture: Regulation, function and biomarker potential of DNA methylation. Eur J Clin Invest. 45:288–293. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 393:386–389. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yan H, Jiang Y, Chen T, Ma Z, Li F, Lin M, Xu Y, Zhang X, Zhang J and He H: Long non-coding RNA IGF2-AS represses breast cancer tumorigenesis by epigenetically regulating IGF2. Exp Biol Med (Maywood). 246:371–379. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Lei YY, Ding MG, Luo LH, Xie YC and Liu XL: LncRNA NEAT1 interacted with DNMT1 to regulate malignant phenotype of cancer cell and cytotoxic T cell infiltration via epigenetic inhibition of p53, cGAS, and STING in lung cancer. Front Genet. 11:2502020. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, Tan Z, Gangarapu V, Tang J and Sun B: Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis. 8:e26752017. View Article : Google Scholar : PubMed/NCBI | |
Feng H and Liu X: Interaction between ACOT7 and LncRNA NMRAL2P via methylation regulates gastric cancer progression. Yonsei Med J. 61:471–481. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhao Z, Miao F, Cai S, Liu P, Yu Y and Wang B: Silencing of long non-coding RNA LINC01270 inhibits esophageal cancer progression and enhances chemosensitivity to 5-fluorouracil by mediating GSTP1methylation. Cancer Gene Ther. 28:471–485. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang L, Jin C, Zhou J, Peng C, Wang Y, Xu Z, Zhang D, Huang Y, Zhang Y, et al: Long non-coding RNA Lnc-LALC facilitates colorectal cancer liver metastasis via epigenetically silencing LZTS1. Cell Death Dis. 12:2242021. View Article : Google Scholar : PubMed/NCBI | |
O'Leary VB, Ovsepian SV, Smida J and Atkinson MJ: PARTICLE-the RNA podium for genomic silencers. J Cell Physiol. 234:19464–19470. 2019. View Article : Google Scholar : PubMed/NCBI | |
O'Leary VB, Hain S, Maugg D, Smida J, Azimzadeh O, Tapio S, Ovsepian SV and Atkinson MJ: Long non-coding RNA PARTICLE bridges histone and DNA methylation. Sci Rep. 7:17902017. View Article : Google Scholar : PubMed/NCBI | |
Arab K, Park YJ, Lindroth AM, Schäfer A, Oakes C, Weichenhan D, Lukanova A, Lundin E, Risch A, Meister M, et al: Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 55:604–614. 2014. View Article : Google Scholar : PubMed/NCBI |