1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Herbst RS, Morgensztern D and Boshoff C:
The biology and management of non-small cell lung cancer. Nature.
553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gildea TR, DaCosta Byfield S, Hogarth DK,
Wilson DS and Quinn CC: A retrospective analysis of delays in the
diagnosis of lung cancer and associated costs. Clinicoecon Outcomes
Res. 9:261–269. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Travis WD: Lung cancer pathology: Current
concepts. Clin Chest Med. 41:67–85. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Travis WD, Brambilla E, Nicholson AG,
Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E,
Flieder DB, et al: The 2015 World Health Organization
classification of lung tumors: Impact of genetic, clinical and
radiologic advances since the 2004 classification. J Thorac Oncol.
10:1243–1260. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Latimer KM: Lung cancer: Clinical
presentation and diagnosis. FP Essent. 464:23–26. 2018.PubMed/NCBI
|
7
|
Huang LT, Cao R, Wang YR, Sun L, Zhang XY,
Guo YJ, Zhao JZ, Zhang SL, Jing W, Song J, et al: Clinical option
of pemetrexed-based versus paclitaxel-based first-line
chemotherapeutic regimens in combination with bevacizumab for
advanced non-squamous non-small-cell lung cancer and optimal
maintenance therapy: Evidence from a meta-analysis of randomized
control trials. BMC Cancer. 21:4262021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jordan MA and Wilson L: Microtubules as a
target for anticancer drugs. Nat Rev Cancer. 4:253–265. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Schiff PB, Fant J and Horwitz SB:
Promotion of microtubule assembly in vitro by taxol. Nature.
277:665–667. 1979. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Weaver BA: How taxol/paclitaxel kills
cancer cells. Mol Biol Cell. 25:2677–2681. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cui H, Arnst K, Miller DD and Li W: Recent
advances in elucidating paclitaxel resistance mechanisms in
non-small cell lung cancer and strategies to overcome drug
resistance. Curr Med Chem. 27:6573–6595. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hong S, Bi M, Wang L, Kang Z, Ling L and
Zhao C: CLC-3 channels in cancer (review). Oncol Rep. 33:507–514.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mu H, Mu L and Gao J: Suppression of CLC-3
reduces the proliferation, invasion and migration of colorectal
cancer through Wnt/β-catenin signaling pathway. Biochem Biophys Res
Commun. 533:1240–1246. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Du S and Yang L: ClC-3 chloride channel
modulates the proliferation and migration of osteosarcoma cells via
AKT/GSK3β signaling pathway. Int J Clin Exp Pathol. 8:1622–1630.
2015.PubMed/NCBI
|
15
|
Ye D, Luo H, Lai Z, Zou L, Zhu L, Mao J,
Jacob T, Ye W, Wang L and Chen L: ClC-3 chloride channel proteins
regulate the cell cycle by up-regulating cyclin D1-CDK4/6 through
suppressing p21/p27 expression in nasopharyngeal carcinoma cells.
Sci Rep. 6:302762016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Feng J, Peng Z, Gao L, Yang X, Sun Z, Hou
X, Li E, Zhu L and Yang H: ClC-3 promotes paclitaxel resistance via
modulating tubulins polymerization in ovarian cancer cells. Biomed
Pharmacother. 138:1114072021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen Q, Liu X, Luo Z, Wang S, Lin J, Xie
Z, Li M, Li C, Cao H, Huang Q, et al: Chloride channel-3 mediates
multidrug resistance of cancer by upregulating P-glycoprotein
expression. J Cell Physiol. 234:6611–6623. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Weylandt KH, Nebrig M, Jansen-Rosseck N,
Amey JS, Carmena D, Wiedenmann B, Higgins CF and Sardini A: ClC-3
expression enhances etoposide resistance by increasing
acidification of the late endocytic compartment. Mol Cancer Ther.
6:979–986. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Han Y, Zhou Y, Zhou L, Jia X, Yu X, An X
and Shi Z: Blockade of chloride channel-3 enhances cisplatin
sensitivity of cholangiocarcinoma cells though inhibiting
autophagy. Can J Physiol Pharmacol. 100:584–593. 2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ajani JA, Song S, Hochster HS and
Steinberg IB: Cancer stem cells: The promise and the potential.
Semin Oncol. 42 (Suppl 1):S3–S17. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Donnenberg VS and Donnenberg AD: Multiple
drug resistance in cancer revisited: The cancer stem cell
hypothesis. J Clin Pharmacol. 45:872–877. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N,
Kim KS, Lee YK and Kwon HY: Cancer stem cells (CSCs) in drug
resistance and their therapeutic implications in cancer treatment.
Stem Cells Int. 2018:54169232018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou C, Yang X, Sun Y, Yu H, Zhang Y and
Jin Y: Comprehensive profiling reveals mechanisms of SOX2-mediated
cell fate specification in human ESCs and NPCs. Cell Res.
26:171–189. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu K, Lin B, Zhao M, Yang X, Chen M, Gao
A, Liu F, Que J and Lan X: The multiple roles for Sox2 in stem cell
maintenance and tumorigenesis. Cell Signal. 25:1264–1271. 2013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Song WS, Yang YP, Huang CS, Lu KH, Liu WH,
Wu WW, Lee YY, Lo WL, Lee SD, Chen YW, et al: Sox2, a stemness
gene, regulates tumor-initiating and drug-resistant properties in
CD133-positive glioblastoma stem cells. J Chin Med Assoc.
79:538–545. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen TY, Zhou J, Li PC, Tang CH, Xu K, Li
T and Ren T: SOX2 knockdown with siRNA reverses cisplatin
resistance in NSCLC by regulating APE1 signaling. Med Oncol.
39:362022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang C, Zhang X, Jiang L, Zhang L, Xiang
M and Ren H: FoxM1 induced paclitaxel resistance via activation of
the FoxM1/PHB1/RAF-MEK-ERK pathway and enhancement of the ABCA2
transporter. Mol Ther Oncolytics. 14:196–212. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Prieto-Vila M, Takahashi RU, Usuba W,
Kohama I and Ochiya T: Drug resistance driven by cancer stem cells
and their niche. Int J Mol Sci. 18:25742017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen J, Wang F, Lu Y, Yang S, Chen X,
Huang Y and Lin X: CLC-3 and SOX2 regulate the cell cycle in DU145
cells. Oncol Lett. 20:3722020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu Q, Zhang L, Su P, Lei X, Liu X, Wang H,
Lu L, Bai Y, Xiong T, Li D, et al: MSX2 mediates entry of human
pluripotent stem cells into mesendoderm by simultaneously
suppressing SOX2 and activating NODAL signaling. Cell Res.
25:1314–1332. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Adrianzen Herrera D, Ashai N, Perez-Soler
R and Cheng H: Nanoparticle albumin bound-paclitaxel for treatment
of advanced non-small cell lung cancer: An evaluation of the
clinical evidence. Expert Opin Pharmacother. 20:95–102. 2019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Scripture CD, Figg WD and Sparreboom A:
Paclitaxel chemotherapy: From empiricism to a mechanism-based
formulation strategy. Ther Clin Risk Manag. 1:107–114. 2005.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Sullivan JP, Minna JD and Shay JW:
Evidence for self-renewing lung cancer stem cells and their
implications in tumor initiation, progression, and targeted
therapy. Cancer Metastasis Rev. 29:61–72. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Piva M, Domenici G, Iriondo O, Rábano M,
Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R
and Vivanco MD: Sox2 promotes tamoxifen resistance in breast cancer
cells. EMBO Mol Med. 6:66–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yin Y, Xie CM, Li H, Tan M, Chen G, Schiff
R, Xiong X and Sun Y: The FBXW2-MSX2-SOX2 axis regulates stem cell
property and drug resistance of cancer cells. Proc Natl Acad Sci
USA. 116:20528–20538. 2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang H, Pang Y, Ma C, Li J, Wang H and
Shao Z: ClC5 decreases the sensitivity of multiple myeloma cells to
bortezomib via promoting prosurvival autophagy. Oncol Res.
26:421–429. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li G, Chen T, Zhu Y, Xiao X, Bu J and
Huang Z: MiR-103 alleviates autophagy and apoptosis by regulating
SOX2 in LPS-injured PC12 cells and SCI rats. Iran J Basic Med Sci.
21:292–300. 2018.PubMed/NCBI
|
39
|
Jiang J, Li Z, Yu C, Chen M, Tian S and
Sun C: MiR-1181 inhibits stem cell-like phenotypes and suppresses
SOX2 and STAT3 in human pancreatic cancer. Cancer Lett.
356:962–970. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Khing TM, Choi WS, Kim DM, Po WW, Thein W,
Shin CY and Sohn UD: The effect of paclitaxel on apoptosis,
autophagy and mitotic catastrophe in AGS cells. Sci Rep.
11:234902021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhu Y, Huang S, Chen S, Chen J, Wang Z,
Wang Y and Zheng H: SOX2 promotes chemoresistance, cancer stem
cells properties, and epithelial-mesenchymal transition by
β-catenin and Beclin1/autophagy signaling in colorectal cancer.
Cell Death Dis. 12:4492021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kim BH, Oh HK, Kim DW, Kang SB, Choi Y and
Shin E: Clinical implications of cancer stem cell markers and ABC
transporters as a predictor of prognosis in colorectal cancer
patients. Anticancer Res. 40:4481–4489. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Toda T, Hsu JY, Linker SB, Hu L, Schafer
ST, Mertens J, Jacinto FV, Hetzer MW and Gage FH: Nup153 interacts
with Sox2 to enable bimodal gene regulation and maintenance of
neural progenitor cells. Cell Stem Cell. 21:618–634.e7. 2017.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wulff H, Castle NA and Pardo LA:
Voltage-gated potassium channels as therapeutic targets. Nat Rev
Drug Discov. 8:982–1001. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yamashita N, Hamada H, Tsuruo T and Ogata
E: Enhancement of voltage-gated Na+ channel current associated with
multidrug resistance in human leukemia cells. Cancer Res.
47:3736–3741. 1987.PubMed/NCBI
|
46
|
Catterall WA and Swanson TM: Structural
basis for pharmacology of voltage-gated sodium and calcium
channels. Mol Pharmacol. 88:141–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Weinstein IB: Cancer. Addiction to
oncogenes-the Achilles heal of cancer. Science. 297:63–64. 2002.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yan W, Zhang W and Jiang T: Oncogene
addiction in gliomas: Implications for molecular targeted therapy.
J Exp Clin Cancer Res. 30:582011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Nagel R, Semenova EA and Berns A: Drugging
the addict: Non-oncogene addiction as a target for cancer therapy.
EMBO Rep. 17:1516–1531. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sosa Iglesias V, Giuranno L, Dubois LJ,
Theys J and Vooijs M: Drug resistance in non-small cell lung
cancer: A potential for NOTCH targeting? Front Oncol. 8:2672018.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Gorre ME, Mohammed M, Ellwood K, Hsu N,
Paquette R, Rao PN and Sawyers CL: Clinical resistance to STI-571
cancer therapy caused by BCR-ABL gene mutation or amplification.
Science. 293:876–880. 2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Pikor LA, Ramnarine VR, Lam S and Lam WL:
Genetic alterations defining NSCLC subtypes and their therapeutic
implications. Lung Cancer. 82:179–189. 2013. View Article : Google Scholar : PubMed/NCBI
|