A guide through conventional and modern cancer treatment modalities: A specific focus on glioblastoma cancer therapy (Review)
- Authors:
- Rayan Naser
- Hrag Dilabazian
- Hadi Bahr
- Aya Barakat
- Mirvat El-Sibai
-
Affiliations: Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, 13‑5053 Beirut, Lebanon - Published online on: September 13, 2022 https://doi.org/10.3892/or.2022.8405
- Article Number: 190
This article is mentioned in:
Abstract
Taylor OG, Brzozowski JS and Skelding KA: Glioblastoma multiforme: An overview of emerging therapeutic targets. Front Oncol. 9:9632019. View Article : Google Scholar | |
Ostrom QT, Cioffi G, Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 23 (Suppl 2):iii1–iii105. 2021. View Article : Google Scholar | |
Staquicini FI, Smith TL, Tang FHF, Gelovani JG, Giordano RJ, Libutti SK, Sidman RL, Cavenee WK, Arap W and Pasqualini R: Targeted AAVP-based therapy in a mouse model of human glioblastoma: A comparison of cytotoxic versus suicide gene delivery strategies. Cancer Gene Ther. 27:301–310. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vigneswaran K, Neill S and Hadjipanayis CG: Beyond the World Health Organization grading of infiltrating gliomas: Advances in the molecular genetics of glioma classification. Ann Transl Med. 3:952015.PubMed/NCBI | |
Roentgen WC: On a new kind of ray (first report). Munch Med Wochenschr. 101:1237–1239. 1959.(In German). PubMed/NCBI | |
Schirrmacher V: From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol. 54:407–419. 2019. | |
Newhauser WD and Durante M: Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer. 11:438–448. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T and Gérard JP: Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol. 10:52–60. 2013. View Article : Google Scholar | |
Mohan R: Field shaping for three-dimensional conformal radiation therapy and multileaf collimation. Semin Radiat Oncol. 5:86–99. 1995. View Article : Google Scholar | |
Milano MT, Katz AW, Zhang H and Okunieff P: Oligometastases treated with stereotactic body radiotherapy: Long-term follow-up of prospective study. Int J Radiat Oncol Biol Phys. 83:878–886. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bucci MK, Bevan A and Roach M III: Advances in radiation therapy: Conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin. 55:117–134. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ling CC, Yorke E and Fuks Z: From IMRT to IGRT: Frontierland or Neverland? Radiother Oncol. 78:119–122. 2006. View Article : Google Scholar | |
De Ruysscher D, Mark Lodge M, Jones B, Brada M, Munro A, Jefferson T and Pijls-Johannesma M: Charged particles in radiotherapy: A 5-year update of a systematic review. Radiother Oncol. 103:5–7. 2012. View Article : Google Scholar | |
Lee WS, Seo SJ, Chung HK, Park JW, Kim JK and Kim EH: Tumor-treating fields as a proton beam-sensitizer for glioblastoma therapy. Am J Cancer Res. 11:4582–4594. 2021.PubMed/NCBI | |
Thwaites DI and Malicki J: Physics and technology in ESTRO and in Radiotherapy and Oncology: Past, present and into the 4th dimension. Radiother Oncol. 100:327–332. 2011. View Article : Google Scholar | |
Borella L, Finkel S, Crapeau N, Peuvrel P, Sauvage M, Perrier L, Lepage E, Villeminot J and Garrigues B: Volume and costs of the hospital management of cancer in France in 1999. Bull Cancer. 89:809–821. 2002.(In French). PubMed/NCBI | |
Halperin EC, Wazer DE, Perez CA and Brady LW: Perez and Brady's: Principles and practice of radiation oncology. 6e2018. | |
Barani IJ and Larson DA: Radiation therapy of glioblastoma. Current Understanding and Treatment of Gliomas. Raizer J and Parsa A: Springer International Publishing; Cham: pp. 49–73. 2015 | |
Walker MD, Strike TA and Sheline GE: An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys. 5:1725–1731. 1979. View Article : Google Scholar : PubMed/NCBI | |
Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, Weinstein A, Nelson JS and Tsukada Y: Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint radiation therapy oncology group and eastern cooperative oncology group study. Cancer. 52:997–1007. 1983. View Article : Google Scholar : PubMed/NCBI | |
Grossman SA and Batara JF: Current management of glioblastoma multiforme. Semin Oncol. 31:635–644. 2004. View Article : Google Scholar | |
Dhermain F: Radiotherapy of high-grade gliomas: Current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chin J Cancer. 33:16–24. 2014. View Article : Google Scholar : PubMed/NCBI | |
Travis LB, Demark Wahnefried W, Allan JM, Wood ME and Ng AK: Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nat Rev Clin Oncol. 10:289–301. 2013. View Article : Google Scholar | |
Imaoka T, Ishii N, Kawaguchi I, Homma-Takeda S, Doi K, Daino K, Nakanishi I, Tagami K, Kokubo T, Morioka T, et al: Biological measures to minimize the risk of radiotherapy-associated second cancer: A research perspective. Int J Radiat Biol. 92:289–301. 2016. View Article : Google Scholar | |
Anjum K, Shagufta BI, Abbas SQ, Patel S, Khan I, Shah SAA, Akhter N and Hassan SSU: Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed Pharmacother. 92:681–689. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gzell C, Back M, Wheeler H, Bailey D and Foote M: Radiotherapy in glioblastoma: The past, the present and the future. Clin Oncol (R Coll Radiol). 29:15–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Galmarini D, Galmarini CM and Galmarini FC: Cancer chemotherapy: A critical analysis of its 60 years of history. Crit Rev Oncol Hematol. 84:181–199. 2012. View Article : Google Scholar | |
DeVita VT and Chu E: A history of cancer chemotherapy. Cancer Res. 68:8643–8653. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schütte J and Seeber S: Tumordefinitionen/remissionskriterien. Therapiekonzepte Onkologie. Seeber S and Schütte J: Springer; Berlin: pp. 3–12. 1993, View Article : Google Scholar | |
Dax SL: Antibacterial Chemotherapeutic Agents. Springer Science & Business Media. 31–416. 1996. | |
Lee SY: Temozolomide resistance in glioblastoma multiforme. Genes Dis. 3:198–210. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tomar MS, Kumar A, Srivastava C and Shrivastava A: Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer. 1876:1886162021. View Article : Google Scholar : PubMed/NCBI | |
Malmström A, Grønberg BH, Marosi C, Stupp R, Frappaz D, Schultz H, Abacioglu U, Tavelin B, Lhermitte B, Hegi ME, et al: Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol. 13:916–926. 2012. View Article : Google Scholar | |
Wen J, Chen W, Zhu Y and Zhang P: Clinical features associated with the efficacy of chemotherapy in patients with glioblastoma (GBM): A surveillance, epidemiology, and end results (SEER) analysis. BMC Cancer. 21:812021. View Article : Google Scholar : PubMed/NCBI | |
Reithmeier T, Graf E, Piroth T, Trippel M, Pinsker MO and Nikkhah G: BCNU for recurrent glioblastoma multiforme: Efficacy, toxicity and prognostic factors. BMC Cancer. 10:302010. View Article : Google Scholar : PubMed/NCBI | |
Xiao ZZ, Wang ZF, Lan T, Huang WH, Zhao YH, Ma C and Li ZQ: Carmustine as a supplementary therapeutic option for glioblastoma: A systematic review and meta-analysis. Front Neurol. 11:10362020. View Article : Google Scholar | |
Mooney J, Bernstock JD, Ilyas A, Ibrahim A, Yamashita D, Markert JM and Nakano I: Current approaches and challenges in the molecular therapeutic targeting of glioblastoma. World Neurosurg. 129:90–100. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL, et al: Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: A randomized clinical trial. JAMA. 314:2535–2543. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jaffe N, Paed D, Traggis D, Salian S and Cassady JR: Improved outlook for Ewing's sarcoma with combination chemotherapy (vincristine, actinomycin D and cyclophosphamide) and radiation therapy. Cancer. 38:1925–1930. 1976. View Article : Google Scholar : PubMed/NCBI | |
Nishimura Y: Rationale for chemoradiotherapy. Int J Clin Oncol. 9:414–420. 2004. View Article : Google Scholar | |
Bernier J and Bentzen SM: Altered fractionation and combined radio-chemotherapy approaches: Pioneering new opportunities in head and neck oncology. Eur J Cancer. 39:560–571. 2003. View Article : Google Scholar : PubMed/NCBI | |
Le Chevalier T, Arriagada R, Quoix E, Ruffie P, Martin M, Tarayre M, Lacombe-Terrier MJ, Douillard JY and Laplanche A: Radiotherapy alone versus combined chemotherapy and radiotherapy in nonresectable non-small-cell lung cancer: First analysis of a randomized trial in 353 patients. J Natl Cancer Inst. 83:417–423. 1991. View Article : Google Scholar | |
Mukherjee S, Hurt CN, Bridgewater J, Falk S, Cummins S, Wasan H, Crosby T, Jephcott C, Roy R, Radhakrishna G, et al: Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): A multicentre, randomised, phase 2 trial. Lancet Oncol. 14:317–326. 2013. View Article : Google Scholar | |
Lefebvre JL, Chevalier D, Luboinski B, Kirkpatrick A, Collette L and Sahmoud T: Larynx preservation in pyriform sinus cancer: Preliminary results of a European organization for research and treatment of cancer phase III trial. EORTC head and neck cancer cooperative group. J Natl Cancer Inst. 88:890–899. 1996. View Article : Google Scholar | |
Redden MH and Fuhrman GM: Neoadjuvant chemotherapy in the treatment of breast cancer. Surg Clin North Am. 93:493–499. 2013. View Article : Google Scholar : PubMed/NCBI | |
Malmström A, Poulsen HS, Grønberg BH, Stragliotto G, Hansen S, Asklund T, Holmlund B, Łysiak M, Dowsett J, Kristensen BW, et al: Postoperative neoadjuvant temozolomide before radiotherapy versus standard radiotherapy in patients 60 years or younger with anaplastic astrocytoma or glioblastoma: A randomized trial. Acta Oncol. 56:1776–1785. 2017. View Article : Google Scholar | |
Brunner TB: The rationale of combined radiotherapy and chemotherapy-joint action of castor and pollux. Best Pract Res Clin Gastroenterol. 30:515–528. 2016. View Article : Google Scholar | |
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brandes AA, Franceschi E, Tosoni A, Benevento F, Scopece L, Mazzocchi V, Bacci A, Agati R, Calbucci F and Ermani M: Temozolomide concomitant and adjuvant to radiotherapy in elderly patients with glioblastoma: Correlation with MGMT promoter methylation status. Cancer. 115:3512–3518. 2009. View Article : Google Scholar : PubMed/NCBI | |
Perry JR, Laperriere N, O'Callaghan CJ, Brandes AA, Menten J, Phillips C, Fay M, Nishikawa R, Cairncross JG, Roa W, et al: Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 376:1027–1037. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mizumoto M, Yamamoto T, Ishikawa E, Matsuda M, Takano S, Ishikawa H, Okumura T, Sakurai H, Matsumura A and Tsuboi K: Proton beam therapy with concurrent chemotherapy for glioblastoma multiforme: Comparison of nimustine hydrochloride and temozolomide. J Neurooncol. 130:165–170. 2016. View Article : Google Scholar | |
Al-Dimassi S, Salloum G, Saykali B, Khoury O, Liu S, Leppla SH, Abi-Habib R and El-Sibai M: Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion. Int J Oncol. 48:1913–1920. 2016. View Article : Google Scholar | |
Bao X, Zeng J, Huang H, Ma C, Wang L, Wang F, Liao X and Song X: Cancer-targeted PEDF-DNA therapy for metastatic colorectal cancer. Int J Pharm. 576:1189992020. View Article : Google Scholar : PubMed/NCBI | |
Branford S, Hughes T, Milner A, Koelmeyer R, Schwarer A, Arthur C, Filshie R, Moreton S, Lynch K and Taylor K: Efficacy and safety of imatinib in patients with chronic myeloid leukemia and complete or near-complete cytogenetic response to interferon-alpha. Cancer. 110:801–808. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xie YH, Chen YX and Fang JY: Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 5:222020. View Article : Google Scholar : PubMed/NCBI | |
Robles Irizarry L, Hambardzumyan D, Nakano I, Gladson CL and Ahluwalia MS: Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opin Ther Targets. 16:973–984. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guarnaccia L, Navone SE, Trombetta E, Cordiglieri C, Cherubini A, Crisà FM, Rampini P, Miozzo M, Fontana L, Caroli M, et al: Angiogenesis in human brain tumors: Screening of drug response through a patient-specific cell platform for personalized therapy. Sci Rep. 8:87482018. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA, Wen PY, Desjardins A, Batchelor TT and Vredenburgh JJ: Glioblastoma multiforme: An emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther. 8:541–553. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T and Yang S: Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI | |
Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, Eichler AF, Drappatz J, Hochberg FH, Benner T, et al: Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol. 28:2817–2823. 2010. View Article : Google Scholar | |
Kim MM, Umemura Y and Leung D: Bevacizumab and glioblastoma: Past, present, and future directions. Cancer J. 24:180–186. 2018. View Article : Google Scholar : PubMed/NCBI | |
Diaz RJ, Ali S, Qadir MG, De La Fuente MI, Ivan ME and Komotar RJ: The role of bevacizumab in the treatment of glioblastoma. J Neurooncol. 133:455–467. 2017. View Article : Google Scholar | |
Wong ET, Gautam S, Malchow C, Lun M, Pan E and Brem S: Bevacizumab for recurrent glioblastoma multiforme: A meta-analysis. J Natl Compr Canc Netw. 9:403–407. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ciombor KK and Berlin J: Aflibercept-a decoy VEGF receptor. Curr Oncol Rep. 16:3682014. View Article : Google Scholar : PubMed/NCBI | |
de Groot JF, Lamborn KR, Chang SM, Gilbert MR, Cloughesy TF, Aldape K, Yao J, Jackson EF, Lieberman F, Robins HI, et al: Phase II study of aflibercept in recurrent malignant glioma: A North American brain tumor consortium study. J Clin Oncol. 29:2689–2695. 2011. View Article : Google Scholar | |
Carruthers R and Chalmers AJ: Improving the therapeutic ratio of radiotherapy by targeting the DNA damage response. Increasing the Therapeutic Ratio of Radiotherapy. Tofilon PJ and Camphausen K: Springer International Publishing; Cham: pp. 1–34. 2017, View Article : Google Scholar | |
Chalmers AJ: Overcoming resistance of glioblastoma to conventional cytotoxic therapies by the addition of PARP inhibitors. Anticancer Agents Med Chem. 10:520–533. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, Strathdee K, Cruickshank G, Dunn L, Erridge S, et al: Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: Results of the phase I OPARATIC trial. Neuro Oncol. 22:1840–1850. 2020. View Article : Google Scholar | |
Wirth T, Parker N and Ylä-Herttuala S: History of gene therapy. Gene. 525:162–169. 2013. View Article : Google Scholar : PubMed/NCBI | |
Friedmann T: A brief history of gene therapy. Nat Genet. 2:93–98. 1992. View Article : Google Scholar | |
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D and Fisher PB: Gene therapies for cancer: Strategies, challenges and successes. J Cell Physiol. 230:259–271. 2015. View Article : Google Scholar | |
Roth JA, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ, Hong WK, Komaki R, Lee JJ, Nesbitt JC, et al: Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med. 2:985–991. 1996. View Article : Google Scholar : PubMed/NCBI | |
Griffith TS, Stokes B, Kucaba TA, Earel JK Jr, VanOosten RL, Brincks EL and Norian LA: TRAIL gene therapy: From preclinical development to clinical application. Curr Gene Ther. 9:9–19. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fisher PB: Is mda-7/IL-24 a ‘magic bullet’ for cancer? Cancer Res. 65:10128–10138. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Wu J, Wang D and Wang J: Cancer gene therapy by NF-κB-activated cancer cell-specific expression of CRISPR/Cas9 targeting telomeres. Gene Ther. 27:266–280. 2020. View Article : Google Scholar : PubMed/NCBI | |
Putney SD, Brown J, Cucco C, Lee R, Skorski T, Leonetti C, Geiser T, Calabretta B, Zupi G and Zon G: Enhanced anti-tumor effects with microencapsulated c-myc antisense oligonucleotide. Antisense Nucleic Acid Drug Dev. 9:451–458. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fleming JB, Shen GL, Holloway SE, Davis M and Brekken RA: Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: Justification for K-ras-directed therapy. Mol Cancer Res. 3:413–423. 2005. View Article : Google Scholar : PubMed/NCBI | |
Singh P, Singh A, Shah S, Vataliya J, Mittal A and Chitkara D: RNA interference nanotherapeutics for treatment of glioblastoma multiforme. Mol Pharm. 17:4040–4066. 2020. View Article : Google Scholar : PubMed/NCBI | |
Danhier F, Messaoudi K, Lemaire L, Benoit JP and Lagarce F: Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: In vivo evaluation. Int J Pharm. 481:154–161. 2015. View Article : Google Scholar : PubMed/NCBI | |
Azambuja JH, Schuh RS, Michels LR, Gelsleichter NE, Beckenkamp LR, Iser IC, Lenz GS, de Oliveira FH, Venturin G, Greggio S, et al: Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: A new therapeutical approach. Mol Neurobiol. 57:635–649. 2020. View Article : Google Scholar | |
Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, Tate M, Schwartz M, Zuckerman L, Lezon R, et al: A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 13:eabb39452021. View Article : Google Scholar : PubMed/NCBI | |
Mercatelli N, Galardi S and Ciafrè SA: MicroRNAs as multifaceted players in glioblastoma multiforme. Int Rev Cell Mol Biol. 333:269–323. 2017. View Article : Google Scholar | |
Choppavarapu L and Kandi SM: Circulating MicroRNAs as potential biomarkers in glioma: A mini-review. Endocr Metab Immune Disord Drug Targets. 21:195–202. 2021. View Article : Google Scholar : PubMed/NCBI | |
Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M and Duroux M: A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol. 47:131–144. 2013. View Article : Google Scholar | |
Sugio K, Sakurai F, Katayama K, Tashiro K, Matsui H, Kawabata K, Kawase A, Iwaki M, Hayakawa T, Fujiwara T and Mizuguchi H: Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin Cancer Res. 17:2807–2818. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, Purow B and Abounader R: microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle. 9:1031–1036. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ananta JS, Paulmurugan R and Massoud TF: Tailored nanoparticle codelivery of antimiR-21 and antimiR-10b augments glioblastoma cell kill by temozolomide: Toward a ‘personalized’ anti-microRNA therapy. Mol Pharm. 13:3164–3175. 2016. View Article : Google Scholar : PubMed/NCBI | |
Viel T, Monfared P, Schelhaas S, Fricke IB, Kuhlmann MT, Fraefel C and Jacobs AH: Optimizing glioblastoma temozolomide chemotherapy employing lentiviral-based anti-MGMT shRNA technology. Mol Ther. 21:570–579. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Dai D, Zhou M, Li Z, Wang C, Lu Y, Li Y and Wang J: Inhibition of cyclin D1 expression in human glioblastoma cells is associated with increased temozolomide chemosensitivity. Cell Physiol Biochem. 51:2496–2508. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song WS, Yang YP, Huang CS, Lu KH, Liu WH, Wu WW, Lee YY, Lo WL, Lee SD, Chen YW, et al: Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. J Chin Med Assoc. 79:538–545. 2016. View Article : Google Scholar | |
Zhang Z, Yin J, Lu C, Wei Y, Zeng A and You Y: Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 38:1662019. View Article : Google Scholar : PubMed/NCBI | |
Hsu JF, Chu SM, Liao CC, Wang CJ, Wang YS, Lai MY, Wang HC, Huang HR and Tsai MH: Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers (Basel). 13:1952021. View Article : Google Scholar | |
Lathia JD, Heddleston JM, Venere M and Rich JN: Deadly teamwork: Neural cancer stem cells and the tumor microenvironment. Cell Stem Cell. 8:482–485. 2011. View Article : Google Scholar | |
Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, Yang K, Morton AR, Zhou W, Zhu Z, et al: Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 22:514–528.e5. 2018. View Article : Google Scholar | |
Ni J, Xie S, Ramkissoon SH, Luu V, Sun Y, Bandopadhayay P, Beroukhim R, Roberts TM, Stiles CD, Segal RA, et al: Tyrosine receptor kinase B is a drug target in astrocytomas. Neuro Oncol. 19:22–30. 2017. View Article : Google Scholar | |
Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL and Yu JS: Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 23:9392–9400. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G and Pelicci G: CD133 is essential for glioblastoma stem cell maintenance. Stem Cells. 31:857–869. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carlsson SK, Brothers SP and Wahlestedt C: Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 6:1359–1370. 2014. View Article : Google Scholar : PubMed/NCBI | |
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sighel D, Notarangelo M, Aibara S, Re A, Ricci G, Guida M, Soldano A, Adami V, Ambrosini C, Broso F, et al: Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell Rep. 35:1090242021. View Article : Google Scholar : PubMed/NCBI | |
Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E, Ebrahimi M and Hamidieh AA: Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat. 42:35–45. 2019. View Article : Google Scholar | |
Bai RY, Staedtke V and Riggins GJ: Molecular targeting of glioblastoma: Drug discovery and therapies. Trends Mol Med. 17:301–312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oiseth SJ and Aziz MS: Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 3:250–261. 2017. View Article : Google Scholar | |
Zhang Y and Zhang Z: The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar | |
Yu MW and Quail DF: Immunotherapy for glioblastoma: Current progress and challenges. Front Immunol. 12:6763012021. View Article : Google Scholar | |
Liu J, Fu M, Wang M, Wan D, Wei Y and Wei X: Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar | |
Hollingsworth RE and Jansen K: Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 4:72019. View Article : Google Scholar : PubMed/NCBI | |
Buonaguro L and Tagliamonte M: Selecting target antigens for cancer vaccine development. Vaccines (Basel). 8:6152020. View Article : Google Scholar | |
Kim CG, Sang YB, Lee JH and Chon HJ: Combining cancer vaccines with immunotherapy: Establishing a new immunological approach. Int J Mol Sci. 22:80352021. View Article : Google Scholar | |
Schietinger A, Philip M and Schreiber H: Specificity in cancer immunotherapy. Semin Immunol. 20:276–285. 2008. View Article : Google Scholar | |
Rüttinger D, Winter H, van den Engel NK, Hatz R, Jauch KW, Fox BA and Weber JS: Immunotherapy of cancer: Key findings and commentary on the third Tegernsee conference. Oncologist. 15:112–118. 2010. View Article : Google Scholar | |
Oh T, Sayegh ET, Fakurnejad S, Oyon D, Lamano JB, DiDomenico JD, Bloch O and Parsa AT: Vaccine therapies in malignant glioma. Curr Neurol Neurosci Rep. 15:5082015. View Article : Google Scholar : PubMed/NCBI | |
Baratta MG: Glioblastoma is ‘hot’ for personalized vaccines. Nat Rev Cancer. 19:1292019. View Article : Google Scholar : PubMed/NCBI | |
Polyzoidis S and Ashkan K: DCVax®-L-developed by northwest biotherapeutics. Hum Vaccines Immunother. 10:3139–3145. 2014. View Article : Google Scholar | |
Wen PY, Reardon DA, Armstrong TS, Phuphanich S, Aiken RD, Landolfi JC, Curry WT, Zhu JJ, Glantz M, Peereboom DM, et al: A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 25:5799–5807. 2019. View Article : Google Scholar : PubMed/NCBI | |
Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuño MA, Richardson JE, Fan X, Ji J, Chu RM, et al: Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 62:125–135. 2013. View Article : Google Scholar : PubMed/NCBI | |
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 565:234–239. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, et al: Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 565:240–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
AIVITA Biomedical, Inc., . AIVITA biomedical's phase 2 glioblastoma trial shows improved progression free survival. 2021. | |
Conlon KC, Miljkovic MD and Waldmann TA: Cytokines in the treatment of cancer. J Interferon Cytokine Res. 39:6–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rallis KS, Corrigan AE, Dadah H, George AM, Keshwara SM, Sideris M and Szabados B: Cytokine-based cancer immunotherapy: Challenges and opportunities for IL-10. Anticancer Res. 41:3247–3252. 2021. View Article : Google Scholar : PubMed/NCBI | |
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E and Melero I: Cytokines in clinical cancer immunotherapy. Br J Cancer. 120:6–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xue D, Hsu E, Fu YX and Peng H: Next-generation cytokines for cancer immunotherapy. Antib Ther. 4:123–133. 2021.PubMed/NCBI | |
Zhu VF, Yang J, Lebrun DG and Li M: Understanding the role of cytokines in glioblastoma multiforme pathogenesis. Cancer Lett. 316:139–150. 2012. View Article : Google Scholar | |
Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA and Solovyeva VV: Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol. 8:4022020. View Article : Google Scholar | |
Chiocca EA, Yu JS, Lukas RV, Solomon IH, Ligon KL, Nakashima H, Triggs DA, Reardon DA, Wen P, Stopa BM, et al: Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Sci Transl Med. 11:eaaw56802019. View Article : Google Scholar : PubMed/NCBI | |
Garcia D: Encouraging clinical data for controlled IL-12 for the treatment of glioblastoma and DIPG. Onco'Zine. 2020. | |
Kane A and Yang I: Interferon-gamma in brain tumor immunotherapy. Neurosurg Clin N Am. 21:77–86. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wakabayashi T, Kayama T, Nishikawa R, Takahashi H, Hashimoto N, Takahashi J, Aoki T, Sugiyama K, Ogura M, Natsume A and Yoshida J: A multicenter phase I trial of combination therapy with interferon-β and temozolomide for high-grade gliomas (INTEGRA study): The final report. J Neurooncol. 104:573–577. 2011. View Article : Google Scholar | |
Iwami K, Natsume A and Wakabayashi T: Cytokine therapy of gliomas. Intracranial Gliomas Part III–Innov Treat Modalities. 32:79–89. 2018. View Article : Google Scholar | |
Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
Redeker A and Arens R: Improving adoptive T cell therapy: The particular role of T cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 7:3452016. View Article : Google Scholar | |
Rohaan MW, Wilgenhof S and Haanen JBAG: Adoptive cellular therapies: The current landscape. Virchows Arch. 474:449–461. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin B, Du L, Li H, Zhu X, Cui L and Li X: Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed Pharmacother. 132:1108732020. View Article : Google Scholar : PubMed/NCBI | |
Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, et al: Adoptive cell therapy-harnessing antigen-specific T cells to target solid tumours. Cancers (Basel). 12:6832020. View Article : Google Scholar | |
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S and Kobold S: Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 20:12832019. View Article : Google Scholar | |
Xu S, Tang L, Li X, Fan F and Liu Z: Immunotherapy for glioma: Current management and future application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar | |
Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, et al: HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: A phase 1 dose-escalation trial. JAMA Oncol. 3:1094–1101. 2017. View Article : Google Scholar | |
Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, et al: Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 21:4062–4072. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Mello RA, Veloso AF, Esrom Catarina P, Nadine S and Antoniou G: Potential role of immunotherapy in advanced non-small-cell lung cancer. OncoTargets Ther. 10:21–30. 2016. View Article : Google Scholar | |
Dine J, Gordon R, Shames Y, Kasler MK and Barton-Burke M: Immune checkpoint inhibitors: An innovation in immunotherapy for the treatment and management of patients with cancer. Asia Pac J Oncol Nurs. 4:127–135. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wilky BA: Immune checkpoint inhibitors: The linchpins of modern immunotherapy. Immunol Rev. 290:6–23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mpakali A and Stratikos E: The role of antigen processing and presentation in cancer and the efficacy of immune checkpoint inhibitor immunotherapy. Cancers (Basel). 13:1342021. View Article : Google Scholar | |
Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, et al: Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 25:477–486. 2019. View Article : Google Scholar : PubMed/NCBI | |
Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL, Latek R, et al: Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: Results from exploratory phase I cohorts of CheckMate 143. Neuro Oncol. 20:674–686. 2018. View Article : Google Scholar | |
Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar | |
Sloan AE, Gilbert MR, Zhang P, Aldape KD, Wu J, Rogers LR, Wen PY, Barani IJ, Iwamoto FM, Raval RR, et al: NRG BN002: Phase I study of checkpoint inhibitors anti-CTLA-4, anti-PD-1, the combination in patients with newly diagnosed glioblastoma. J Clin Oncol. 36 (15 Suppl):S20532018. View Article : Google Scholar | |
Schwarze JK, Duerinck J, Dufait I, Awada G, Klein S, Fischbuch L, Seynaeve L, Vaeyens E, Rogiers A, Everaert H, et al: A phase I clinical trial on intratumoral and intracavitary administration of ipilimumab and nivolumab in patients with recurrent glioblastoma. J Clin Oncol. 38 (15 Suppl):S25342020. View Article : Google Scholar | |
Batich KA and Sampson JH: Standard of care and future pharmacological treatment options for malignant glioma: An urgent need for screening and identification of novel tumor-specific antigens. Expert Opin Pharmacother. 15:2047–2061. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jessen NA, Munk AS, Lundgaard I and Nedergaard M: The glymphatic system: A beginner's guide. Neurochem Res. 40:2583–2599. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR, Azizi H, Torkamandi S and Tavakkoly-Bazzaz J: New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 24:233–243. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao CY, Cheng R, Yang Z and Tian ZM: Nanotechnology for cancer therapy based on chemotherapy. Molecules. 23:8262018. View Article : Google Scholar | |
Husain SR, Han J, Au P, Shannon K and Puri RK: Gene therapy for cancer: Regulatory considerations for approval. Cancer Gene Ther. 22:554–563. 2015. View Article : Google Scholar : PubMed/NCBI | |
Research C for BE and ABECMA (idecabtagene vicleucel). FDA; 2021 | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
Springfeld C, Jäger D, Büchler MW, Strobel O, Hackert T, Palmer DH and Neoptolemos JP: Chemotherapy for pancreatic cancer. Presse Med. 48:e159–e174. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wilson GD, Bentzen SM and Harari PM: Biologic basis for combining drugs with radiation. Semin Radiat Oncol. 16:2–9. 2006. View Article : Google Scholar | |
Karachi A, Dastmalchi F, Mitchell DA and Rahman M: Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol. 20:1566–1572. 2018. View Article : Google Scholar | |
Liu EK, Sulman EP, Wen PY and Kurz SC: Novel therapies for glioblastoma. Curr Neurol Neurosci Rep. 20:192020. View Article : Google Scholar : PubMed/NCBI | |
Kijima N and Kanemura Y: Mouse models of glioblastoma. In: Glioblastoma. De Vleeschouwer S: Codon Publications; Brisbane, AU: 2017 | |
Charles NA and Holland EC: The perivascular niche microenvironment in brain tumor progression. Cell Cycle. 9:3084–3093. 2010. View Article : Google Scholar | |
LeBlanc AK and Mazcko CN: Improving human cancer therapy through the evaluation of pet dogs. Nat Rev Cancer. 20:727–742. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hicks WH, Bird CE, Pernik MN, Haider AS, Dobariya A, Abdullah KG, Aoun SG, Bentley RT, Cohen-Gadol AA, Bachoo RM, et al: Large animal models of glioma: Current status and future prospects. Anticancer Res. 41:5343–5353. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tora MS, Texakalidis P, Neill S, Wetzel J, Rindler RS, Hardcastle N, Nagarajan PP, Krasnopeyev A, Roach C, James R, et al: Lentiviral vector induced modeling of high-grade spinal cord glioma in minipigs. Sci Rep. 10:52912020. View Article : Google Scholar : PubMed/NCBI | |
Selek L, Seigneuret E, Nugue G, Wion D, Nissou MF, Salon C, Seurin MJ, Carozzo C, Ponce F, Roger T and Berger F: Imaging and histological characterization of a human brain xenograft in pig: The first induced glioma model in a large animal. J Neurosci Methods. 221:159–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Khoshnevis M, Carozzo C, Bonnefont-Rebeix C, Belluco S, Leveneur O, Chuzel T, Pillet-Michelland E, Dreyfus M, Roger T, Berger F and Ponce F: Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model. J Neurosci Methods. 282:61–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Khoshnevis M, Carozzo C, Brown R, Bardiès M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O, Gehan H, et al: Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One. 15:e02347722020. View Article : Google Scholar : PubMed/NCBI | |
Rama AR, Alvarez PJ, Madeddu R and Aranega A: ABC transporters as differentiation markers in glioblastoma cells. Mol Biol Rep. 41:4847–4851. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y and Frei K: Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol. 67:435–448. 2008. View Article : Google Scholar | |
Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H and Wolburg H: Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 100:323–331. 2000. View Article : Google Scholar | |
Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W and Engelhardt B: Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. 105:586–592. 2003. View Article : Google Scholar | |
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al: An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 178:835–849.e21. 2019. View Article : Google Scholar | |
Bhaduri A, Di Lullo E, Jung D, Müller S, Crouch EE, Espinosa CS, Ozawa T, Alvarado B, Spatazza J, Cadwell CR, et al: Outer radial glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell. 26:48–63.e6. 2020. View Article : Google Scholar |