1
|
Marusyk A and Polyak K: Tumor
heterogeneity: Causes and consequences. Biochim Biophys Acta.
1805:105–117. 2010.
|
2
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar
|
3
|
Blank A, Roberts DE II, Dawson H, Zlobec I
and Lugli A: Tumor heterogeneity in primary colorectal cancer and
corresponding metastases. Does the apple fall far from the tree?
Front Med (Lausanne). 5:2342018.
|
4
|
Stanta G and Bonin S: Overview on clinical
relevance of intra-tumor heterogeneity. Front Med (Lausanne).
5:852018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Prager BC, Xie Q, Bao S and Rich JN:
Cancer stem cells: The architects of the tumor ecosystem. Cell Stem
Cell. 24:41–53. 2019. View Article : Google Scholar
|
6
|
Grillet F, Bayet E, Villeronce O, Zappia
L, Lagerqvist EL, Lunke S, Charafe-Jauffret E, Pham K, Molck C,
Rolland N, et al: Circulating tumour cells from patients with
colorectal cancer have cancer stem cell hallmarks in ex vivo
culture. Gut. 66:1802–1810. 2017. View Article : Google Scholar
|
7
|
Toloudi M, Apostolou P, Chatziioannou M
and Papasotiriou I: Correlation between cancer stem cells and
circulating tumor cells and their value. Case Rep Oncol. 4:44–54.
2011. View Article : Google Scholar
|
8
|
Saiki Y, Ishimaru S, Mimori K, Takatsuno
Y, Nagahara M, Ishii H, Yamada K and Mori M: Comprehensive analysis
of the clinical significance of inducing pluripotent
stemness-related gene expression in colorectal cancer cells. Ann
Surg Oncol. 16:2638–2644. 2009. View Article : Google Scholar
|
9
|
Dylla SJ, Beviglia L, Park IK, Chartier C,
Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S,
et al: Colorectal cancer stem cells are enriched in xenogeneic
tumors following chemotherapy. PLoS One. 3:e24282008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Giampieri R, Scartozzi M, Loretelli C,
Piva F, Mandolesi A, Lezoche G, Del Prete M, Bittoni A, Faloppi L,
Bianconi M, et al: Cancer stem cell gene profile as predictor of
relapse in high risk stage II and stage III, radically resected
colon cancer patients. PLoS One. 8:e728432013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Merlos-Suárez A, Barriga FM, Jung P,
Iglesias M, Céspedes MV, Rossell D, Sevillano M, Hernando-Momblona
X, da Silva-Diz V, Muñoz P, et al: The intestinal stem cell
signature identifies colorectal cancer stem cells and predicts
disease relapse. Cell Stem Cell. 8:511–524. 2011. View Article : Google Scholar
|
12
|
Colak S, Zimberlin CD, Fessler E, Hogdal
L, Prasetyanti PR, Grandela CM, Letai A and Medema JP: Decreased
mitochondrial priming determines chemoresistance of colon cancer
stem cells. Cell Death Differ. 21:1170–1177. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lombardo Y, Scopelliti A, Cammareri P,
Todaro M, Iovino F, Ricci-Vitiani L, Gulotta G, Dieli F, de Maria R
and Stassi G: Bone morphogenetic protein 4 induces differentiation
of colorectal cancer stem cells and increases their response to
chemotherapy in mice. Gastroenterology. 140:297–309. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lotti F, Jarrar AM, Pai RK, Hitomi M,
Lathia J, Mace A, Gantt GA Jr, Sukhdeo K, DeVecchio J, Vasanji A,
et al: Chemotherapy activates cancer-associated fibroblasts to
maintain colorectal cancer-initiating cells by IL-17A. J Exp Med.
210:2851–2872. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zeuner A, Todaro M, Stassi G and De Maria
R: Colorectal cancer stem cells: From the crypt to the clinic. Cell
Stem Cell. 15:692–705. 2014. View Article : Google Scholar
|
16
|
Wang V and Wu W: MicroRNA-based
therapeutics for cancer. Biodrugs. 23:15–23. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang D, Liu J, Huo T, Tian Y and Zhao L:
The role of microRNAs in colorectal liver metastasis: Important
participants and potential clinical significances. Tumour Biol.
39:10104283177096402017. View Article : Google Scholar
|
18
|
Naxerova K, Reiter JG, Brachtel E, Lennerz
JK, van de Wetering M, Rowan A, Cai T, Clevers H, Swanton C, Nowak
MA, et al: Origins of lymphatic and distant metastases in human
colorectal cancer. Science. 357:55–60. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gonzalez-Villarreal CA, Quiroz-Reyes AG,
Islas JF and Garza-Treviño EN: Colorectal cancer stem cells in the
progression to liver metastasis. Front Oncol. 10:15112020.
View Article : Google Scholar
|
20
|
Wong RC, Ibrahim A, Fong H, Thompson N,
Lock LF and Donovan PJ: L1TD1 is a marker for undifferentiated
human embryonic stem cells. PLoS One. 6:e193552011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Närvä E, Rahkonen N, Emani MR, Lund R,
Pursiheimo JP, Nästi J, Autio R, Rasool O, Denessiouk K, Lähdesmäki
H, et al: RNA-binding protein L1TD1 interacts with LIN28 via RNA
and is required for human embryonic stem cell self-renewal and
cancer cell proliferation. Stem Cells. 30:452–460. 2012. View Article : Google Scholar
|
22
|
Emani MR, Närvä E, Stubb A, Chakroborty D,
Viitala M, Rokka A, Rahkonen N, Moulder R, Denessiouk K, Trokovic
R, et al: The L1TD1 protein interactome reveals the importance of
post-transcriptional regulation in human pluripotency. Stem Cell
Reports. 4:519–528. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sandberg CJ, Vik-Mo EO, Behnan J, Helseth
E and Langmoen IA: Transcriptional profiling of adult neural
stem-like cells from the human brain. PLoS One. 9:e1147392014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Farahani E, Patra HK, Jangamreddy JR,
Rashedi I, Kawalec M, Rao Pariti RK, Batakis P and Wiechec E: Cell
adhesion molecules and their relation to (cancer) cell stemness.
Carcinogenesis. 35:747–759. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ambriz X, de Lanerolle P and Ambrosio JR:
The mechanobiology of the actin cytoskeleton in stem cells during
differentiation and interaction with biomaterials. Stem Cells Int.
2018:28919572018. View Article : Google Scholar
|
26
|
Ogawa T, Hirohashi Y, Murai A, Nishidate
T, Okita K, Wang L, Ikehara Y, Satoyoshi T, Usui A, Kubo T, et al:
ST6GALNAC1 plays important roles in enhancing cancer stem
phenotypes of colorectal cancer via the Akt pathway. Oncotarget.
8:112550–112564. 2017. View Article : Google Scholar
|
27
|
Park KS, Cha Y, Kim CH, Ahn HJ, Kim D, Ko
S, Kim KH, Chang MY, Ko JH, Noh YS, et al: Transcription elongation
factor Tcea3 regulates the pluripotent differentiation potential of
mouse embryonic stem cells via the lefty1-nodal-smad2 pathway. Stem
Cells. 31:282–292. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Urh K, Žlajpah M, Zidar N and Boštjančič
E: Identification and validation of new cancer stem cell-related
genes and their regulatory microRNAs in colorectal cancerogenesis.
Biomedicines. 9:1792021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Brierley JD, Gospodarowicz MK and
Wittekind C: TNM Classification of Malignant Tumours. 8th edition.
Wiley-Blackwell; Oxford, UK: 2017
|
30
|
Ranković B, Zidar N, Žlajpah M and
Boštjančič E: Epithelial-mesenchymal transition-related microRNAs
and their target genes in colorectal cancerogenesis. J Clin Med.
8:16032019. View Article : Google Scholar
|
31
|
Žlajpah M, Hauptman N, Boštjančič E and
Zidar N: Differential expression of extracellular matrix-related
genes DCN, EPHA4, FN1, SPARC, SPON2 and SPP1 in colorectal
carcinogenesis. Oncol Rep. 42:1539–1548. 2019.
|
32
|
Latham GJ: Normalization of microRNA
quantitative RT-PCR data in reduced scale experimental designs.
Methods Mol Biol. 667:19–31. 2010. View Article : Google Scholar
|
33
|
Pavlič A, Urh K, Štajer K, Boštjančič E
and Zidar N: Epithelial-mesenchymal transition in colorectal
carcinoma: Comparison between primary tumor, lymph node and liver
metastases. Front Oncol. 11:6628062021. View Article : Google Scholar
|
34
|
Hauptman N, Boštjančič E, Žlajpah M,
Ranković B and Zidar N: Bioinformatics analysis reveals most
prominent gene candidates to distinguish colorectal adenoma from
adenocarcinoma. Biomed Res Int. 2018:94165152018. View Article : Google Scholar
|
35
|
Chakroborty D, Emani MR, Klén R, Böckelman
C, Hagström J, Haglund C, Ristimäki A, Lahesmaa R and Elo LL:
L1TD1-a prognostic marker for colon cancer. BMC Cancer. 19:7272019.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Tamura F, Sato Y, Hirakawa M, Yoshida M,
Ono M, Osuga T, Okagawa Y, Uemura N, Arihara Y, Murase K, et al:
RNAi-mediated gene silencing of ST6GalNAc I suppresses the
metastatic potential in gastric cancer cells. Gastric Cancer.
19:85–97. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ozaki H, Matsuzaki H, Ando H, Kaji H,
Nakanishi H, Ikehara Y and Narimatsu H: Enhancement of metastatic
ability by ectopic expression of ST6GalNAcI on a gastric cancer
cell line in a mouse model. Clin Exp Metastasis. 29:229–238. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang WY, Cao YX, Zhou X, Wei B, Zhan L and
Sun SY: Stimulative role of ST6GALNAC1 in proliferation, migration
and invasion of ovarian cancer stem cells via the Akt signaling
pathway. Cancer Cell Int. 19:862019. View Article : Google Scholar
|
39
|
Li J, Jin Y, Pan S, Chen Y, Wang K, Lin C,
Jin S and Wu J: TCEA3 attenuates gastric cancer growth by apoptosis
induction. Med Sci Monit. 21:3241–3246. 2015. View Article : Google Scholar
|
40
|
Koehler A, Bataille F, Schmid C, Ruemmele
P, Waldeck A, Blaszyk H, Hartmann A, Hofstaedter F and Dietmaier W:
Gene expression profiling of colorectal cancer and metastases
divides tumours according to their clinicopathological stage. J
Pathol. 204:65–74. 2004. View Article : Google Scholar
|
41
|
Lee JR, Kwon CH, Choi Y, Park HJ, Kim HS,
Jo HJ, Oh N and Park do Y: Transcriptome analysis of paired primary
colorectal carcinoma and liver metastases reveals fusion
transcripts and similar gene expression profiles in primary
carcinoma and liver metastases. BMC Cancer. 16:5392016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Humphries HN, Wickremesekera SK, Marsh RW,
Brasch HD, Mehrotra S, Tan ST and Itinteang T: Characterization of
cancer stem cells in colon adenocarcinoma metastasis to the liver.
Front Surg. 4:762018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Munro MJ, Wickremesekera SK, Peng L, Marsh
RW, Itinteang T and Tan ST: Cancer stem cell subpopulations in
primary colon adenocarcinoma. PLoS One. 14:e02219632019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Reiter JG, Hung WT, Lee IH, Nagpal S,
Giunta P, Degner S, Liu G, Wassenaar ECE, Jeck WR, Taylor MS, et
al: Lymph node metastases develop through a wider evolutionary
bottleneck than distant metastases. Nat Genet. 52:692–700. 2020.
View Article : Google Scholar
|
45
|
Liu R, Liu C, Zhang D, Liu B, Chen X,
Rycaj K, Jeter C, Calhoun-Davis T, Li Y, Yang T, et al: miR-199a-3p
targets stemness-related and mitogenic signaling pathways to
suppress the expansion and tumorigenic capabilities of prostate
cancer stem cells. Oncotarget. 7:56628–56642. 2016. View Article : Google Scholar
|
46
|
Worley LA, Long MD, Onken MD and Harbour
JW: Micro-RNAs associated with metastasis in uveal melanoma
identified by multiplexed microarray profiling. Melanoma Res.
18:184–190. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Pencheva N, Tran H, Buss C, Huh D,
Drobnjak M, Busam K and Tavazoie SF: Convergent multi-miRNA
targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis
and angiogenesis. Cell. 151:1068–1082. 2012. View Article : Google Scholar
|
48
|
Wan D, He S, Xie B, Xu G, Gu W, Shen C, Hu
Y, Wang X, Zhi Q and Wang L: Aberrant expression of miR-199a-3p and
its clinical significance in colorectal cancers. Med Oncol.
30:3782013. View Article : Google Scholar
|
49
|
Fang F, Song T, Zhang T, Cui Y, Zhang G
and Xiong Q: MiR-425-5p promotes invasion and metastasis of
hepatocellular carcinoma cells through SCAI-mediated dysregulation
of multiple signaling pathways. Oncotarget. 8:31745–31757. 2017.
View Article : Google Scholar
|
50
|
Zheng H, Zhang F and Lin X, Huang C, Zhang
Y, Li Y, Lin J, Chen W and Lin X: MicroRNA-1225-5p inhibits
proliferation and metastasis of gastric carcinoma through
repressing insulin receptor substrate-1 and activation of β-catenin
signaling. Oncotarget. 7:4647–4663. 2016. View Article : Google Scholar
|
51
|
Zhong R, Li S, Fang K, Yang L and Wang L:
microRNA-1225 inhibit apoptosis of pancreatic cancer cells via
targeting JAK1. Cell Cycle. 18:990–1000. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lu M, Wu Y, Zeng B, Sun J, Li Y, Luo J,
Wang L, Yi Z, Li H and Ren G: CircEHMT1 inhibits metastatic
potential of breast cancer cells by modulating
miR-1233-3p/KLF4/MMP2 axis. Biochem Biophys Res Commun.
526:306–313. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang SJ, Feng JF, Wang L, Guo W, Du YW,
Ming L and Zhao GQ: miR-1303 targets claudin-18 gene to modulate
proliferation and invasion of gastric cancer cells. Dig Dis Sci.
59:1754–1763. 2014. View Article : Google Scholar
|
54
|
Liu B, Zhou W, Jiang H, Xiang Z and Wang
L: miR-1303 promotes the proliferation, migration and invasion of
prostate cancer cells through regulating the Wnt/β-catenin pathway
by targeting DKK3. Exp Ther Med. 18:4747–4757. 2019.PubMed/NCBI
|
55
|
Lerebours F, Cizeron-Clairac G, Susini A,
Vacher S, Mouret-Fourme E, Belichard C, Brain E, Alberini JL,
Spyratos F, Lidereau R and Bieche I: miRNA expression profiling of
inflammatory breast cancer identifies a 5-miRNA signature
predictive of breast tumor aggressiveness. Int J Cancer.
133:1614–1623. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Torres S, Garcia-Palmero I, Bartolomé RA,
Fernandez-Aceñero MJ, Molina E, Calviño E, Segura MF and Casal JI:
Combined miRNA profiling and proteomics demonstrates that different
miRNAs target a common set of proteins to promote colorectal cancer
metastasis. J Pathol. 242:39–51. 2017. View Article : Google Scholar
|
57
|
Chen J, Jiang T, Yu B, Li T, Zhao P, Yuan
L and Qi J: Upregulation of microRNA-1303 is a potential prognostic
marker of non-small cell lung cancer. Cancer Biomark. 28:439–446.
2020. View Article : Google Scholar : PubMed/NCBI
|