Melanoma metastasis: What role does melanin play? (Review)
- Authors:
- Anoosha Saud
- Sreenivasa R. Sagineedu
- Hui-Suan Ng
- Johnson Stanslas
- Jonathan Chee Woei Lim
-
Affiliations: Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400 Selangor, Malaysia, Department of Chemistry, International Medical University, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia, Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia - Published online on: October 21, 2022 https://doi.org/10.3892/or.2022.8432
- Article Number: 217
This article is mentioned in:
Abstract
Ali Z, Yousaf N and Larkin J: Melanoma epidemiology, biology and prognosis. EJC Suppl. 11:81–91. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Sheikh MS: Melanoma: Molecular pathogenesis and therapeutic management. Mol Cell Pharmacol. 6:2282014.PubMed/NCBI | |
Shore R: Radiation-induced skin cancer in humans. Med Pediatr Oncol. 36:549–554. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Fung AHY, Xu ML, Poon K, Liu EY, Kong XP, Yao P, Xiong QP, Dong TTX and Tsim KWK: Microphthalmia-associated transcription factor up-regulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. J Biol Chem. 293:14417–14428. 2018. View Article : Google Scholar : PubMed/NCBI | |
Netcharoensirisuk P, Abrahamian C, Tang R, Chen CC, Rosato AS, Beyers W, Chao YK, Filippini A, Di Pietro S, Bartel K, et al: Flavonoids increase melanin production and reduce proliferation, migration and invasion of melanoma cells by blocking endolysosomal/melanosomal TPC2. Sci Rep. 11:85152021. View Article : Google Scholar : PubMed/NCBI | |
D'Amore A, Hanbashi AA, Di Agostino S, Palombi F, Sacconi A, Voruganti A, Taggi M, Canipari R, Blandino G, Parrington J and Filippini A: Loss of two-pore channel 2 (TPC2) expression increases the metastatic traits of melanoma cells by a mechanism involving the Hippo signalling pathway and store-operated calcium entry. Cancers (Basel). 12:23912020. View Article : Google Scholar : PubMed/NCBI | |
Lim JCW, Kwan YP, Tan MS, Teo MHY, Chiba S, Wahli W and Wang X: The role of PPARβ/δ in melanoma metastasis. Int J Mol Sci. 19:28602018. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Huang L, Quan J and Xiang D: TRIM14 regulates melanoma malignancy via PTEN/PI3K/AKT and STAT3 pathways. Aging (Albany NY). 13:13225–13238. 2021. View Article : Google Scholar : PubMed/NCBI | |
Slominski RM, Zmijewski MA and Slominski AT: The role of melanin pigment in melanoma. Exp Dermatol. 24:258–259. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martin T, Ye L, Sanders AJ, Lane J and Jiang WG: Cancer invasion and metastasis: Molecular and cellular perspective. In Madame Curie Bioscience Database [Internet]. Jandial R: Landes Bioscience: Austin; TX, USA: pp. 2000–2013. 2013 | |
Pachmayr E, Treese C and Stein U: Underlying mechanisms for distant metastasis-molecular biology. Visc Med. 33:11–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Damsky WE, Rosenbaum LE and Bosenberg M: Decoding melanoma metastasis. Cancers (Basel). 3:126–163. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang E, Yan T, Xu Z and Shang Z: Tumour microenvironment and cell fusion. Biomed Res Int. 2019:50135922019. View Article : Google Scholar : PubMed/NCBI | |
Fernandes C, Prabhu P, Juvale K, Suares D and Yc M: Cancer cell fusion: A potential target to tackle drug-resistant and metastatic cancer cells. Drug Discov Today. 24:1836–1844. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang HF, Xiang W, Xue BZ, Wang YH, Yi DY, Jiang XB, Zhao HY and Fu P: Cell fusion in cancer hallmarks: Current research status and future indications (Review). Oncol Lett. 22:5302021. View Article : Google Scholar : PubMed/NCBI | |
Xu MH, Gao X, Luo D, Zhou XD, Xiong W and Liu GX: EMT and acquisition of stem cell-like properties are involved in spontaneous formation of tumorigenic hybrids between lung cancer and bone marrow-derived mesenchymal stem cells. PLoS One. 9:e878932014. View Article : Google Scholar : PubMed/NCBI | |
Imodoye SO, Adedokun KA, Muhammed AO, Bello IO, Muhibi MA, Oduola T and Oyenike MA: Understanding the complex milieu of epithelial-mesenchymal transition in cancer metastasis: New insight into the roles of transcription factors. Front Oncol. 11:7628172021. View Article : Google Scholar : PubMed/NCBI | |
Parri M and Chiarugi P: Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal. 8:232010. View Article : Google Scholar : PubMed/NCBI | |
Gener P, Seras-Franzoso J, Callejo PG, Andrade F, Rafael D, Martínez F, Montero S, Arango D, Sayós J, Abasolo I and Schwartz S Jr: Dynamism, sensitivity, and consequences of mesenchymal and stem-like phenotype of cancer cells. Stem Cells Int. 2018:45164542018. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D, Tamma R and Annese T: Epithelial-mesenchymal transition in cancer: A historical overview. Transl Oncol. 13:1007732020. View Article : Google Scholar : PubMed/NCBI | |
Vandyck HH, Hillen LM, Bosisio FM, van den Oord J, Zur Hausen A and Winnepenninckx V: Rethinking the biology of metastatic melanoma: A holistic approach. Cancer Metastasis Rev. 40:603–624. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur RM, Travnickova J, Eichhoff OM, Cerny P, Möller K, Sigurbjörnsdóttir S, et al: MITF reprograms the extracellular matrix and focal adhesion in melanoma. Elife. 10:e630932021. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Zhao B, Liu Y, Wang R, Yang Y, Yang L and Dong C: MITF-M regulates melanogenesis in mouse melanocytes. J Dermatol Sci. 90:253–262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J, Claudinot S, Okoniewski M, Beermann F, Mihic-Probst D, et al: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol. 14:882–890. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yun CY, Mi Ko S, Pyo Choi Y, Kim BJ, Lee J, Mun Kim J, Kim JY, Song JY, Kim SH, Hwang BY, et al: α-Viniferin improves facial hyperpigmentation via accelerating feedback termination of cAMP/PKA-signaled phosphorylation circuit in facultative melanogenesis. Theranostics. 8:2031–2043. 2018. View Article : Google Scholar : PubMed/NCBI | |
Choi MH, Jo HG, Yang JH, Ki SH and Shin HJ: Antioxidative and anti-melanogenic activities of bamboo stems (phyllostachys nigra variety henosis) via PKA/CREB-mediated MITF downregulation in B16F10 melanoma cells. Int J Mol Sci. 19:4092018. View Article : Google Scholar : PubMed/NCBI | |
Kaur A, Webster MR and Weeraratna AT: In the Wnt-er of life: Wnt signalling in melanoma and ageing. Br J Cancer. 115:1273–1279. 2016. View Article : Google Scholar : PubMed/NCBI | |
Goding CR and Arnheiter H: MITF-the first 25 years. Genes Dev. 33:983–1007. 2019. View Article : Google Scholar : PubMed/NCBI | |
Javelaud D, Alexaki VI, Pierrat MJ, Hoek KS, Dennler S, Van Kempen L, Bertolotto C, Ballotti R, Saule S, Delmas V and Mauviel A: GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res. 24:932–943. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fane ME, Chhabra Y, Smith AG and Sturm RA: BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res. 32:9–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kawakami A and Fisher DE: The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest. 97:649–656. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ghiorzo P, Pastorino L, Queirolo P, Bruno W, Tibiletti MG, Nasti S and Andreotti V; Genoa Pancreatic Cancer Study Group, . Paillerets BB and Bianchi Scarrà G: Prevalence of the E318K MITF germline mutation in Italian melanoma patients: Associations with histological subtypes and family cancer history. Pigment Cell Melanoma Res. 26:259–262. 2013. View Article : Google Scholar : PubMed/NCBI | |
Primot A, Mogha A, Corre S, Roberts K, Debbache J, Adamski H, Dreno B, Khammari A, Lesimple T, Mereau A, et al: ERK-regulated differential expression of the Mitf 6a/b splicing isoforms in melanoma. Pigment Cell Melanoma Res. 23:93–102. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ennen M, Keime C, Gambi G, Kieny A, Coassolo S, Thibault-Carpentier C, Margerin-Schaller F, Davidson G, Vagne C, Lipsker D and Davidson I: MITF-high and MITF-low cells and a novel subpopulation expressing genes of both cell states contribute to intra- and intertumoral heterogeneity of primary melanoma. Clin Cancer Res. 23:7097–7107. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lister JA, Capper A, Zeng Z, Mathers ME, Richardson J, Paranthaman K, Jackson IJ and Elizabeth Patton E: A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs regression in vivo. J Invest Dermatol. 134:133–140. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bianchi-Smiraglia A, Bagati A, Fink EE, Moparthy S, Wawrzyniak JA, Marvin EK, Battaglia S, Jowdy P, Kolesnikova M, Foley CE, et al: Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene. 36:84–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
Simmons JL, Pierce CJ, Al-Ejeh F and Boyle GM: MITF and BRN2 contribute to metastatic growth after dissemination of melanoma. Sci Rep. 7:109092017. View Article : Google Scholar : PubMed/NCBI | |
Swoboda A, Soukup R, Eckel O, Kinslechner K, Wingelhofer B, Schörghofer D, Sternberg C, Pham HTT, Vallianou M, Horvath J, et al: STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway. Oncogene. 40:1091–1105. 2021. View Article : Google Scholar : PubMed/NCBI | |
D'Alba L and Shawkey MD: Melanosomes: Biogenesis, properties, and evolution of an ancient organelle. Physiol Rev. 99:1–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Slominski A, Zmijewski MA and Pawelek J: L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27. 2012. View Article : Google Scholar : PubMed/NCBI | |
D'Mello SA, Finlay GJ, Baguley BC and Askarian-Amiri ME: Signaling pathways in melanogenesis. Int J Mol Sci. 17:11442016. View Article : Google Scholar : PubMed/NCBI | |
Morgan AM, Lo J and Fisher DE: How does pheomelanin synthesis contribute to melanomagenesis?: Two distinct mechanisms could explain the carcinogenicity of pheomelanin synthesis. Bioessays. 35:672–676. 2013. View Article : Google Scholar : PubMed/NCBI | |
Del Bino S, Ito S, Sok J, Nakanishi Y, Bastien P, Wakamatsu K and Bernerd F: Chemical analysis of constitutive pigmentation of human epidermis reveals constant eumelanin to pheomelanin ratio. Pigment Cell Melanoma Res. 28:707–717. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H and Jimbow K: Elucidation of melanogenesis cascade for identifying pathophysiology and therapeutic approach of pigmentary disorders and melanoma. Int J Mol Sci. 21:61292020. View Article : Google Scholar : PubMed/NCBI | |
Wakamatsu K, Nagao A, Watanabe M, Nakao K and Ito S: Pheomelanogenesis is promoted at a weakly acidic pH. Pigment Cell Melanoma Res. 30:372–377. 2017. View Article : Google Scholar : PubMed/NCBI | |
Carletti G, Nervo G and Cattivelli L: Flavonoids and melanins: A common strategy across two kingdoms. Int J Biol Sci. 10:1159–1170. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ju KY, Degan S, Fischer MC, Zhou KC, Jia X, Yu J and Warren WS: Unraveling the molecular nature of melanin changes in metastatic cancer. J Biomed Opt. 24:1–13. 2019. View Article : Google Scholar | |
Premi S: Role of melanin chemiexcitation in melanoma progression and drug resistance. Front Oncol. 10:13052020. View Article : Google Scholar : PubMed/NCBI | |
Sarna M, Zadlo A, Czuba-Pelech B and Urbanska K: Nanomechanical phenotype of melanoma cells depends solely on the amount of endogenous pigment in the cells. Int J Mol Sci. 19:6072018. View Article : Google Scholar : PubMed/NCBI | |
Sarna M, Krzykawska-Serda M, Jakubowska M, Zadlo A and Urbanska K: Melanin presence inhibits melanoma cell spread in mice in a unique mechanical fashion. Sci Rep. 9:92802019. View Article : Google Scholar : PubMed/NCBI | |
Fürst K, Steder M, Logotheti S, Angerilli A, Spitschak A, Marquardt S, Schumacher T, Engelmann D, Herchenröder O, Rupp RAW and Pützer BM: DNp73-induced degradation of tyrosinase links depigmentation with EMT-driven melanoma progression. Cancer Lett. 442:299–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brouwer NJ, Marinkovic M, Luyten GP, Shields CL and Jager MJ: Lack of tumour pigmentation in conjunctival melanoma is associated with light iris colour and worse prognosis. Br J Ophthalmol. 103:332–337. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brouwer NJ, Marinkovic M, Luyten GPM, Shields CL and Jager MJ: Pigmentation of conjunctival melanoma recurrences and outcome. Graefes Arch Clin Exp Ophthalmol. 257:1783–1788. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huayllani MT, Boczar D, Saleem HY, Spaulding AC, Bagaria SP, Lu X, Kassis S, Perdikis G and Forte AJ: Amelanotic melanoma of the head and neck: Analysis of tumor characteristics from the national cancer database. Int J Dermatol. 60:347–351. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Pan Y, McLean C, Mar V, Wolfe R and Kelly JW: Scalp melanoma: Distinctive high risk clinical and histological features. Australas J Dermatol. 58:181–188. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Wang Y, Fei F, Wang X, Li C, Liu K, Du J, Cao Y and Zhang S: Clinical characteristics and preliminary morphological observation of 47 cases of primary anorectal malignant melanomas. Melanoma Res. 28:592–599. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Cortés M, Delgado-Bellido D and Oliver FJ: Vasculogenic mimicry: Become an endothelial cell ‘but not so much’. Front Oncol. 9:8032019. View Article : Google Scholar : PubMed/NCBI | |
Nasti TH and Timares L: MC1R, eumelanin and pheomelanin: Their role in determining the susceptibility to skin cancer. Photochem Photobiol. 91:188–200. 2015. View Article : Google Scholar : PubMed/NCBI | |
Galván I, Jorge A and García-Gil M: Pheomelanin molecular vibration is associated with mitochondrial ROS production in melanocytes and systemic oxidative stress and damage. Integr Biol (Camb). 9:751–761. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arai E, Hasegawa M, Wakamatsu K and Ito S: Males with more pheomelanin have a lower oxidative balance in Asian barn swallows (Hirundo rustica gutturalis). Zoolog Sci. 35:505–513. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Martínez S, Wakamatsu K and Galván I: Increase of the benzothiazole moiety content of pheomelanin pigment after endogenous free radical inducement. Dyes Pigm. 180:1085162020. View Article : Google Scholar : PubMed/NCBI | |
Panzella L, Leone L, Greco G, Vitiello G, D'Errico G, Napolitano A and d'Ischia M: Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis. Pigment Cell Melanoma Res. 27:244–252. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA, et al: An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature. 491:449–453. 2012. View Article : Google Scholar : PubMed/NCBI | |
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ and Morrison SJ: Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, Dalin MG, Akyürek LM, Lindahl P, Nilsson J and Bergo MO: Antioxidants can increase melanoma metastasis in mice. Sci Transl Med. 7:308re82015. View Article : Google Scholar : PubMed/NCBI | |
Huang HC, Yen H, Lu JY, Chang TM and Hii CH: Theophylline enhances melanogenesis in B16F10 murine melanoma cells through the activation of the MEK 1/2, and Wnt/β-catenin signaling pathways. Food Chem Toxicol. 137:1111652020. View Article : Google Scholar : PubMed/NCBI | |
Cordella M, Tabolacci C, Senatore C, Rossi S, Mueller S, Lintas C, Eramo A, D'Arcangelo D, Valitutti S, Facchiano A and Facchiano F: Theophylline induces differentiation and modulates cytoskeleton dynamics and cytokines secretion in human melanoma-initiating cells. Life Sci. 230:121–131. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Wang C, Zhang X, Hu Q, Zhang Y, Liu Q, Wen D, Milligan J, Bellotti A, Huang L, et al: A melanin-mediated cancer immunotherapy patch. Sci Immunol. 2:eaan56922017. View Article : Google Scholar : PubMed/NCBI | |
Hartman ML and Czyz M: MITF in melanoma: Mechanisms behind its expression and activity. Cell Mol Life Sci. 72:1249–1260. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huijser A, Pezzella A and Sundström V: Functionality of epidermal melanin pigments: Current knowledge on UV-dissipative mechanisms and research perspectives. Phys Chem Chem Phys. 13:9119–9127. 2011. View Article : Google Scholar : PubMed/NCBI |