1
|
Lichtenthaler SF, Lemberg MK and Fluhrer
R: Proteolytic ectodomain shedding of membrane proteins in
mammals-hardware, concepts, and recent developments. EMBO J.
37:e994562018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hayashida K, Bartlett AH, Chen Y and Park
PW: Molecular and cellular mechanisms of ectodomain shedding. Anat
Rec (Hoboken). 293:925–937. 2010. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Murphy G: The ADAMs: Signalling scissors
in the tumour microenvironment. Nat Rev Cancer. 8:929–941. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Mullooly M, McGowan PM, Crown J and Duffy
MJ: The ADAMs family of proteases as targets for the treatment of
cancer. Cancer Biol Ther. 17:870–880. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Saftig P and Reiss K: The ‘A Disintegrin
And Metalloproteases’ ADAM10 and ADAM17: Novel drug targets with
therapeutic potential? Eur J Cell Biol. 90:527–535. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Pruessmeyer J and Ludwig A: The good, the
bad and the ugly substrates for ADAM10 and ADAM17 in brain
pathology, inflammation and cancer. Semin Cell Dev Biol.
20:164–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vincent B and Checler F: α-Secretase in
Alzheimer's disease and beyond: Mechanistic, regulation and
function in the shedding of membrane proteins. Curr Alzheimer Res.
9:140–156. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zaťovičová M, Sedláková O, Švastová E,
Ohradanova A, Ciampor F, Arribas J, Pastorek J and Pastorekova S:
Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is
a metalloprotease-dependent process regulated by TACE/ADAM17. Br J
Cancer. 93:1267–1276. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zaťovičová M and Pastoreková S: Modulation
of cell surface density of carbonic anhydrase IX by shedding of the
ectodomain and endocytosis. Acta Virol. 57:257–264. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Vidlickova I, Dequiedt F, Jelenska L,
Sedlakova O, Pastorek M, Stuchlik S, Pastorek J, Zatovicova M and
Pastorekova S: Apoptosis-induced ectodomain shedding of
hypoxia-regulated carbonic anhydrase IX from tumor cells: A
double-edged response to chemotherapy. BMC Cancer. 16:2392016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kajanova I, Zatovicova M, Jelenska L,
Sedlakova O, Barathova M, Csaderova L, Debreova M, Lukacikova L,
Grossmannova K, Labudova M, et al: Impairment of carbonic anhydrase
IX ectodomain cleavage reinforces tumorigenic and metastatic
phenotype of cancer cells. Br J Cancer. 122:1590–1603. 2020.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Russell S, Xu L, Kam Y, Abrahams D, Ordway
B, Lopez AS, Bui MM, Johnson J, Epstein T, Ruiz E, et al: Proton
export upregulates aerobic glycolysis. BMC Biol. 20:1632022.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Pastorek J and Pastoreková S:
Hypoxia-induced carbonic anhydrase IX as a target for cancer
therapy: From biology to clinical use. Semin Cancer Biol. 31:52–64.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Švastová E, Hulíková A, Rafajová M,
Zat'ovicová M, Gibadulinová A, Casini A, Cecchi A, Scozzafava A,
Supuran CT, Pastorek J and Pastoreková S: Hypoxia activates the
capacity of tumor-associated carbonic anhydrase IX to acidify
extracellular pH. FEBS Lett. 577:439–445. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Švastová E, Witarski W, Csaderová L, Kosik
I, Skvarkova L, Hulikova A, Zatovicova M, Barathova M, Kopacek J,
Pastorek J and Pastorekova S: Carbonic anhydrase IX interacts with
bicarbonate transporters in lamellipodia and increases cell
migration via its catalytic domain. J Biol Chem. 287:3392–3402.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Benej M, Svastova E, Banova R, Kopacek J,
Gibadulinova A, Kery M, Arena S, Scaloni A, Vitale M, Zambrano N,
et al: CA IX stabilizes intracellular pH to maintain metabolic
reprogramming and proliferation in hypoxia. Front Oncol.
10:14622020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gibadulinova A, Bullova P, Strnad H,
Pohlodek K, Jurkovicova D, Takacova M, Pastorekova S and Svastova
E: CAIX-mediated control of LIN28/let-7 axis contributes to
metabolic adaptation of breast cancer cells to hypoxia. Int J Mol
Sci. 21:42992020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Swietach P, Patiar S, Supuran CT, Harris
AL and Vaughan-Jones RD: The role of carbonic anhydrase 9 in
regulating extracellular and intracellular pH in three-dimensional
tumor cell growths. J Biol Chem. 284:20299–20310. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chiche J, Ilc K, Laferriere J, Trottier E,
Dayan F, Mazure NM, Brahimi-Horn MC and Pouysségur J:
Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell
growth by counteracting acidosis through the regulation of the
intracellular pH. Cancer Res. 69:358–368. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Závada J, Závadová Z, Pastorek J, Biesová
Z, Jezek J and Velek J: Human tumour-associated cell adhesion
protein MN/CA IX: Identification of M75 epitope and of the region
mediating cell adhesion. Br J Cancer. 82:1808–1813. 2000.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Jamali S, Klier M, Ames S, Barros LF,
McKenna R, Deitmer JW and Becker HM: Hypoxia-induced carbonic
anhydrase IX facilitates lactate flux in human breast cancer cells
by non-catalytic function. Sci Rep. 5:136052015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ames S, Pastorekova S and Becker HM: The
proteoglycan-like domain of carbonic anhydrase IX mediates
non-catalytic facilitation of lactate transport in cancer cells.
Oncotarget. 9:27940–27957. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Csaderová L, Debreová M, Radvák P, Stano
M, Vrestiakova M, Kopacek J, Pastorekova S and Svastova E: The
effect of carbonic anhydrase IX on focal contacts during cell
spreading and migration. Front Physiol. 4:1–12. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Radvák P, Repic M, Švastová E, Takacova M,
Csaderova L, Strnad H, Pastorek J, Pastorekova S and Kopacek J:
Suppression of carbonic anhydrase IX leads to aberrant focal
adhesion and decreased invasion of tumor cells. Oncol Rep.
29:1147–1153. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zaťovičová M, Tarábková K, Švastová E,
Gibadulinová A, Mucha V, Jakubícková L, Biesová Z, Rafajová M, Gut
MO, Parkkila S, et al: Monoclonal antibodies generated in carbonic
anhydrase IX-deficient mice recognize different domains of
tumour-associated hypoxia-induced carbonic anhydrase IX. J Immunol
Methods. 282:117–134. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Söderberg O, Gullberg M, Jarvius M,
Ridderstråle K, Leuchowius KH, Jarvius J, Wester K, Hydbring P,
Bahram F, Larsson LG and Landegren U: Direct observation of
individual endogenous protein complexes in situ by proximity
ligation. Nat Methods. 3:995–1000. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zatovicova M, Kajanova I, Barathova M,
Takacova M, Labudova M, Csaderova L, Jelenska L, Svastova E,
Pastorekova S, Harris AL and Pastorek J: Novel humanized monoclonal
antibodies for targeting hypoxic human tumors via two distinct
extracellular domains of carbonic anhydrase IX. Cancer Metab.
10:32022. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Seifert A, Düsterhöft S, Wozniak J, Koo
CZ, Tomlinson MG, Nuti E, Rossello A, Cuffaro D, Yildiz D and
Ludwig A: The metalloproteinase ADAM10 requires its activity to
sustain surface expression. Cell Mol Life Sci. 78:715–732. 2021.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cartharius K, Frech K, Grote K, Klocke B,
Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M and Werner T:
MatInspector and beyond: Promoter analysis based on transcription
factor binding sites. Bioinformatics. 21:2933–2942. 2005.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Quandt K, Frech K, Karas H, Wingender E
and Werner T: Matlnd and matlnspector: New fast and versatile tools
for detection of consensus matches in nucleotide sequence data.
Nucleic Acids Res. 23:4878–4884. 1995. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gschwind A, Hart S, Fischer OM and Ullrich
A: TACE cleavage of proamphiregulin regulates GPCR-induced
proliferation and motility of cancer cells. EMBO J. 22:2411–2421.
2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Le Gall S, Bobé P, Reiss K, Horiuchi K,
Niu XD, Lundell D, Gibb DR, Conrad D, Saftig P and Blobel CP: ADAMs
10 and 17 represent differentially regulated components of a
general shedding machinery for membrane proteins such as
transforming growth factor α, L-selectin, and tumor necrosis factor
alpha. Mol Biol Cell. 20:1785–1794. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tape CJ, Willems SH, Dombernowsky SL,
Stanley PL, Fogarasi M, Ouwehand W, McCafferty J and Murphy G:
Cross-domain inhibition of TACE ectodomain. Proc Natl Acad Sci U S
A. 108:5578–5583. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ludwig A, Hundhausen C, Lambert M,
Broadway N, Andrews RC, Bickett DM, Leesnitzer MA and Becherer JD:
Metalloproteinase inhibitors for the disintegrin-like
metalloproteinases ADAM10 and ADAM17 that differentially block
constitutive and phorbol ester-inducible shedding of cell surface
molecules. Comb Chem High Throughput Screen. 8:161–171. 2005.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Supuran CT: How many carbonic anhydrase
inhibition mechanisms exist? J Enzyme Inhib Med Chem. 31:345–360.
2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Becker HM: Carbonic anhydrase IX and acid
transport in cancer. Br J Cancer. 122:157–167. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rafajová M, Zatovicová M, Kettmann R,
Pastorek J and Pastoreková S: Induction by hypoxia combined with
low glucose or low bicarbonate and high posttranslational stability
upon reoxygenation contribute to carbonic anhydrase IX expression
in cancer cells. Int J Oncol. 24:995–1004. 2004.PubMed/NCBI
|
39
|
Tucher J, Linke D, Koudelka T, Cassidy L,
Tredup C, Wichert R, Pietrzik C, Becker-Pauly C and Tholey A: LC-MS
based cleavage site profiling of the proteases ADAM10 and ADAM17
using proteome-derived peptide libraries. J Proteome Res.
13:2205–2214. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Prinzen C, Müller U, Enders K, Fahrenholz
F and Postina R: Genomic structure and functional characterization
of the human ADAM10 promoter. FASEB J. 11:1522–1524. 2005.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Szalad A, Katakowski M, Zheng X, Jiang F
and Chopp M: Transcription factor Sp1 induces ADAM17 and
contributes to tumor cell invasiveness under hypoxia. J Exp Clin
Cancer Res. 28:1292009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Barsoum IB, Hamilton TK, Li X, Cotechini
T, Miles EA, Siemens DR and Graham CH: Hypoxia induces escape from
innate immunity in cancer cells via increased expression of ADAM10:
Role of nitric oxide. Cancer Res. 71:7433–7441. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Rzymski T, Petry A, Kračun D, Rieß F, Pike
L, Harris AL and Görlach A: The unfolded protein response controls
induction and activation of ADAM17/TACE by severe hypoxia and ER
stress. Oncogene. 31:3621–3634. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lee SB, Doberstein K, Baumgarten P,
Wieland A, Ungerer C, Bürger C, Hardt K, Boehncke WH, Pfeilschifter
J, Mihic-Probst D, et al: PAX2 regulates ADAM10 expression and
mediates anchorage-independent cell growth of melanoma cells. PLoS
One. 6:e223122011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Doberstein K, Pfeilschifter J and Gutwein
P: The transcription factor PAX2 regulates ADAM10 expression in
renal cell carcinoma. Carcinogenesis. 32:1713–1723. 2011.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Reinhardt S, Schuck F, Grösgen S,
Riemenschneider M, Hartmann T, Postina R, Grimm M and Endres K:
Unfolded protein response signaling by transcription factor XBP-1
regulates ADAM10 and is affected in Alzheimer's disease. FASEB J.
28:978–997. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kim IM, Ramakrishna S, Gusarova GA, Yoder
HM, Costa RH and Kalinichenko VV: The Forkhead Box m1 transcription
factor is essential for embryonic development of pulmonary
vasculature. J Biol Chem. 280:22278–22286. 2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Vincent B: Regulation of the α-secretase
ADAM10 at transcriptional, translational and post-translational
levels. Brain Res Bull. 126:154–169. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Matthews AL, Noy PJ, Reyat JS and
Tomlinson MG: Regulation of A disintegrin and metalloproteinase
(ADAM) family sheddases ADAM10 and ADAM17: The emerging role of
tetraspanins and rhomboids. Platelets. 28:333–341. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Düsterhöft S, Babendreyer A, Giese AA,
Flasshove C and Ludwig A: Status update on iRhom and ADAM17: It's
still complicated. Biochim Biophys Acta Mol Cell Res.
1866:1567–1583. 2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Jackson HW, Defamie V, Waterhouse P and
Khokha R: TIMPs: Versatile extracellular regulators in cancer. Nat
Rev Cancer. 17:38–53. 2017. View Article : Google Scholar : PubMed/NCBI
|