Modulating epigenetic modifications for cancer therapy (Review)
- Authors:
- Leonardo Josué Castro-Muñoz
- Elenaé Vázquez Ulloa
- Cecilia Sahlgren
- Marcela Lizano
- Erick De La Cruz-Hernández
- Adriana Contreras-Paredes
-
Affiliations: The Wistar Institute, Philadelphia, PA 19104, USA, Faculty of Science and Engineering/Cell Biology, University of Turku and Åbo Akademi University, Turku 20500, Finland, Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerología-Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 14080, Mexico, Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco 86650, Mexico - Published online on: February 10, 2023 https://doi.org/10.3892/or.2023.8496
- Article Number: 59
-
Copyright: © Castro-Muñoz et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mantovani F, Collavin L and Del Sal G: Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26:199–212. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deans C and Maggert KA: What do you mean, ‘epigenetic’? Genetics. 199:887–896. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bashyam MD, Animireddy S, Bala P, Naz A and George SA: The Yin and Yang of cancer genes. Gene. 704:121–133. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Li W and Li G: Structures and functions of chromatin fibers. Annu Rev Biophys. 50:95–116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ferreira HJ and Esteller M: Non-coding RNAs, epigenetics, and cancer: Tying it all together. Cancer Metastasis Rev. 37:55–73. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Lu Q and Chang C: Epigenetics in health and disease. Adv Exp Med Biol. 1253:3–55. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Chan YT, Tan HY, Li S, Wang N and Feng Y: Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol Cancer. 19:792020. View Article : Google Scholar : PubMed/NCBI | |
Ding X, He M, Chan AWH, Song QX, Sze SC, Chen H, Man MKH, Man K, Chan SL, Lai PBS, et al: Genomic and epigenomic features of primary and recurrent hepatocellular carcinomas. Gastroenterology. 157:1630–1645.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Malouf GG, Taube JH, Lu Y, Roysarkar T, Panjarian S, Estecio MR, Jelinek J, Yamazaki J, Raynal NJ, Long H, et al: Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition. Genome Biol. 14:R1442013. View Article : Google Scholar : PubMed/NCBI | |
Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO and Pessoa C: Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics. 14:1164–1176. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lyko F: The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Gao L and Song J: Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes (Basel). 9:6202018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Zhang Y: Role of mammalian DNA methyltransferases in development. Annu Rev Biochem. 89:135–158. 2020. View Article : Google Scholar : PubMed/NCBI | |
Smith ZD and Meissner A: DNA methylation: Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZM, Lu R, Wang P, Yu Y, Chen D, Gao L, Liu S, Ji D, Rothbart SB, Wang Y, et al: Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 554:387–391. 2018. View Article : Google Scholar : PubMed/NCBI | |
Veland N, Lu Y, Hardikar S, Gaddis S, Zeng Y, Liu B, Estecio MR, Takata Y, Lin K, Tomida MW, et al: DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Res. 47:152–167. 2019. View Article : Google Scholar : PubMed/NCBI | |
Loaeza-Loaeza J, Beltran AS and Hernández-Sotelo D: DNMTs and impact of CpG content, transcription factors, consensus motifs, lncRNAs, and histone marks on DNA methylation. Genes (Basel). 11:13362020. View Article : Google Scholar : PubMed/NCBI | |
Onodera A, González-Avalos E, Lio CWJ, Georges RO, Bellacosa A, Nakayama T and Rao A: Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Genome Biol. 22:1862021. View Article : Google Scholar : PubMed/NCBI | |
Rasmussen KD and Helin K: Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30:733–750. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sabino JC, de Almeida MR, Abreu PL, Ferreira AM, Caldas P, Domingues MM, Santos NC, Azzalin CM, Grosso AR and de Almeida SF: Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops. Elife. 11:e694762022. View Article : Google Scholar : PubMed/NCBI | |
Li C, Fan Y, Li G, Xu X, Duan J, Li R, Kang X, Ma X, Chen X, Ke Y, et al: DNA methylation reprogramming of functional elements during mammalian embryonic development. Cell Discov. 4:412018. View Article : Google Scholar : PubMed/NCBI | |
Dossin F, Pinheiro I, Żylicz JJ, Roensch J, Collombet S, Le Saux A, Chelmicki T, Attia M, Kapoor V, Zhan Y, et al: SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature. 578:455–460. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tucci V, Isles AR, Kelsey G and Ferguson-Smith AC; Erice Imprinting Group, : Genomic imprinting and physiological processes in mammals. Cell. 176:952–965. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wu J, Zhong W, Zhao Z and He W: DNA-methylation-induced silencing of DIO3OS drives non-small cell lung cancer progression via activating hnRNPK-MYC-CDC25A axis. Mol Ther Oncolytics. 23:205–219. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kennedy EM, Goehring GN, Nichols MH, Robins C, Mehta D, Klengel T, Eskin E, Smith AK and Conneely KN: An integrated-omics analysis of the epigenetic landscape of gene expression in human blood cells. BMC Genomics. 19:4762018. View Article : Google Scholar : PubMed/NCBI | |
Kanwal R, Gupta K and Gupta S: Cancer epigenetics: An introduction. Methods Mol Biol. 1238:3–25. 2015. View Article : Google Scholar : PubMed/NCBI | |
Klutstein M, Nejman D, Greenfield R and Cedar H: DNA methylation in cancer and aging. Cancer Res. 76:3446–3450. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sheaffer KL, Elliott EN and Kaestner KH: DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res (Phila). 9:534–546. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hatziapostolou M and Iliopoulos D: Epigenetic aberrations during oncogenesis. Cell Mol Life Sci. 68:1681–1702. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guerrero-Preston R, Michailidi C, Marchionni L, Pickering CR, Frederick MJ, Myers JN, Yegnasubramanian S, Hadar T, Noordhuis MG, Zizkova V, et al: Key tumor suppressor genes inactivated by ‘greater promoter’ methylation and somatic mutations in head and neck cancer. Epigenetics. 9:1031–1046. 2014. View Article : Google Scholar : PubMed/NCBI | |
Faam B, Ghaffari MA, Khorsandi L, Ghadiri AA, Totonchi M, Amouzegar A, Fanaei SA, Azizi F, Shahbazian HB and Hashemi Tabar M: RAP1GAP functions as a tumor suppressor gene and is regulated by DNA methylation in differentiated thyroid cancer. Cytogenet Genome Res. 161:227–235. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chantre-Justino M, Gonçalves da Veiga Pires I, Cardoso Figueiredo M, Dos Santos Moreira A, Alves G and Faria Ornellas MH: Genetic and methylation status of CDKN2A (p14ARF/p16INK4A) and TP53 genes in recurrent respiratory papillomatosis. Hum Pathol. 119:94–104. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han B, Yang X, Zhang P, Zhang Y, Tu Y, He Z, Li Y, Yuan J, Dong Y, Hosseini DK, et al: DNA methylation biomarkers for nasopharyngeal carcinoma. PLoS One. 15:e02305242020. View Article : Google Scholar : PubMed/NCBI | |
Hoang NM and Rui L: DNA methyltransferases in hematological malignancies. J Genet Genomics. 47:361–372. 2020. View Article : Google Scholar : PubMed/NCBI | |
Steele N, Finn P, Brown R and Plumb JA: Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer. 100:758–763. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bao Y, Oguz G, Lee WC, Lee PL, Ghosh K, Li J, Wang P, Lobie PE, Ehmsen S, Ditzel HJ, et al: EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun. 11:58782020. View Article : Google Scholar : PubMed/NCBI | |
Vijayaraghavalu S and Labhasetwar V: Nanogel-mediated delivery of a cocktail of epigenetic drugs plus doxorubicin overcomes drug resistance in breast cancer cells. Drug Deliv Transl Res. 8:1289–1299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Li HQ and Liu F: DNA methyltransferase inhibitors and their therapeutic potential. Curr Top Med Chem. 18:2448–2457. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kedhari Sundaram M, Hussain A, Haque S, Raina R and Afroze N: Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem. 120:18357–18369. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sanaei M, Kavoosi F and Behjoo H: Effect of valproic acid and zebularine on SOCS-1 and SOCS-3 gene expression in colon carcinoma SW48 cell line. Exp Oncol. 42:183–187. 2020.PubMed/NCBI | |
Capdevila J, Arqués O, Hernández Mora JR, Matito J, Caratù G, Mancuso FM, Landolfi S, Barriuso J, Jimenez-Fonseca P, Lopez Lopez C, et al: Epigenetic EGFR gene repression confers sensitivity to therapeutic BRAFV600E blockade in colon neuroendocrine carcinomas. Clin Cancer Res. 26:902–909. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marques-Magalhães Â, Graça I, Henrique R and Jerónimo C: Targeting DNA methyltranferases in urological tumors. Front Pharmacol. 9:3662018. View Article : Google Scholar : PubMed/NCBI | |
Xylinas E, Hassler MR, Zhuang D, Krzywinski M, Erdem Z, Robinson BD, Elemento O, Clozel T and Shariat SF: An epigenomic approach to improving response to neoadjuvant cisplatin chemotherapy in bladder cancer. Biomolecules. 6:372016. View Article : Google Scholar : PubMed/NCBI | |
Stresemann C and Lyko F: Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 123:8–13. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chakrawarti L, Agrawal R, Dang S, Gupta S and Gabrani R: Therapeutic effects of EGCG: A patent review. Expert Opin Ther Pat. 26:907–916. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beisler JA: Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem. 21:204–208. 1978. View Article : Google Scholar : PubMed/NCBI | |
Rahman MF, Raj R and Govindarajan R: Identification of structural and molecular features involved in the transport of 3′-Deoxy-nucleoside analogs by human equilibrative nucleoside transporter 3. Drug Metab Dispos. 46:600–609. 2018. View Article : Google Scholar : PubMed/NCBI | |
Momparler RL and Derse D: Kinetics of phosphorylation of 5-aza-2′-deoxyycytidine by deoxycytidine kinase. Biochem Pharmacol. 28:1443–1444. 1979. View Article : Google Scholar : PubMed/NCBI | |
Santi DV, Garrett CE and Barr PJ: On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell. 33:9–10. 1983. View Article : Google Scholar : PubMed/NCBI | |
Seelan RS, Mukhopadhyay P, Pisano MM and Greene RM: Effects of 5-Aza-2′-deoxycytidine (decitabine) on gene expression. Drug Metab Rev. 50:193–207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Li L, Liu X, Wang D, Tu B, Wang L, Wang H and Zhu WG: 5-Aza-2′-deoxycytidine reactivates gene expression via degradation of pRb pocket proteins. FASEB J. 26:449–459. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sorm F, Pískala A, Cihák A and Veselý J: 5-Azacytidine, a new, highly effective cancerostatic. Experientia. 20:202–203. 1964. View Article : Google Scholar : PubMed/NCBI | |
Sorm F and Vesely J: The activity of a new antimetabolite, 5-azacytidine, against lymphoid leukaemia in AK mice. Neoplasma. 11:123–130. 1964.PubMed/NCBI | |
Case DC Jr: 5-azacytidine in refractory acute leukemia. Oncology. 39:218–221. 1982. View Article : Google Scholar : PubMed/NCBI | |
Tanaka K, Appella E and Jay G: Developmental activation of the H-2K gene is correlated with an increase in DNA methylation. Cell. 35:457–465. 1983. View Article : Google Scholar : PubMed/NCBI | |
Vogler WR, Miller DS and Keller JW: 5-Azacytidine (NSC 102816): A new drug for the treatment of myeloblastic leukemia. Blood. 48:331–337. 1976. View Article : Google Scholar : PubMed/NCBI | |
Kaminskas E, Farrell A, Abraham S, Baird A, Hsieh LS, Lee SL, Leighton JK, Patel H, Rahman A, Sridhara R, et al: Approval summary: Azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 11:3604–3608. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ganesan A, Arimondo PB, Rots MG, Jeronimo C and Berdasco M: The timeline of epigenetic drug discovery: From reality to dreams. Clin Epigenetics. 11:1742019. View Article : Google Scholar : PubMed/NCBI | |
Duchmann M and Itzykson R: Clinical update on hypomethylating agents. Int J Hematol. 110:161–169. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schaefer M, Hagemann S, Hanna K and Lyko F: Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 69:8127–8132. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C and MacBeth KJ: A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 5:e90012010. View Article : Google Scholar : PubMed/NCBI | |
Venturelli S, Berger A, Weiland T, Essmann F, Waibel M, Nuebling T, Häcker S, Schenk M, Schulze-Osthoff K, Salih HR, et al: Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumor cells. Mol Cancer Ther. 12:2226–2236. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, Solomon LR, Boghaert ER, Leverson JD and Phillips DC: 5-Azacitidine induces NOXA to prime AML cells for venetoclax-mediated apoptosis. Clin Cancer Res. 26:3371–3383. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fabre C, Grosjean J, Tailler M, Boehrer S, Adès L, Perfettini JL, de Botton S, Fenaux P and Kroemer G: A novel effect of DNA methyltransferase and histone deacetylase inhibitors: NFkappaB inhibition in malignant myeloblasts. Cell Cycle. 7:2139–2145. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carbajo-García MC, Corachán A, Segura-Benitez M, Monleón J, Escrig J, Faus A, Pellicer A, Cervelló I and Ferrero H: 5-aza-2′-deoxycitidine inhibits cell proliferation, extracellular matrix formation and Wnt/β-catenin pathway in human uterine leiomyomas. Reprod Biol Endocrinol. 19:1062021. View Article : Google Scholar : PubMed/NCBI | |
Linnekamp JF, Kandimalla R, Fessler E, de Jong JH, Rodermond HM, van Bochove GGW, The FO, Punt CJA, Bemelman WA, van de Ven AWH, et al: Pre-operative decitabine in colon cancer patients: Analyses on WNT target methylation and expression. Cancers (Basel). 13:23572021. View Article : Google Scholar : PubMed/NCBI | |
Santini V: How I treat MDS after hypomethylating agent failure. Blood. 133:521–529. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mabaera R, Greene MR, Richardson CA, Conine SJ, Kozul CD and Lowrey CH: Neither DNA hypomethylation nor changes in the kinetics of erythroid differentiation explain 5-azacytidine's ability to induce human fetal hemoglobin. Blood. 111:411–420. 2008. View Article : Google Scholar : PubMed/NCBI | |
Susanto JM, Colvin EK, Pinese M, Chang DK, Pajic M, Mawson A, Caldon CE, Musgrove EA, Henshall SM, Sutherland RL, et al: The epigenetic agents suberoylanilide hydroxamic acid and 5-AZA-2′ deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. 46:2223–2230. 2015. View Article : Google Scholar : PubMed/NCBI | |
Evans IC, Barnes JL, Garner IM, Pearce DR, Maher TM, Shiwen X, Renzoni EA, Wells AU, Denton CP, Laurent GJ, et al: Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis. Clin Sci (Lond). 130:575–586. 2016. View Article : Google Scholar : PubMed/NCBI | |
Allis CD and Jenuwein T: The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meng CF, Zhu XJ, Peng G and Dai DQ: Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells. Oncol Rep. 22:1221–1227. 2009.PubMed/NCBI | |
Lee SH, Kim J, Kim WH and Lee YM: Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene. 28:184–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JCY, Liang G and Jones PA: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res. 62:6456–6461. 2002.PubMed/NCBI | |
Griffiths EA and Gore SD: Epigenetic therapies in MDS and AML. Adv Exp Med Biol. 754:253–283. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nguyen AN, Hollenbach PW, Richard N, Luna-Moran A, Brady H, Heise C and MacBeth KJ: Azacitidine and decitabine have different mechanisms of action in non-small cell lung cancer cell lines. Lung Cancer (Auckl). 1:119–140. 2010.PubMed/NCBI | |
Home-ClinicalTrials.govNovember 22–2022https://clinicaltrials.gov/ | |
Hurd PJ, Whitmarsh AJ, Baldwin GS, Kelly SM, Waltho JP, Price NC, Connolly BA and Hornby DP: Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J Mol Biol. 286:389–401. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yoo CB, Cheng JC and Jones PA: Zebularine: A new drug for epigenetic therapy. Biochem Soc Trans. 32:910–912. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ferguson LR, Tatham AL, Lin Z and Denny WA: Epigenetic regulation of gene expression as an anticancer drug target. Curr Cancer Drug Targets. 11:199–212. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dueñas-Gonzalez A, Coronel J, Cetina L, González-Fierro A, Chavez-Blanco A and Taja-Chayeb L: Hydralazine-valproate: A repositioned drug combination for the epigenetic therapy of cancer. Expert Opin Drug Metab Toxicol. 10:1433–1444. 2014. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Dueñas-González A, Lyko F and Medina-Franco JL: Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem. 4:792–799. 2009. View Article : Google Scholar : PubMed/NCBI | |
Daher-Reyes GS, Merchan BM and Yee KWL: Guadecitabine (SGI-110): An investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Expert Opin Investig Drugs. 28:835–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salvador LA and Luesch H: Discovery and mechanism of natural products as modulators of histone acetylation. Curr Drug Targets. 13:1029–1047. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang X, Han L, Zhou Y and Sun S: Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation. Biomed Pharmacother. 69:285–290. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F, Hii CS, Prescott SL, Ferrante A, Renz H, et al: Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol. 14:392018. View Article : Google Scholar : PubMed/NCBI | |
Lawrence M, Daujat S and Schneider R: Lateral thinking: How histone modifications regulate gene expression. Trends Genet. 32:42–56. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D and Saldanha SC: Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther. 10:469–478. 2014.PubMed/NCBI | |
Albaugh BN, Arnold KM and Denu JM: KAT(ching) metabolism by the tail: Insight into the links between lysine acetyltransferases and metabolism. Chembiochem. 12:290–298. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Song C and Zhan X: The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI | |
Cohen I, Poręba E, Kamieniarz K and Schneider R: Histone modifiers in cancer: Friends or foes? Genes Cancer. 2:631–647. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fan P, Zhao J, Meng Z, Wu H, Wang B, Wu H and Jin X: Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer. J Exp Clin Cancer Res. 38:472019. View Article : Google Scholar : PubMed/NCBI | |
Sun XJ, Man N, Tan Y, Nimer SD and Wang L: The role of histone acetyltransferases in normal and malignant hematopoiesis. Front Oncol. 5:1082015. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Wang Z and Liu J: Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 19:52020. View Article : Google Scholar : PubMed/NCBI | |
Carraway HE, Malkaram SA, Cen Y, Shatnawi A, Fan J, Ali HEA, Abd Elmageed ZY, Buttolph T, Denvir J, Primerano DA and Fandy TE: Activation of SIRT6 by DNA hypomethylating agents and clinical consequences on combination therapy in leukemia. Sci Rep. 10:103252020. View Article : Google Scholar : PubMed/NCBI | |
Hu XT, Xing W, Zhao RS, Tan Y, Wu XF, Ao LQ, Li Z, Yao MW, Yuan M, Guo W, et al: HDAC2 inhibits EMT-mediated cancer metastasis by downregulating the long noncoding RNA H19 in colorectal cancer. J Exp Clin Cancer Res. 39:2702020. View Article : Google Scholar : PubMed/NCBI | |
Körholz K, Ridinger J, Krunic D, Najafi S, Gerloff XF, Frese K, Meder B, Peterziel H, Vega-Rubin-de-Celis S, Witt O and Oehme I: Broad-spectrum HDAC inhibitors promote autophagy through FOXO transcription factors in neuroblastoma. Cells. 10:10012021. View Article : Google Scholar : PubMed/NCBI | |
Chun P: Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res. 38:933–949. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jęśko H, Wencel P, Strosznajder RP and Strosznajder JB: Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 42:876–890. 2017. View Article : Google Scholar : PubMed/NCBI | |
Willis-Martinez D, Richards HW, Timchenko NA and Medrano EE: Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol. 45:279–285. 2010. View Article : Google Scholar : PubMed/NCBI | |
Glozak MA and Seto E: Histone deacetylases and cancer. Oncogene. 26:5420–5432. 2007. View Article : Google Scholar : PubMed/NCBI | |
Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8:a0195212016. View Article : Google Scholar : PubMed/NCBI | |
Bergamin E, Sarvan S, Malette J, Eram MS, Yeung S, Mongeon V, Joshi M, Brunzelle JS, Michaels SD, Blais A, et al: Molecular basis for the methylation specificity of ATXR5 for histone H3. Nucleic Acids Res. 45:6375–6387. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mohan M, Herz HM and Shilatifard A: SnapShot: Histone lysine methylase complexes. Cell. 149:498–498.e1. 2012. View Article : Google Scholar : PubMed/NCBI | |
From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), ; et al: Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 13:612–632. 2018.PubMed/NCBI | |
McGrath J and Trojer P: Targeting histone lysine methylation in cancer. Pharmacol Ther. 150:1–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wan YCE, Liu J and Chan KM: Histone H3 mutations in cancer. Curr Pharmacol Rep. 4:292–300. 2018. View Article : Google Scholar : PubMed/NCBI | |
Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K and Huang S: Histone methyltransferase hSETD1A is a novel regulator of metastasis in breast cancer. Mol Cancer Res. 13:461–469. 2015. View Article : Google Scholar : PubMed/NCBI | |
Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, et al: Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet. 45:1479–1482. 2013. View Article : Google Scholar : PubMed/NCBI | |
Papillon-Cavanagh S, Lu C, Gayden T, Mikael LG, Bechet D, Karamboulas C, Ailles L, Karamchandani J, Marchione DM, Garcia BA, et al: Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 49:180–185. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Yang Y and Wang Y: Predictive biomarkers and potential drug combinations of epi-drugs in cancer therapy. Clin Epigenetics. 13:1132021. View Article : Google Scholar : PubMed/NCBI | |
Bates SE: Epigenetic therapies for cancer. N Engl J Med. 383:650–663. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yaseen A, Chen S, Hock S, Rosato R, Dent P, Dai Y and Grant S: Resveratrol sensitizes acute myelogenous leukemia cells to histone deacetylase inhibitors through reactive oxygen species-mediated activation of the extrinsic apoptotic pathway. Mol Pharmacol. 82:1030–1041. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bubna AK: Vorinostat-an overview. Indian J Dermatol. 60:4192015. View Article : Google Scholar : PubMed/NCBI | |
Richon VM: Cancer biology: Mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer. 95 (Suppl 1):S2–S6. 2006. View Article : Google Scholar | |
Bolden JE, Peart MJ and Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 5:769–784. 2006. View Article : Google Scholar : PubMed/NCBI | |
Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM, Garcia-Vargas J, Sanz-Rodriguez C and Rizvi S: Vorinostat in solid and hematologic malignancies. J Hematol Oncol. 2:312009. View Article : Google Scholar : PubMed/NCBI | |
Nakajima H, Kim YB, Terano H, Yoshida M and Horinouchi S: FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 241:126–133. 1998. View Article : Google Scholar : PubMed/NCBI | |
VanderMolen KM, McCulloch W, Pearce CJ and Oberlies NH: Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. J Antibiot (Tokyo). 64:525–531. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marshall JL, Rizvi N, Kauh J, Dahut W, Figuera M, Kang MH, Figg WD, Wainer I, Chaissang C, Li MZ and Hawkins MJ: A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol. 2:325–332. 2002. View Article : Google Scholar : PubMed/NCBI | |
Petrich A and Nabhan C: Use of class I histone deacetylase inhibitor romidepsin in combination regimens. Leuk Lymphoma. 57:1755–1765. 2016. View Article : Google Scholar : PubMed/NCBI | |
O'Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, Hess G, Jurczak W, Knoblauch P, Chawla S, et al: Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: Results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 33:2492–2499. 2015. View Article : Google Scholar : PubMed/NCBI | |
Poole RM: Belinostat: First global approval. Drugs. 74:1543–1554. 2014. View Article : Google Scholar : PubMed/NCBI | |
Autin P, Blanquart C and Fradin D: Epigenetic drugs for cancer and microRNAs: A focus on histone deacetylase inhibitors. Cancers (Basel). 11:15302019. View Article : Google Scholar : PubMed/NCBI | |
Spratlin JL, Pitts TM, Kulikowski GN, Morelli MP, Tentler JJ, Serkova NJ and Eckhardt SG: Synergistic activity of histone deacetylase and proteasome inhibition against pancreatic and hepatocellular cancer cell lines. Anticancer Res. 31:1093–1103. 2011.PubMed/NCBI | |
Lee MJ, Kim YS, Kummar S, Giaccone G and Trepel JB: Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol. 20:639–649. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gibney ER and Nolan CM: Epigenetics and gene expression. Heredity (Edinb). 105:4–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
He J, Xie Q, Xu H, Li J and Li Y: Circular RNAs and cancer. Cancer Lett. 396:138–144. 2017. View Article : Google Scholar : PubMed/NCBI | |
Khanna A and Stamm S: Regulation of alternative splicing by short non-coding nuclear RNAs. RNA Biol. 7:480–485. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kwek KY, Murphy S, Furger A, Thomas B, O'Gorman W, Kimura H, Proudfoot NJ and Akoulitchev A: U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Mol Biol. 9:800–805. 2002.PubMed/NCBI | |
Eilebrecht S, Brysbaert G, Wegert T, Urlaub H, Benecke BJ and Benecke A: 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation. Nucleic Acids Res. 39:2057–2072. 2011. View Article : Google Scholar : PubMed/NCBI | |
Szymanski M, Erdmann VA and Barciszewski J: Noncoding RNAs database (ncRNAdb). Nucleic Acids Res. 35:(Database Issue). D162–D164. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chu CY and Rana TM: Small RNAs: Regulators and guardians of the genome. J Cell Physiol. 213:412–419. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abi A, Farahani N, Molavi G and Gheibi Hayat SM: Circular RNAs: Epigenetic regulators in cancerous and noncancerous skin diseases. Cancer Gene Ther. 27:280–293. 2020. View Article : Google Scholar : PubMed/NCBI | |
Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Zhang S, Li X, Feng C, Huang Q, Wang S, Wang S, Xia W, Yang F, Yin R, et al: Profiling expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal RNA-depleted RNA sequencing. FEBS Open Bio. 8:544–555. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lam JKW, Chow MYT, Zhang Y and Leung SWS: siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 4:e2522015. View Article : Google Scholar : PubMed/NCBI | |
Meister G and Tuschl T: Mechanisms of gene silencing by double-stranded RNA. Nature. 431:343–349. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim VN: MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tomari Y and Zamore PD: Perspective: Machines for RNAi. Genes Dev. 19:517–529. 2005. View Article : Google Scholar : PubMed/NCBI | |
Paturi S and Deshmukh MV: A glimpse of ‘dicer biology’ through the structural and functional perspective. Front Mol Biosci. 8:6436572021. View Article : Google Scholar : PubMed/NCBI | |
Alagia A, Jorge AF, Aviñó A, Cova TFGG, Crehuet R, Grijalvo S, Pais AACC and Eritja R: Exploring PAZ/3′-overhang interaction to improve siRNA specificity. A combined experimental and modeling study. Chem Sci. 9:2074–2086. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Fan J and Belasco JG: MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA. 103:4034–4039. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Dahlstrom JE, Lee SH and Rangasamy D: Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics. 7:758–771. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo B, Li D, Du L and Zhu X: piRNAs: Biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 39:567–575. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sparmann A: piRNAs-guardians of the germline. Nat Res. 2019. | |
Iwasaki YW, Siomi MC and Siomi H: PIWI-interacting RNA: Its biogenesis and functions. Annu Rev Biochem. 84:405–433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Caramuta S, Egyházi S, Rodolfo M, Witten D, Hansson J, Larsson C and Lui WO: MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol. 130:2062–2070. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chi J, Ballabio E, Chen XH, Kušec R, Taylor S, Hay D, Tramonti D, Saunders NJ, Littlewood T, Pezzella F, et al: MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct. 6:232011. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Haferlach T, et al: Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA. 105:3945–3950. 2008. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, et al: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, et al: MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA. 105:5166–5171. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mogilyansky E and Rigoutsos I: The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20:1603–1614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liao JM, Cao B, Zhou X and Lu H: New insights into p53 functions through its target microRNAs. J Mol Cell Biol. 6:206–213. 2014. View Article : Google Scholar : PubMed/NCBI | |
Madrigal T, Hernández-Monge J, Herrera LA, González-De la Rosa CH, Domínguez-Gómez G, Candelaria M, Luna-Maldonado F, Calderón González KG and Díaz-Chávez J: Regulation of miRNAs expression by mutant p53 gain of function in cancer. Front Cell Dev Biol. 9:6957232021. View Article : Google Scholar : PubMed/NCBI | |
Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L and Buonaguro FM: Human oncoviruses and p53 tumor suppressor pathway deregulation at the origin of human cancers. Cancers (Basel). 10:2132018. View Article : Google Scholar : PubMed/NCBI | |
Hassler MR, Turanov AA, Alterman JF, Haraszti RA, Coles AH, Osborn MF, Echeverria D, Nikan M, Salomon WE, Roux L, et al: Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res. 46:2185–2196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, Liu H and Fan T: Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol. 10:5988172020. View Article : Google Scholar : PubMed/NCBI | |
Fang Y and Fullwood MJ: Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 14:42–54. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mathy NW and Chen XM: Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem. 292:12375–12382. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Amirinejad R, Rezaei M and Shirvani-Farsani Z: An update on long intergenic noncoding RNA p21: A regulatory molecule with various significant functions in cancer. Cell Biosci. 10:822020. View Article : Google Scholar : PubMed/NCBI | |
Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L and Smart RC: Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis. 6:e17002015. View Article : Google Scholar : PubMed/NCBI | |
Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Kaushik AC and Zhang J: The emerging role of major regulatory RNAs in cancer control. Front Oncol. 9:9202019. View Article : Google Scholar : PubMed/NCBI | |
Fox AH, Nakagawa S, Hirose T and Bond CS: Paraspeckles: Where long noncoding RNA meets phase separation. Trends Biochem Sci. 43:124–135. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, Tang JY, Bao YJ, Hu Y, Lin Y, et al: LncRNA GClnc1 promotes gastric carcinogenesis and may Act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 6:784–801. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu S, Meng N, He Y, Lu R and Yan GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther. 27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xing J, Liu H, Jiang W and Wang L: LncRNA-encoded peptide: Functions and predicting methods. Front Oncol. 10:6222942021. View Article : Google Scholar : PubMed/NCBI | |
Kong S, Tao M, Shen X and Ju S: Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett. 483:59–65. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H and Yan GR: A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell. 68:171–184.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Long W, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Yang Z, Wen Q, et al: Functional peptides encoded by long non-coding RNAs in gastrointestinal cancer. Front Oncol. 11:7773742021. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty S, Andrieux G, Hasan AMM, Ahmed M, Hosen MI, Rahman T, Hossain MA and Boerries M: Harnessing the tissue and plasma lncRNA-peptidome to discover peptide-based cancer biomarkers. Sci Rep. 9:123222019. View Article : Google Scholar : PubMed/NCBI | |
Welden JR and Stamm S: Pre-mRNA structures forming circular RNAs. Biochim Biophys Acta Gene Regul Mech. 1862:1944102019. View Article : Google Scholar : PubMed/NCBI | |
Eger N, Schoppe L, Schuster S, Laufs U and Boeckel JN: Circular RNA splicing. Xiao J: Circular RNAs. Advances in Experimental Medicine and Biology. 1087. Springer; Singapore: pp. 41–52. 2018, View Article : Google Scholar : PubMed/NCBI | |
Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, et al: Insights into the role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol. 9:6172812021. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian D and Xu L: MicroRNA-7: A promising new target in cancer therapy. Cancer Cell Int. 15:1032015. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Liu S, Xu Y, Shu R, Wang F, Chen C, Zeng Y and Luo H: Circular RNA-ZFR inhibited cell proliferation and promoted apoptosis in gastric cancer by sponging miR-130a/miR-107 and modulating PTEN. Cancer Res Treat. 50:1396–1417. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu CY and Kuo HC: The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 26:292019. View Article : Google Scholar : PubMed/NCBI | |
Jiang MP, Xu WX, Hou JC, Xu Q, Wang DD and Tang JH: The emerging role of the interactions between circular RNAs and RNA-binding proteins in common human cancers. J Cancer. 12:5206–5219. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, Lyu J, Li F, Peng C, Krylov SN, et al: A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 37:5829–5842. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Thorne RF, Zhang XD, Wu M and Liu L: Non-coding RNAs, guardians of the p53 galaxy. Semin Cancer Biol. 75:72–83. 2021. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Tao W, Ni S and Chen Q: Circular RNA circ-Foxo3 induced cell apoptosis in urothelial carcinoma via interaction with miR-191-5p. Onco Targets Ther. 12:8085–8094. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park JW, Lagniton PNP, Liu Y and Xu RH: mRNA vaccines for COVID-19: What, why and how. Int J Biol Sci. 17:1446–1460. 2021. View Article : Google Scholar : PubMed/NCBI | |
Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI and Cooke JP: The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 9:6281372021. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Shi L and Luo Z: Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy. Front Med (Lausanne). 7:6123932020. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ling H: Non-coding RNAs: Therapeutic strategies and delivery systems. Adv Exp Med Biol. 937:229–237. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weinberg MS and Morris KV: Transcriptional gene silencing in humans. Nucleic Acids Res. 44:6505–6517. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kotowska-Zimmer A, Pewinska M and Olejniczak M: Artificial miRNAs as therapeutic tools: Challenges and opportunities. Wiley Interdiscip Rev RNA. 12:e16402021. View Article : Google Scholar : PubMed/NCBI | |
Turner AMW and Morris KV: Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques. 48:9–16. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoon S and Rossi JJ: Therapeutic potential of small activating RNAs (saRNAs) in human cancers. Curr Pharm Biotechnol. 19:604–610. 2018. View Article : Google Scholar : PubMed/NCBI | |
Scoles DR, Minikel EV and Pulst SM: Antisense oligonucleotides: A primer. Neurol Genet. 5:e3232019. View Article : Google Scholar : PubMed/NCBI | |
Raghavendra P and Pullaiah T: RNA-based applications in diagnostic and therapeutics for cancer. Advances in Cell and Molecular Diagnostics. Elsevier; pp. 33–55. 2018, View Article : Google Scholar | |
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N and Hahne JC: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Targ Oncol. 15:261–278. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vicentini C, Galuppini F, Corbo V and Fassan M: Current role of non-coding RNAs in the clinical setting. Noncoding RNA Res. 4:82–85. 2019. View Article : Google Scholar : PubMed/NCBI | |
Giudice V, Mensitieri F, Izzo V, Filippelli A and Selleri C: Aptamers and antisense oligonucleotides for diagnosis and treatment of hematological diseases. Int J Mol Sci. 21:32522020. View Article : Google Scholar : PubMed/NCBI | |
Maruyama R and Yokota T: Knocking down long noncoding RNAs using antisense oligonucleotide gapmers. Methods Mol Biol. 2176:49–56. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bhan A, Hussain I, Ansari KI, Bobzean SAM, Perrotti LI and Mandal SS: Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol. 141:160–170. 2014. View Article : Google Scholar : PubMed/NCBI | |
Simonson B and Das S: MicroRNA therapeutics: The next magic bullet? Mini Rev Med Chem. 15:467–474. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, et al: Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 17:792018. View Article : Google Scholar : PubMed/NCBI | |
Ebert MS, Neilson JR and Sharp PA: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 4:721–726. 2007. View Article : Google Scholar : PubMed/NCBI | |
Banks IR, Zhang Y, Wiggins BE, Heck GR and Ivashuta S: RNA decoys: An emerging component of plant regulatory networks? Plant Signal Behav. 7:1188–1193. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ebert MS and Sharp PA: MicroRNA sponges: Progress and possibilities. RNA. 16:2043–2050. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bernardo BC, Ooi JY, Lin RC and McMullen JR: miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 7:1771–1792. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yoo J, Hajjar R and Jeong D: Generation of efficient miRNA inhibitors using tough decoy constructs. Ishikawa K: Cardiac Gene Therapy. Methods in Molecular Biology. 1521. Humana Press; New York, NY: pp. 41–53. 2017, View Article : Google Scholar : PubMed/NCBI | |
Feng R, Patil S, Zhao X, Miao Z and Qian A: RNA therapeutics-research and clinical advancements. Front Mol Biosci. 8:7107382021. View Article : Google Scholar : PubMed/NCBI | |
Aimo A, Castiglione V, Rapezzi C, Franzini M, Panichella G, Vergaro G, Gillmore J, Fontana M, Passino C and Emdin M: RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol. 19:655–667. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, et al: CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 539:384–389. 2016. View Article : Google Scholar : PubMed/NCBI | |
Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R and Olson EN: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 351:400–403. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T and Anderson DG: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 32:551–553. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C and Chiono V: MicroRNA delivery through nanoparticles. J Control Release. 313:80–95. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kawakami S and Hashida M: Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet. 22:142–151. 2007. View Article : Google Scholar : PubMed/NCBI | |
Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, et al: Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature. 409:207–211. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mann BS, Johnson JR, Cohen MH, Justice R and Pazdur R: FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 12:1247–1252. 2007. View Article : Google Scholar : PubMed/NCBI | |
Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW, Gardner ER, Figg WD and Bates SE: Romidepsin: A new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther. 10:997–1008. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moore D: Panobinostat (Farydak): A novel option for the treatment of relapsed or relapsed and refractory multiple myeloma. P T. 41:296–300. 2016.PubMed/NCBI | |
Gilles ME and Slack FJ: Let-7 microRNA as a potential therapeutic target with implications for immunotherapy. Expert Opin Ther Targets. 22:929–939. 2018. View Article : Google Scholar : PubMed/NCBI | |
Segal M, Biscans A, Gilles ME, Anastasiadou E, De Luca R, Lim J, Khvorova A and Slack FJ: Hydrophobically modified let-7b miRNA enhances biodistribution to NSCLC and downregulates HMGA2 in vivo. Mol Ther Nucleic Acids. 19:267–277. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Wang Q, Yao J, Jiang H, Xiao C and Wu F: MicroRNA let-7g and let-7i inhibit hepatoma cell growth concurrently via downregulation of the anti-apoptotic protein B-cell lymphoma-extra large. Oncol Lett. 9:213–218. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Wang G and Wang B: MicroRNA-1182 and let-7a exert synergistic inhibition on invasion, migration and autophagy of cholangiocarcinoma cells through down-regulation of NUAK1. Cancer Cell Int. 21:1612021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Dou J, Pan M, Xu H and Xu Z: MicroRNA-7 agomir is a potential bioactive material for breast cancer therapy by inhibiting breast cancer stem cell tumorigenicity. Mater Express. 11:824–831. 2021. View Article : Google Scholar | |
Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI | |
van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI | |
Winata P, Williams M, McGowan E, Nassif N, van Zandwijk N and Reid G: The analysis of novel microRNA mimic sequences in cancer cells reveals lack of specificity in stem-loop RT-qPCR-based microRNA detection. BMC Res Notes. 10:6002017. View Article : Google Scholar : PubMed/NCBI | |
Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Pronina IV, Lukina SS, Dmitriev AA and Braga EA: Long Noncoding RNA GAS5 in breast cancer: Epigenetic mechanisms and biological functions. Int J Mol Sci. 22:68102021. View Article : Google Scholar : PubMed/NCBI | |
Williams GT and Pickard MR: Long non-coding RNAs: New opportunities and old challenges in cancer therapy. Transl Cancer Res. 5 (Suppl 3):S564–S565. 2016. View Article : Google Scholar | |
Liu W, Zhan J, Zhong R, Li R, Sheng X, Xu M, Lu Z and Zhang S: Upregulation of long noncoding RNA_GAS5 suppresses cell proliferation and metastasis in laryngeal cancer via regulating PI3K/AKT/mTOR signaling pathway. Technol Cancer Res Treat. 20:15330338219900742021. View Article : Google Scholar : PubMed/NCBI | |
Smaldone MC and Davies BJ: BC-819, a plasmid comprising the H19 gene regulatory sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr Opin Mol Ther. 12:607–616. 2010.PubMed/NCBI | |
Zhao X, Reebye V, Hitchen P, Fan J, Jiang H, Sætrom P, Rossi J, Habib NA and Huang KW: Mechanisms involved in the activation of C/EBPα by small activating RNA in hepatocellular carcinoma. Oncogene. 38:3446–3457. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reebye V, Sætrom P, Mintz PJ, Huang KW, Swiderski P, Peng L, Liu C, Liu X, Lindkaer-Jensen S, Zacharoulis D, et al: Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology. 59:216–227. 2014. View Article : Google Scholar : PubMed/NCBI | |
Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M and Jackson AL: Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 183:428–444. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ijaz M, Wang F, Shahbaz M, Jiang W, Fathy AH and Nesa EU: The role of Grb2 in cancer and peptides as Grb2 antagonists. Protein Pept Lett. 24:1084–1095. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ohanian M, Tari Ashizawa A, Garcia-Manero G, Pemmaraju N, Kadia T, Jabbour E, Ravandi F, Borthakur G, Andreeff M, Konopleva M, et al: Liposomal Grb2 antisense oligodeoxynucleotide (BP1001) in patients with refractory or relapsed haematological malignancies: A single-centre, open-label, dose-escalation, phase 1/1b trial. Lancet Haematol. 5:e136–e146. 2018. View Article : Google Scholar : PubMed/NCBI | |
Golan T, Khvalevsky EZ, Hubert A, Gabai RM, Hen N, Segal A, Domb A, Harari G, David EB, Raskin S, et al: RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. 6:24560–24570. 2015. View Article : Google Scholar : PubMed/NCBI | |
Timar J and Kashofer K: Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev. 39:1029–1038. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Liu X, Abegg D, Tanaka T, Tong Y, Benhamou RI, Baisden J, Crynen G, Meyer SM, Cameron MD, et al: Repro-gramming of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. J Am Chem Soc. 143:13044–13055. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shortridge MD, Chaubey B, Zhang HJ, Pavelitz T, Olsen GL, Calin GA and Varani G: Drug-like small molecules that inhibit expression of the oncogenic microRNA-21. bioRxiv. doi:. https://doi.org/10.1101/2022.04.30.490150 | |
Donlic A, Morgan BS, Xu JL, Liu A, Roble C Jr and Hargrove AE: Discovery of small molecule ligands for MALAT1 by tuning an RNA-binding scaffold. Angew Chem Int Ed Engl. 57:13242–13247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB and Gupta SC: Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 1875:1885022021. View Article : Google Scholar : PubMed/NCBI |