1
|
Singh P, Rai A, Verma AK, Alsahli MA,
Rahmani AH, Almatroodi SA, Alrumaihi F, Dev K, Sinha A, Sankhwar S
and Dohare R: Survival-based biomarker module identification
associated with oral squamous cell carcinoma (OSCC). Biology
(Basel). 10:7602021.PubMed/NCBI
|
2
|
Kim JW, Park Y, Roh JL, Cho KJ, Choi SH,
Nam SY and Kim SY: Prognostic value of glucosylceramide synthase
and P-glycoprotein expression in oral cavity cancer. Int J Clin
Oncol. 21:883–889. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sasahira T and Kirita T: Hallmarks of
cancer-related newly prognostic factors of oral squamous cell
carcinoma. Int J Mol Sci. 19:24132018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jing X, Yang F, Shao C, Wei K, Xie M, Shen
H and Shu Y: Role of hypoxia in cancer therapy by regulating the
tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Arneth B: Tumor microenvironment. Medicina
(Kaunas). 56:152019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wigerup C, Påhlman S and Bexell D:
Therapeutic targeting of hypoxia and hypoxia-inducible factors in
cancer. Pharmacol Ther. 164:152–169. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wilson WR and Hay MP: Targeting hypoxia in
cancer therapy. Nat Rev Cancer. 11:393–410. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lagory EL and Giaccia AJ: The
ever-expanding role of HIF in tumour and stromal biology. Nat Cell
Biol. 18:356–365. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhong H, De Marzo AM, Laughner E, Lim M,
Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL and Simons
JW: Overexpression of hypoxia-inducible factor 1alpha in common
human cancers and their metastases. Cancer Res. 59:5830–5835.
1999.PubMed/NCBI
|
10
|
Semenza GL: Hypoxia-inducible factors:
Mediators of cancer progression and targets for cancer therapy.
Trends Pharmacol Sci. 33:207–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Park GT, Lim SE, Jang SI and Morasso MI:
Suprabasin, a novel epidermal differentiation marker and potential
cornified envelope precursor. J Biol Chem. 277:45195–45202. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Nakazawa S, Shimauchi T, Funakoshi A,
Aoshima M, Phadungsaksawasdi P, Sakabe JI, Asakawa S, Hirasawa N,
Ito T and Tokura Y: Suprabasin-null mice retain skin barrier
function and show high contact hypersensitivity to nickel upon oral
nickel loading. Sci Rep. 10:145592020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Glazer CA, Smith IM, Ochs MF, Begum S,
Westra W, Chang SS, Sun W, Bhan S, Khan Z, Ahrendt S and Califano
JA: Integrative discovery of epigenetically derepressed cancer
testis antigens in NSCLC. PLoS One. 4:e81892009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Formolo CA, Williams R, Gordish-Dressman
H, MacDonald TJ, Lee NH and Hathout Y: Secretome signature of
invasive glioblastoma multiforme. J Proteome Res. 10:3149–3159.
2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Alam MT, Nagao-Kitamoto H, Ohga N, Akiyama
K, Maishi N, Kawamoto T, Shinohara N, Taketomi A, Shindoh M, Hida Y
and Hida K: Suprabasin as a novel tumor endothelial cell marker.
Cancer Sci. 105:1533–1540. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhu J, Wu G, Li Q, Gong H, Song J, Cao L,
Wu S, Song L and Jiang L: Overexpression of suprabasin is
associated with proliferation and tumorigenicity of esophageal
squamous cell carcinoma. Sci Rep. 6:215492016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shao C, Tan M, Bishop JA, Liu J, Bai W,
Gaykalova DA, Ogawa T, Vikani AR, Agrawal Y, Li RJ, et al:
Suprabasin is hypomethylated and associated with metastasis in
salivary adenoid cystic carcinoma. PLoS One. 7:e485822012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Takahashi K, Asano N, Imatani A, Kondo Y,
Saito M, Takeuchi A, Jin X, Saito M, Hatta W, Asanuma K, et al:
Sox2 induces tumorigenesis and angiogenesis of early-stage
esophageal squamous cell carcinoma through secretion of suprabasin.
Carcinogenesis. 41:1543–1552. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu S, Zhou X, Peng X, Li M, Ren B, Cheng
G and Cheng L: Porphyromonas gingivalis promotes immunoevasion of
oral cancer by protecting cancer from macrophage attack. J Immunol.
205:282–289. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hubackova S, Pribyl M, Kyjacova L, Moudra
A, Dzijak R, Salovska B, Strnad H, Tambor V, Imrichova T, Svec J,
et al: Interferon-regulated suprabasin is essential for
stress-induced stem-like cell conversion and therapy resistance of
human malignancies. Mol Oncol. 13:1467–1489. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kato K, Mukudai Y, Motohashi H, Ito C,
Kamoshida S, Shimane T, Kondo S and Shirota T: Opposite effects of
tumor protein D (TPD) 52 and TPD54 on oral squamous cell carcinoma
cells. Int J Oncol. 50:1634–1646. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Abe Y, Mukudai Y, Kurihara M, Houri A,
Chikuda J, Yaso A, Kato K, Shimane T and Shirota T: Tumor protein
D52 is upregulated in oral squamous carcinoma cells under hypoxia
in a hypoxia-inducible-factor-independent manner and is involved in
cell death resistance. Cell Biosci. 11:1222021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Momose F, Araida T, Negishi A, Ichijo H,
Shioda S and Sasaki S: Variant sublines with different metastatic
potentials selected in nude mice from human oral squamous cell
carcinomas. J Oral Pathol Med. 18:391–395. 1989. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Mukudai Y, Kondo S, Fujita A, Yoshihama Y,
Shirota T and Shintani S: Tumor protein D54 is a negative regulator
of extracellular matrix-dependent migration and attachment in oral
squamous cell carcinoma-derived cell lines. Cell Oncol (Dordr).
36:233–245. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nakamura S, Mukudai Y, Chikuda J, Zhang M,
Shigemori H, Yazawa K, Kondo S, Shimane T and Shirota T:
Combinational anti-tumor effects of chemicals from Paeonia lutea
leaf extract in oral squamous cell carcinoma cells. Anticancer Res.
41:6077–6086. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen Y, Lu B, Yang Q, Fearns C, Yates JR
III and Lee JD: Combined integrin phosphoproteomic analyses and
small interfering RNA-based functional screening identify key
regulators for cancer cell adhesion and migration. Cancer Res.
69:3713–3720. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kurihara M, Mukudai Y, Watanabe H, Asakura
M, Abe Y, Houri A, Chikuda J, Shimane T and Shirota T: Autophagy
prevents osteocyte cell death under hypoxic conditions. Cells
Tissues Organs. 210:326–338. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Eckert AW, Kappler M, Schubert J and
Taubert H: Correlation of expression of hypoxia-related proteins
with prognosis in oral squamous cell carcinoma patients. Oral
Maxillofac Surg. 16:189–196. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang D, Lv FL and Wang GH: Effects of
HIF-1α on diabetic retinopathy angiogenesis and VEGF expression.
Eur Rev Med Pharmacol Sci. 22:5071–5076. 2018.PubMed/NCBI
|
31
|
Di Nezza LA, Jobling T and Salamonsen LA:
Progestin suppresses matrix metalloproteinase production in
endometrial cancer. Gynecol Oncol. 89:325–333. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Scheau C, Badarau IA, Costache R, Caruntu
C, Mihai GL, Didilescu AC, Constantin C and Neagu M: The role of
matrix metalloproteinases in the epithelial-mesenchymal transition
of hepatocellular carcinoma. Anal Cell Pathol (Amst).
2019:94239072019.PubMed/NCBI
|
33
|
Kim SH, Cho NH, Kim K, Lee JS, Koo BS, Kim
JH, Chang JH and Choi EC: Correlations of oral tongue cancer
invasion with matrix metalloproteinases (MMPs) and vascular
endothelial growth factor (VEGF) expression. J Surg Oncol.
93:330–337. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
González-González R, Ortiz-Sarabia G,
Molina-Frechero N, Salas-Pacheco JM, Salas-Pacheco SM,
Lavalle-Carrasco J, López-Verdín S, Tremillo-Maldonado O and
Bologna-Molina R: Epithelial-mesenchymal transition associated with
head and neck squamous cell carcinomas: A review. Cancers (Basel).
13:30272021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Aseervatham J and Ogbureke KUE: Effects of
DSPP and MMP20 silencing on adhesion, metastasis, angiogenesis, and
epithelial-mesenchymal transition proteins in oral squamous cell
carcinoma cells. Int J Mol Sci. 21:47342020. View Article : Google Scholar : PubMed/NCBI
|
36
|
De Craene BD and Berx G: Regulatory
networks defining EMT during cancer initiation and progression. Nat
Rev Cancer. 13:97–110. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Melincovici CS, Boşca AB, Şuşman S,
Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM:
Vascular endothelial growth factor (VEGF)-key factor in normal and
pathological angiogenesis. Rom J Morphol Embryol. 59:455–467.
2018.PubMed/NCBI
|
38
|
Höckel M and Vaupel P: Tumor hypoxia:
Definitions and current clinical, biologic, and molecular aspects.
J Natl Cancer Inst. 93:266–276. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ribeiro M, Teixeira SR, Azevedo MN, Fraga
AC Jr, Gontijo APM and Vêncio EF: Expression of hypoxia-induced
factor-1 alpha in early-stage and in metastatic oral squamous cell
carcinoma. Tumour Biol. 39:10104283176955272017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zimna A and Kurpisz M: Hypoxia-inducible
factor-1 in physiological and pathophysiological angiogenesis:
Applications and therapies. Biomed Res Int. 2015:5494122015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Pribyl M, Hodny Z and Kubikova I:
Suprabasin-a review. Genes (Basel). 12:1082021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tan H, Wang L and Liu Z: Suprabasin: Role
in human cancers and other diseases. Mol Biol Rep. 49:1453–1461.
2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kabeya Y, Mizushima N, Ueno T, Yamamoto A,
Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a
mammalian homologue of yeast Apg8p, is localized in autophagosome
membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bjørkøy G, Lamark T, Brech A, Outzen H,
Perander M, Overvatn A, Stenmark H and Johansen T: p62/SQSTM1 forms
protein aggregates degraded by autophagy and has a protective
effect on huntingtin-induced cell death. J Cell Biol. 171:603–614.
2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang X, Yu DD, Yan F, Jing YY, Han ZP, Sun
K, Liang L, Hou J and Wei LX: The role of autophagy induced by
tumor microenvironment in different cells and stages of cancer.
Cell Biosci. 5:142015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Su Z, Yang Z, Xu Y, Chen Y and Yu Q:
Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol
Cancer. 14:482015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li X, He S and Ma B: Autophagy and
autophagy-related proteins in cancer. Mol Cancer. 19:122020.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Towers CG, Wodetzki D and Thorburn A:
Autophagy and cancer: Modulation of cell death pathways and cancer
cell adaptations. J Cell Biol. 219:e2019090332020.PubMed/NCBI
|
49
|
Amaravadi R, Kimmelman AC and White E:
Recent insights into the function of autophagy in cancer. Genes
Dev. 30:1913–1930. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zanotelli MR, Zhang J and Reinhart-King
CA: Mechanoresponsive metabolism in cancer cell migration and
metastasis. Cell Metab. 33:1307–1321. 2021. View Article : Google Scholar : PubMed/NCBI
|
51
|
Shih CH, Ozawa S, Ando N, Ueda M and
Kitajima M: Vascular endothelial growth factor expression predicts
outcome and lymph node metastasis in squamous cell carcinoma of the
esophagus. Clin Cancer Res. 6:1161–1168. 2000.PubMed/NCBI
|
52
|
Aoshima M, Phadungsaksawasdi P, Nakazawa
S, Iwasaki M, Sakabe JI, Umayahara T, Yatagai T, Ikeya S, Shimauchi
T and Tokura Y: Decreased expression of suprabasin induces aberrant
differentiation and apoptosis of epidermal keratinocytes: Possible
role for atopic dermatitis. J Dermatol Sci. 95:107–112. 2019.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Pribyl M, Hubackova S, Moudra A, Vancurova
M, Polackova H, Stopka T, Jonasova A, Bokorova R, Fuchs O,
Stritesky J, et al: Aberrantly elevated suprabasin in the bone
marrow as a candidate biomarker of advanced disease state in
myelodysplastic syndromes. Mol Oncol. 14:2403–2419. 2020.
View Article : Google Scholar : PubMed/NCBI
|