1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
zur Hausen H: Papillomaviruses in the
causation of human cancers-a brief historical account. Virology.
384:260–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Scarth JA, Patterson MR, Morgan EL and
Macdonald A: The human papillomavirus oncoproteins: A review of the
host pathways targeted on the road to transformation. J Gen Virol.
102:0015402021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liang LA, Einzmann T, Franzen A, Schwarzer
K, Schauberger G, Schriefer D, Radde K, Zeissig SR, Ikenberg H,
Meijer CJLM, et al: Cervical cancer screening: Comparison of
conventional pap smear test, liquid-based cytology, and human
papillomavirus testing as stand-alone or Cotesting strategies.
Cancer Epidemiol Biomarkers Prev. 30:474–484. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Perkins RB, Guido RL, Saraiya M, Sawaya
GF, Wentzensen N, Schiffman M and Feldman S: Summary of current
guidelines for cervical cancer screening and management of abnormal
test results: 2016–2020. J Womens Health (Larchmt). 30:5–13. 2021.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lei J, Ploner A, Elfström KM, Wang J, Roth
A, Fang F, Sundström K, Dillner J and Sparén P: HPV Vaccination and
the risk of invasive cervical cancer. N Engl J Med. 383:1340–1348.
2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Palmer T, Wallace L, Pollock KG, Cuschieri
K, Robertson C, Kavanagh K and Cruickshank M: Prevalence of
cervical disease at age 20 after immunisation with bivalent HPV
vaccine at age 12–13 in Scotland: Retrospective population study.
BMJ. 365:l11612019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Farazi TA, Hoell JI, Morozov P and Tuschl
T: MicroRNAs in Human Cancer. MicroRNA Cancer Regulation. pp1–20.
2013. View Article : Google Scholar
|
9
|
He Y, Lin J, Ding Y, Liu G, Luo Y, Huang
M, Xu C, Kim TK, Etheridge A, Lin M, et al: A systematic study on
dysregulated microRNAs in cervical cancer development. Int J
Cancer. 138:1312–1327. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lui WO, Pourmand N, Patterson BK and Fire
A: Patterns of known and novel small rnas in human cervical cancer.
Cancer Res. 67:6031–6043. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xie H, Zhao YG, Caramuta S, Larsson C and
Lui WO: miR-205 expression promotes cell proliferation and
migration of human cervical cancer cells. PLoS One. 7:e469902012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Xie H, Lee L, Scicluna P, Kavak E, Larsson
C, Sandberg R and Lui WO: Novel functions and targets of miR-944 in
human cervical cancer cells. Int J Cancer. 136:E230–E241. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al:
Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin HY, Oda H, Lai M, Skalsky RL, Bethel
K, Shepherd J, Kang SG, Liu WH, Sabouri-Ghomi M, Cullen BR, et al:
MicroRNA-17~92 plays a causative role in lymphomagenesis by
coordinating multiple oncogenic pathways. EMBO J. 32:2377–2391.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Feng Y, Zhou S, Li G, Hu C, Zou W, Zhang H
and Sun L: Nuclear factor-κB-dependent microRNA-130a upregulation
promotes cervical cancer cell growth by targeting phosphatase and
tensin homolog. Arch Biochem Biophys. 598:57–65. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bueno MJ, Pérez de Castro I, Gómez de
Cedrón M, Santos J, Calin GA, Cigudosa JC, Croce CM,
Fernández-Piqueras J and Malumbres M: Genetic and epigenetic
silencing of MicroRNA-203 enhances ABL1 and BCR-ABL1 oncogene
expression. Cancer Cell. 13:496–506. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cui X, Chen X, Wang W, Chang A, Yang L,
Liu C, Peng H, Wei Y, Liang W, Li S, et al: Epigenetic silencing of
miR-203 in Kazakh patients with esophageal squamous cell carcinoma
by MassARRAY spectrometry. Epigenetics. 12:698–707. 2017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang Y, Yang Z, Zhang R, Jia C, Mao R,
Mahati S, Zhang Y, Wu G, Sun YN, Jia XY, et al: MiR-27a-3p enhances
the cisplatin sensitivity in hepatocellular carcinoma cells through
inhibiting PI3K/Akt pathway. Biosci Rep. 41:BSR201920072021.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Chae DK, Ban E, Yoo YS, Kim EE, Baik JH
and Song EJ: MIR-27a regulates the TGF-signaling pathway by
targeting SMAD2 and SMAD4 in lung cancer. Mol Carcinogen.
56:1992–1998. 2017. View Article : Google Scholar
|
20
|
Kong LY, Xue M, Zhang QC and Su CF: In
vivo and in vitro effects of microRNA-27a on proliferation,
migration and invasion of breast cancer cells through targeting of
SFRP1 gene via Wnt/β-catenin signaling pathway. Oncotarget.
8:15507–15519. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liang JT, Tang JM, Shi HJ, Li H, Zhen T,
Duan J, Kang L, Zhang F, Dong Y and Han A: miR-27a-3p targeting RXR
α promotes colorectal cancer progression by activating
Wnt/β-catenin pathway. Oncotarget. 8:82991–83008. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
You J, Li J, Ke C, Xiao Y, Lu C, Huang F,
Mi Y, Xia R and Li Q: Oncogenic long intervening noncoding RNA
Linc00284 promotes c-Met expression by sponging miR-27a in
colorectal cancer. Oncogene. 40:4151–4166. 2021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shi J, Yang C, An J, Hao D, Liu C, Liu J,
Sun J and Jiang J: KLF5-induced BBOX1-AS1 contributes to cell
malignant phenotypes in non-small cell lung cancer via sponging
miR-27a-5p to up-regulate MELK and activate FAK signaling pathway.
J Exp Clin Cancer Res. 40:1482021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li S, Han Y, Liang X and Zhao M: LINC01089
inhibits the progression of cervical cancer via inhibiting
miR-27a-3p and increasing BTG2. J Gene Med. 23:e32802020.PubMed/NCBI
|
25
|
Fang F, Huang B, Sun S, Xiao M, Guo J, Yi
X, Cai J and Wang Z: miR-27a inhibits cervical adenocarcinoma
progression by downregulating the TGF-βRI signaling pathway. Cell
Death Dis. 9:3952018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ben W, Zhang G, Huang Y and Sun Y:
MiR-27a-3p regulated the aggressive phenotypes of cervical cancer
by targeting FBXW7. Cancer Manag Res. 12:2925–2935. 2020.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Jin G, Klika A, Callahan M, Faga B, Danzig
J, Jiang Z, Li X, Stark GR, Harrington J and Sherf B:
Identification of a human NF-kappa B-activating protein, TAB3. Proc
Natl Acad Sci USA. 101:2028–2033. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cheung PCF, Nebreda AR and Cohen P: TAB3,
a new binding partner of the protein kinase TAK1. Biochem J.
378:27–34. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li Q, Chen L, Luo C, ChenYan, Ge J, Zhu Z,
Wang K, Yu X, Lei J, Liu T, et al: TAB3 upregulates PIM1 expression
by directly activating the TAK1-STAT3 complex to promote colorectal
cancer growth. Exp Cell Res. 391:1119752020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao J, Gai L, Gao Y, Xia W, Shen D, Lin
Q, Mao W, Wang F, Liu P, Chen J, et al: TAB3 promotes human
esophageal squamous cell carcinoma proliferation and invasion via
the NF-κB pathway. Oncol Rep. 40:2876–2885. 2018.PubMed/NCBI
|
31
|
Chen Y, Wang X, Duan C, Chen J, Su M, Jin
Y, Deng Y, Wang D, Chen C, Zhou L, et al: Loss of TAB3 expression
by shRNA exhibits suppressive bioactivity and increased chemical
sensitivity of ovarian cancer cell lines via the NF-B pathway. Cell
Prolif. 49:657–668. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Luo C, Yuan R, Chen L, Zhou W, Shen W, Qiu
Y and Shao J, Yan J and Shao J: TAB3 upregulates Survivin
expression to promote colorectal cancer invasion and metastasis by
binding to the TAK1-TRAF6 complex. Oncotarget. 8:106565–106576.
2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ding J, Huang S, Wang Y, Tian Q, Zha R,
Shi H, Wang Q, Ge C, Chen T, Zhao Y, et al: Genome-wide screening
reveals that miR-195 targets the TNF-α/NF-κB pathway by
down-regulating IκB kinase alpha and TAB3 in hepatocellular
carcinoma. Hepatology. 58:654–666. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kumar S, Xie H, Shi H, Gao J, Juhlin CC,
Björnhagen V, Höög A, Lee L, Larsson C and Lui WO: Merkel cell
polyomavirus oncoproteins induce microRNAs that suppress multiple
autophagy genes. Int J Cancer. 146:1652–1666. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Method. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Baeuerle PA and Baltimore D: Activation of
DNA-binding activity in an apparently cytoplasmic precursor of the
NF-kappa B transcription factor. Cell. 53:211–217. 1988. View Article : Google Scholar : PubMed/NCBI
|
37
|
Baeuerle PA and Baltimore D: I kappa B: A
Specific Inhibitor of the NF-kappa B Transcription Factor. Science.
242:540–546. 1988. View Article : Google Scholar : PubMed/NCBI
|
38
|
Karin M, Yamamoto Y and Wang QM: The IKK
NF-kappaB system: A treasure trove for drug development. Nat Rev
Drug Discov. 3:17–26. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Biswas DK, Shi Q, Baily S, Strickland I,
Ghosh S, Pardee AB and Iglehart JD: NF-kappa B activation in human
breast cancer specimens and its role in cell proliferation and
apoptosis. Proc Natl Acad Sci USA. 101:10137–10142. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Sakamoto K, Maeda S, Hikiba Y, Nakagawa H,
Hayakawa Y, Shibata W, Yanai A, Ogura K and Omata M: Constitutive
NF-kappa B activation in colorectal carcinoma plays a key role in
angiogenesis, promoting tumor growth. Clin Cancer Res.
15:2248–2258. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bhaumik D, Scott GK, Schokrpur S, Patil
CK, Campisi J and Benz CC: Expression of microRNA-146 suppresses
NF-kappaB activity with reduction of metastatic potential in breast
cancer cells. Oncogene. 27:5643–5647. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wu J, Ji X, Zhu L, Jiang Q, Wen Z, Xu S,
Shao W, Cai J, Du Q, Zhu Y and Mao J: Up-regulation of
microRNA-1290 impairs cytokinesis and affects the reprogramming of
colon cancer cells. Cancer Lett. 329:155–163. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ma Y, Wang B, Jiang F, Wang D, Liu H, Yan
Y, Dong H, Wang F, Gong B, Zhu Y, et al: A feedback loop consisting
of MicroRNA 23a/27a and the β-Like globin suppressors KLF3 and SP1
regulates globin gene expression. Mol Cell Biol. 33:3994–4007.
2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bao YD, Qiao Y, Yu H, Zhang Z, Yang H, Xin
X, Chen Y, Guo Y, Wu N and Jia D: miRNA-27a transcription activated
by c-Fos regulates myocardial ischemia-reperfusion injury by
targeting ATAD3a. Oxid Med Cell Longev. 2021:25149472021.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Tao H, Xiong Q, Ji Z, Zhang F, Liu Y and
Chen M: NFAT5 is Regulated by p53/miR-27a Signal axis and promotes
mouse ovarian granulosa cells proliferation. Int J Biol Sci.
15:287–297. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Meijer HA, Kong YW, Lu WT, Wilczynska A,
Spriggs RV, Robinson SW, Godfrey JD, Willis AE and Bushell M:
Translational repression and eIF4A2 activity are critical for
MicroRNA-Mediated gene regulation. Science. 340:82–85. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Huang V, Place RF, Portnoy V, Wang J, Qi
Z, Jia Z, Yu A, Shuman M, Yu J and Li LC: Upregulation of Cyclin B1
by miRNA and its implications in cancer. Nucleic Acids Res.
40:1695–1707. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Roberts APE, Lewis AP and Jopling CL:
miR-122 activates hepatitis C virus translation by a specialized
mechanism requiring particular RNA components. Nucleic Acids Res.
39:7716–7729. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou
Y, Huang J, Zhao X, Zhou J, Yan Y, et al: MicroRNA directly
enhances mitochondrial translation during muscle differentiation.
Cell. 158:607–619. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Song G, Wang R, Guo J, Liu X, Wang F, Qi
Y, Wan H, Liu M, Li X and Tang H: miR-346 and miR-138 competitively
regulate hTERT in GRSF1- and AGO2-dependent manners, respectively.
Sci Rep. 5:157932015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kiriakidou M, Tan GS, Lamprinaki S, De
Planell-Saguer M, Nelson PT and Mourelatos Z: An mRNA m7G cap
binding-like motif within human Ago2 represses translation. Cell.
129:1141–1151. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Chendrimada TP, Finn KJ, Ji XJ, Baillat D,
Gregory RI, Liebhaber SA, Pasquinelli AE and Shiekhattar R:
MicroRNA silencing through RISC recruitment of eIF6. Nature.
447:823–821. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Jiang L, Yu L, Zhang X, Lei F, Wang L, Liu
X, Wu S, Zhu J, Wu G, Cao L, et al: miR-892b silencing activates
NF-κB and promotes aggressiveness in breast cancer. Cancer Res.
76:1101–1111. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhou X, Chen JJ, Zhang HJ, Chen X and Shao
GH: MicroRNA-23b attenuates the H2O2-induced
injury of microglial cells via TAB3/NF-κB signaling pathway. Int J
Clin Exp Pathol. 11:5765–5773. 2018.PubMed/NCBI
|