1
|
Gale RP: Radiation and leukaemia: Which
leukaemias and what doses? Blood Rev. 58:1010172023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Radich J, Yeung C and Wu D: New approaches
to molecular monitoring in CML (and other diseases). Blood.
134:1578–1584. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Berman E: How I treat chronic-phase
chronic myelogenous leukemia. Blood. 139:3138–3147. 2022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Navabi A, Akbari B, Abdalsamadi M and
Naseri S: The role of microRNAs in the development, progression and
drug resistance of chronic myeloid leukemia and their potential
clinical significance. Life Sci. 296:1204372022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hershkovitz-Rokah O, Modai S,
Pasmanik-Chor M, Toren A, Shomron N, Raanani P, Shpilberg O and
Granot G: Restoration of miR-424 suppresses BCR-ABL activity and
sensitizes CML cells to imatinib treatment. Cancer Lett.
360:245–256. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zeng F, Peng Y, Qin Y, Wang J, Jiang G,
Feng W and Yuan Y: Wee1 promotes cell proliferation and imatinib
resistance in chronic myeloid leukemia via regulating DNA damage
repair dependent on ATM-γH2AX-MDC1. Cell Commun Signal. 20:1992022.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Lee GY, Shin SH, Shin HW, Chun YS and Park
JW: NDRG3 lowers the metastatic potential in prostate cancer as a
feedback controller of hypoxia-inducible factors. Exp Mol Med.
50:1–13. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schonkeren SL, Massen M, van der Horst R,
Koch A, Vaes N and Melotte V: Nervous NDRGs: The N-myc
downstream-regulated gene family in the central and peripheral
nervous system. Neurogenetics. 20:173–186. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sohn HA, Lee DC, Park A, Kang M, Yoon BH,
Lee CH, Kim YH, Oh KJ, Kim CY, Park SH, et al: Glycogen storage
disease phenotypes accompanying the perturbation of the methionine
cycle in NDRG3-deficient mouse livers. Cells. 11:15362022.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun X, Li K, Wang H, Xia Y, Meng P and
Leng X: MiR-483 promotes colorectal cancer cell biological
progression by directly targeting NDRG2 through regulation of the
PI3K/AKT signaling pathway and epithelial-to-mesenchymal
transition. J Healthc Eng. 2022:45740272022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li T, Sun R, Lu M, Chang J, Meng X and Wu
H: NDRG3 facilitates colorectal cancer metastasis through
activating Src phosphorylation. Onco Targets Ther. 11:2843–2852.
2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Park KC, Lee DC and Yeom YI:
NDRG3-mediated lactate signaling in hypoxia. BMB Rep. 48:301–302.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu C, Hao X, Zhang S, Hu W, Li J, Sun J
and Zheng M: Characterization of the prognostic values of the NDRG
family in gastric cancer. Therap Adv Gastroenterol.
12:17562848198585072019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim KR, Kim KA, Park JS, Jang JY, Choi Y,
Lee HH, Lee DC, Park KC, Yeom YI, Kim HJ and Han BW: Structural and
biophysical analyses of human N-Myc Downstream-Regulated Gene 3
(NDRG3) protein. Biomolecules. 10:902020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee DC, Sohn HA, Park ZY, Oh S, Kang YK,
Lee KM, Kang M, Jang YJ, Yang SJ, Hong YK, et al: A lactate-induced
response to hypoxia. Cell. 161:595–609. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang J and Zhang Q: VHL and hypoxia
signaling: Beyond HIF in cancer. Biomedicines. 6:352018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Si W, Shen J, Du C, Chen D, Gu X, Li C,
Yao M, Pan J, Cheng J, Jiang D, et al: A miR-20a/MAPK1/c-Myc
regulatory feedback loop regulates breast carcinogenesis and
chemoresistance. Cell Death Differ. 25:406–420. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hill M and Tran N: miRNA interplay:
Mechanisms and consequences in cancer. Dis Model Mech.
14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu C, Fu H, Gao L, Wang L, Wang W, Li J,
Li Y, Dou L, Gao X, Luo X, et al: BCR-ABL/GATA1/miR-138 mini
circuitry contributes to the leukemogenesis of chronic myeloid
leukemia. Oncogene. 33:44–54. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Feng X, Zou B, Nan T, Zheng X, Zheng L,
Lan J, Chen W and Yu J: MiR-25 enhances autophagy and promotes
sorafenib resistance of hepatocellular carcinoma via targeting
FBXW7. Int J Med Sci. 19:257–266. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yao S, Yin Y, Jin G, Li D, Li M, Hu Y,
Feng Y, Liu Y, Bian Z, Wang X, et al: Exosome-mediated delivery of
miR-204-5p inhibits tumor growth and chemoresistance. Cancer Med.
9:5989–5998. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yu J, Shen J, Qiao X, Cao L, Yang Z, Ye H,
Xi C, Zhou Q, Wang P and Gong Z: SNHG20/miR-140-5p/NDRG3 axis
contributes to 5-fluorouracil resistance in gastric cancer. Oncol
Lett. 18:1337–1343. 2019.PubMed/NCBI
|
23
|
Du Z, Niu S, Xu X and Xu Q:
MicroRNA31-NDRG3 regulation axes are essential for hepatocellular
carcinoma survival and drug resistance. Cancer Biomark. 19:221–230.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Paller AS: Wnt signaling in focal dermal
hypoplasia. Nat Genet. 39:820–821. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Z, Li Z and Ji H: Direct targeting of
β-catenin in the Wnt signaling pathway: Current progress and
perspectives. Med Res Rev. 41:2109–2129. 2021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu Y, Zhuang H, Cao F, Li J, Guo Y, Zhang
J, Zhao Q and Liu Y: Shc3 promotes hepatocellular carcinoma
stemness and drug resistance by interacting with β-catenin to
inhibit its ubiquitin degradation pathway. Cell Death Dis.
12:2782021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Valenta T, Hausmann G and Basler K: The
many faces and functions of β-catenin. EMBO J. 31:2714–2736. 2012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Schunk SJ, Floege J, Fliser D and Speer T:
WNT-β-catenin signalling-a versatile player in kidney injury and
repair. Nat Rev Nephrol. 17:172–184. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu
C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted
therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cui C, Zhou X, Zhang W, Qu Y and Ke X: Is
β-catenin a druggable target for cancer therapy? Trends Biochem
Sci. 43:623–634. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gao Y, Han T, Han C, Sun H, Yang X, Zhang
D and Ni X: Propofol regulates the TLR4/NF-κB pathway through
miRNA-155 to protect colorectal cancer intestinal barrier.
Inflammation. 44:2078–2090. 2021. View Article : Google Scholar : PubMed/NCBI
|
33
|
McLoughlin R, Berthon BS, Rogers GB,
Baines KJ, Leong LE, Gibson PG, Williams EJ and Wood LG: Soluble
fibre supplementation with and without a probiotic in adults with
asthma: A 7-day randomised, double blind, three way cross-over
trial. EBioMedicine. 46:473–485. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Perugorria MJ, Olaizola P, Labiano I,
Esparza-Baquer A, Marzioni M, Marin JJ, Bujanda L and Banales JM:
Wnt-β-catenin signalling in liver development, health and disease.
Nat Rev Gastroenterol Hepatol. 16:121–136. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ma W, Zhao X, Xue N, Gao Y and Xu Q: The
LINC01410/miR-122-5p/NDRG3 axis is involved in the proliferation
and migration of osteosarcoma cells. IUBMB Life. 73:705–717. 2021.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Ma J, Liu S, Zhang W, Zhang F, Wang S, Wu
L, Yan R, Wu L, Wang C, Zha Z and Sun J: High expression of NDRG3
associates with positive lymph node metastasis and unfavourable
overall survival in laryngeal squamous cell carcinoma. Pathology.
48:691–696. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shi J, Zheng H and Yuan L: High NDRG3
expression facilitates HCC metastasis by promoting nuclear
translocation of β-catenin. BMB Rep. 52:451–456. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rosa Fernandes L, Stern AC, Cavaglieri RC,
Nogueira FC, Domont G, Palmisano G and Bydlowski SP:
7-Ketocholesterol overcomes drug resistance in chronic myeloid
leukemia cell lines beyond MDR1 mechanism. J Proteomics. 151:12–23.
2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ma W, Zhu M, Wang B, Gong Z, Du X, Yang T,
Shi X, Dai B, Zhan Y, Zhang D, et al: Vandetanib drives growth
arrest and promotes sensitivity to imatinib in chronic myeloid
leukemia by targeting ephrin type-B receptor 4. Mol Oncol.
16:2747–2765. 2022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nagata K, Kawakami T, Kurata Y, Kimura Y,
Suzuki Y, Nagata T, Sakuma Y, Miyagi Y and Hirano H: Augmentation
of multiple protein kinase activities associated with secondary
imatinib resistance in gastrointestinal stromal tumors as revealed
by quantitative phosphoproteome analysis. J Proteomics.
115:132–142. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Saha M and Sarkar A: Review on multiple
facets of drug resistance: A rising challenge in the 21st century.
J Xenobiot. 11:197–214. 2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sun X, Niu X, Chen R, He W, Chen D, Kang R
and Tang D: Metallothionein-1G facilitates sorafenib resistance
through inhibition of ferroptosis. Hepatology. 64:488–500. 2016.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang XY, Sun GB, Wang YJ and Yan F: Emodin
inhibits resistance to Imatinib by downregulation of Bcr-Abl and
STAT5 and allosteric inhibition in chronic myeloid leukemia cells.
Biol Pharm Bull. 43:1526–1533. 2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xue F and Che H: The long non-coding RNA
LOC285758 promotes invasion of acute myeloid leukemia cells by
down-regulating miR-204-5p. FEBS Open Bio. 10:734–743. 2020.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Jiang G, Wen L, Zheng H, Jian Z and Deng
W: miR-204-5p targeting SIRT1 regulates hepatocellular carcinoma
progression. Cell Biochem Funct. 34:505–510. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xiao YF, Li BS, Liu JJ, Wang SM, Liu J,
Yang H, Hu YY, Gong CL, Li JL and Yang SM: Role of lncSLCO1C1 in
gastric cancer progression and resistance to oxaliplatin therapy.
Clin Transl Med. 12:e6912022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Díaz-Martínez M, Benito-Jardón L, Alonso
L, Koetz-Ploch L, Hernando E and Teixidó J: miR-204-5p and
miR-211-5p contribute to BRAF inhibitor resistance in melanoma.
Cancer Res. 78:1017–1030. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Grassi S, Palumbo S, Mariotti V, Liberati
D, Guerrini F, Ciabatti E, Salehzadeh S, Baratè C, Balducci S,
Ricci F, et al: The WNT pathway is relevant for the
BCR-ABL1-independent resistance in chronic myeloid leukemia. Front
Oncol. 9:5322019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ding L, Chen Q, Chen K, Jiang Y, Li G,
Chen Q, Bai D, Gao D, Deng M, Zhang H and Xu B: Simvastatin
potentiates the cell-killing activity of imatinib in
imatinib-resistant chronic myeloid leukemia cells mainly through
PI3K/AKT pathway attenuation and Myc downregulation. Eur J
Pharmacol. 913:1746332021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu F, Kohlmeier S and Wang CY: Wnt
signaling and skeletal development. Cell Signal. 20:999–1009. 2008.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Sinha A, Fan VB, Ramakrishnan AB,
Engelhardt N, Kennell J and Cadigan KM: Repression of Wnt/β-catenin
signaling by SOX9 and mastermind-like transcriptional coactivator
2. Sci Adv. 7:eabe08492021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nakamura K, Kustatscher G, Alabert C, Hödl
M, Forne I, Völker-Albert M, Satpathy S, Beyer TE, Mailand N,
Choudhary C, et al: Proteome dynamics at broken replication forks
reveal a distinct ATM-directed repair response suppressing DNA
double-strand break ubiquitination. Mol Cell. 81:1084–1099.e6.
2021. View Article : Google Scholar : PubMed/NCBI
|
53
|
Huang Y, Yuan C, Liu Q and Wang L: KIF23
promotes autophagy-induced imatinib resistance in chronic myeloid
leukaemia through activating Wnt/β-catenin pathway. Clin Exp
Pharmacol Physiol. 49:1334–1341. 2022. View Article : Google Scholar : PubMed/NCBI
|
54
|
He B, Wang Q, Liu X, Lu Z, Han J, Pan C,
Carter BZ, Liu Q, Xu N and Zhou H: A novel HDAC inhibitor chidamide
combined with imatinib synergistically targets tyrosine kinase
inhibitor resistant chronic myeloid leukemia cells. Biomed
Pharmacother. 129:1103902020. View Article : Google Scholar : PubMed/NCBI
|
55
|
Minciacchi VR, Kumar R and Krause DS:
Chronic myeloid leukemia: A model disease of the past, present and
future. Cells. 10:1172021. View Article : Google Scholar : PubMed/NCBI
|
56
|
Houshmand M, Simonetti G, Circosta P,
Gaidano V, Cignetti A, Martinelli G, Saglio G and Gale RP: Chronic
myeloid leukemia stem cells. Leukemia. 33:1543–1556. 2019.
View Article : Google Scholar : PubMed/NCBI
|