
Advances in the protein‑encoding functions of circular RNAs associated with cancer (Review)
- Authors:
- Wentao Yuan
- Xiaolin Zhang
- Hui Cong
-
Affiliations: Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China, Out-Patient Department, Dongtai Municipal People's Hospital, Yancheng, Jiangsu 224200, P.R. China - Published online on: July 10, 2023 https://doi.org/10.3892/or.2023.8597
- Article Number: 160
-
Copyright: © Yuan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI | |
Beilerli A, Gareev I, Beylerli O, Yang G, Pavlov V, Aliev G and Ahmad A: Circular RNAs as biomarkers and therapeutic targets in cancer. Semin Cancer Biol. 83:242–252. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan H and Bu P: Non-coding RNA in cancer. Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Zuo L, Xiong H, Li S, Chen R and Liu H: CircHGS enhances the progression of bladder cancer by regulating the miR-513a-5p/VEGFC axis and activating the AKT/mTOR signaling pathway. Cell Cycle. 22:919–938. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Huang C, Pan J, Hu H, Liu X, Zhang K, Zhou F, Shi X, Wu J, Yu B, et al: CircPLIN2 promotes clear cell renal cell carcinoma progression by binding IGF2BP proteins and miR-199a-3p. Cell Death Dis. 13:10302022. View Article : Google Scholar : PubMed/NCBI | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Xiao S, Zhang M, Yang L, Zhong J, Li B, Li F, Xia X, Li X, Zhou H, et al: A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol. 22:332021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Jian W, Luo Q and Fang L: CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell Death Dis. 13:7942022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al: Circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Zhou S, Dain L, Mei L and Zhu G: Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kozak M: Initiation of translation in prokaryotes and eukaryotes. Gene. 234:187–208. 1999. View Article : Google Scholar : PubMed/NCBI | |
Prats AC, David F, Diallo LH, Roussel E, Tatin F, Garmy-Susini B and Lacazette E: Circular RNA, the Key for translation. Int J Mol Sc. 21:85912020. View Article : Google Scholar | |
Dong HJ, Zhang R, Kuang Y and Wang XJ: Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Arch Microbiol. 203:1021–1032. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Yang Y, Chen C and Wang Z: Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun. 13:37512022. View Article : Google Scholar : PubMed/NCBI | |
Jang SK, Kräusslich HG, Nicklin MJ, Duke GM, Palmenberg AC and Wimmer E: A segment of the 5′nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 62:2636–43. 1988. View Article : Google Scholar : PubMed/NCBI | |
Shatsky IN, Dmitriev SE, Terenin IM and Andreev DE: Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells. 30:285–93. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen CY and Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268:415–7. 1995. View Article : Google Scholar : PubMed/NCBI | |
Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM, et al: Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 20:842019. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD and Jaffrey SR: Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol. 33:319–342. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Zhang Q, Xu Y, Ma S, Wang T, Huang Y and Ju S: M6A-modified circRNAs: Detections, mechanisms, and prospects in cancers. Mol Med. 28:792022. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C, Gusho E, Xie Y, Chiang CM, Buszczak M, et al: Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 10:23002019. View Article : Google Scholar : PubMed/NCBI | |
Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al: A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 21:932022. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yu P, Wang J, Xu G, Wang T, Feng J, Bei Y, Xu J, Wang H, Das S, et al: Downregulation of circ-ZNF609 promotes heart repair by modulating RNA N6-methyladenosine-modified Yap expression. Research (Wash DC). 2022:98259162022.PubMed/NCBI | |
Das A, Sinha T, Mishra SS, Das D and Panda AC: Identification of potential proteins translated from circular RNA splice variants. Eur J Cell Biol. 102:1512862023. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, Zhong J, Zhao Z, Zhao K, Liu D, et al: Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signaling. Nat Cell Biol. 23:278–291. 2021. View Article : Google Scholar : PubMed/NCBI | |
Perriman R and Ares M Jr: Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA. 4:1047–54. 1998. View Article : Google Scholar : PubMed/NCBI | |
Perriman R: Circular mRNA encoding for monomeric and polymeric green fluorescent protein. Methods Mol Biol. 183:69–85. 2002.PubMed/NCBI | |
Abe N, Hiroshima M, Maruyama H, Nakashima Y, Nakano Y, Matsuda A, Sako Y, Ito Y and Abe H: Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed Engl. 52:7004–8. 2013. View Article : Google Scholar : PubMed/NCBI | |
Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y, et al: Rolling circle translation of circular RNA in living human cells. Sci Rep. 5:164352015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, Xiao F, Huang N, Yang X, Zeng R, et al: Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 23:743–756. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tatomer DC and Wilusz JE: An unchartered journey for ribosomes: Circumnavigating circular RNAs to produce proteins. Mol Cell. 66:1–2. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L and Gao G: CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 45:W12–W16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Park HJ, Dasari S, Wang S, Kocher JP and Li W: CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 41:e742013. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Ling Y, Zhang S, Xia Q, Cao R, Fan X, Fang Z, Wang Z and Zhang G: TransCirc: An interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res. 49:D236–D242. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Xie M, Wang Y, Yang L, Xie Z and Wang H: RiboCIRC: A comprehensive database of translatable circRNAs. Genome Biol. 22:792021. View Article : Google Scholar : PubMed/NCBI | |
Mokrejs M, Masek T, Vopálensky V, Hlubucek P, Delbos P and Pospísek M: IRESite-a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res. 38:D131–6. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mokrejs M, Vopálenský V, Kolenaty O, Masek T, Feketová Z, Sekyrová P, Skaloudová B, Kríz V and Pospísek M: IRESite: The database of experimentally verified IRES structures. www.iresite.orgNucleic Acids Res. 34:D125–D130. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wu J, Xu T, Yang Q, He J and Song X: IRESfinder: Identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features. J Genet Genomics. 45:403–406. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Wu J, Yao S, Xu Y, Zhao W, Tong Y and Zhou Y: DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs. bioRxiv. 2022.2010.2003.510726. 2022. | |
Wei L, Chen H and Su R: M6APred-EL: A sequence-based predictor for identifying N6-methyladenosine sites using ensemble learning. Mol Ther Nucleic Acids. 12:635–644. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Hamada M: DeepM6ASeq: Prediction and characterization of m6A-containing sequences using deep learning. BMC Bioinformatics. 19:5242018. View Article : Google Scholar : PubMed/NCBI | |
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al: The Pfam protein families database in 2019. Nucleic Acids Res. 47:D427–D432. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ingolia NT, Hussmann JA and Weissman JS: Ribosome profiling: Global views of translation. Cold Spring Harb Perspect Biol. 11:a0326982019. View Article : Google Scholar : PubMed/NCBI | |
Mei F: Research progress of viral IRES structure and IRES mediated protein translation. Life Science. 407–418. 2021. | |
Marín-Béjar O and Huarte M: RNA pulldown protocol for in vitro detection and identification of RNA-associated proteins. Methods Mol Biol. 1206:87–95. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jiang J, Zhang J, Shen H, Wang M, Guo Z, Zang X, Shi H, Gao J, Cai H, et al: CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol Cancer. 20:1012021. View Article : Google Scholar : PubMed/NCBI | |
López MJ, Carbajal J, Alfaro AL, Saravia LG, Zanabria D, Araujo JM, Quispe L, Zevallos A, Buleje JL, Cho CE, et al: Characteristics of gastric cancer around the world. Crit Rev Oncol Hematol. 181:1038412023. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 20:1582021. View Article : Google Scholar : PubMed/NCBI | |
Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S, Lotfi Z, et al: Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 278:1194992021. View Article : Google Scholar : PubMed/NCBI | |
Fang JY and Richardson BC: The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6:322–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI | |
Li F, Tang H, Zhao S, Gao X, Yang L and Xu J: Circ-E-Cad encodes a protein that promotes the proliferation and migration of gastric cancer via the TGF-β/Smad/C-E-Cad/PI3K/AKT pathway. Mol Carcinog. 62:360–368. 2023. View Article : Google Scholar : PubMed/NCBI | |
Geng X, Wang J, Zhang C, Zhou X, Jing J and Pan W: Circular RNA circCOL6A3_030 is involved in the metastasis of gastric cancer by encoding polypeptide. Bioengineered. 12:8202–8216. 2021. View Article : Google Scholar : PubMed/NCBI | |
He YC, Hao ZN, Li Z and Gao DW: Nanomedicine-based multimodal therapies: Recent progress and perspectives in colon cancer. World J Gastroenterol. 29:670–681. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C, et al: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 18:472019. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang J, Xia L, Yin Q, Zou B, Zheng J, et al: A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer. 19:712020. View Article : Google Scholar : PubMed/NCBI | |
Liang ZX, Liu HS, Xiong L, Yang X, Wang FW, Zeng ZW, He XW, Wu XR and Lan P: A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer. 20:1032021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhou J, Zhang C, Chen R, Sun Q, Yang P, Peng C, Tan Y, Jin C, Wang T, et al: A novel tumour suppressor protein encoded by circMAPK14 inhibits progression and metastasis of colorectal cancer by competitively binding to MKK6. Clin Transl Med. 11:e6132021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou X, Geng X, Zhang Y, Wang J, Wang Y, Jing J, Zhou X and Pan W: Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis. 12:4432021. View Article : Google Scholar : PubMed/NCBI | |
Shi JF, Cao M, Wang Y, Bai FZ, Lei L, Peng J, Feletto E, Canfell K, Qu C and Chen W: Is it possible to halve the incidence of liver cancer in China by 2050? Int J Cancer. 148:1051–1065. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang W and Wei C: Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis. 7:308–319. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen B, Zhao J, Li Q, Chen S, Guo T, Li Y, Lai H, Chen Z, Meng Z, et al: HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv Sci (Weinh). 8:20017012021. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI | |
Li P, Song R, Yin F, Liu M, Liu H, Ma S, Jia X, Lu X, Zhong Y, Yu L, et al: circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther. 30:431–447. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Lan T, Liu H, Liu C, Dai J, Xu L, Cai Y, Hou G, Xie K, Liao M, et al: IL-6-induced cGGNBP2 encodes a protein to promote cell growth and metastasis in intrahepatic cholangiocarcinoma. Hepatology. 75:1402–1419. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rimassa L, Personeni N, Czauderna C, Foerster F and Galle P: Systemic treatment of HCC in special populations. J Hepatol. 74:931–943. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song R, Ma S, Xu J, Ren X, Guo P, Liu H, Li P, Yin F, Liu M, Wang Q, et al: A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer. 22:162023. View Article : Google Scholar : PubMed/NCBI | |
Quintanal-Villalonga A, Molina-Pinelo S, Cirauqui C, Ojeda-Márquez L, Marrugal Á, Suarez R, Conde E, Ponce-Aix S, Enguita AB, Carnero A, et al: FGFR1 cooperates with EGFR in lung cancer oncogenesis, and their combined inhibition shows improved efficacy. J Thorac Oncol. 14:641–655. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Liu Z, She Y, Deng J, Zhong Y, Zhao M, Li S, Xie D, Sun X, Hu X, et al: A novel protein encoded by circASK1 ameliorates gefitinib resistance in lung adenocarcinoma by competitively activating ASK1-dependent apoptosis. Cancer Lett. 520:321–331. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Xue Y, Zhang Y, Zhu Y, Chen Z and Zhao X: A peptide translated from circPPP1R12A promotes the malignancy of non-small cell lung cancer cells through AKT signaling pathway. J Clin Lab Anal. 36:e246442022. View Article : Google Scholar : PubMed/NCBI | |
Chen A, Zhong L, Ju K, Lu T, Lv J and Cao H: Plasmatic circRNA predicting the occurrence of human glioblastoma. Cancer Manag Res. 12:2917–2923. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nie JH, Li TX, Zhang XQ and Liu J: Roles of non-coding RNAs in normal human brain development, brain tumor, and neuropsychiatric disorders. Noncoding RNA. 5:362019.PubMed/NCBI | |
Goenka A, Tiek DM, Song X, Iglesia RP, Lu M, Hu B and Cheng SY: The role of non-coding RNAs in glioma. Biomedicines. 10:20312022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–15. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide- dependent Kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Xu C, Liu Y, Hu Y and Wu H: Circular RNA hsa_circ_0001649 inhibits hepatocellular carcinoma progression via multiple miRNAs sponge. Aging (Albany NY). 11:3362–3375. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li WH, Song YC, Zhang H, Zhou ZJ, Xie X, Zeng QN, Guo K, Wang T, Xia P and Chang DM: Decreased expression of Hsa_circ_00001649 in gastric cancer and its clinical significance. Dis Markers. 2017:45876982017. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yao Y, Zhong X, Leng K, Qin W, Qu L, Cui Y and Jiang X: Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells. Biochem Biophys Res Commun. 496:455–461. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Wang T, Yan L and Qu L: A novel prognostic biomarker for pancreatic ductal adenocarcinoma: Hsa_circ_0001649. Gene. 675:88–93. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saunders JT, Kumar S, Benavides-Serrato A, Holmes B, Benavides KE, Bashir MT, Nishimura RN and Gera J: Translation of circHGF RNA encodes an HGF protein variant promoting glioblastoma growth through stimulation of c-MET. J Neurooncol. 163:207–218. 2023. View Article : Google Scholar : PubMed/NCBI | |
Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S, et al: Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 66:15–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: CircFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Ma M, Yang X, Zhang M, Luo J, Zhou H, Huang N, Xiao F, Lai B, Lv W, et al: Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer. 19:1422020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li G, Guo X, Yao H, Wang G and Li C: Non-coding RNA in bladder cancer. Cancer Lett. 485:38–44. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gu C, Zhou N, Wang Z, Li G, Kou Y, Yu S, Feng Y, Chen L, Yang J and Tian F: CircGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Mol Ther Nucleic Acids. 13:633–641. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, Tuazon S, Gopal AK and Libby EN: Diagnosis and management of multiple myeloma: A review. JAMA. 327:464–477. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Guo M, Ding P, Deng Z, Ke M, Yuan Y, Zhou Y, Lin Z, Li M, Gu C, et al: BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability. Signal Transduct Target Ther. 6:3612021. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Deng Z, Ding P, Qiang W, Lu Y, Gao S, Hu Y, Yang Y, Du J and Gu C: A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 41:852022. View Article : Google Scholar : PubMed/NCBI | |
Li F, Cai Y, Deng S, Yang L, Liu N, Chang X, Jing L, Zhou Y and Li H: A peptide CORO1C-47aa encoded by the circular noncoding RNA circ-0000437 functions as a negative regulator in endometrium tumor angiogenesis. J Biol Chem. 297:1011822021. View Article : Google Scholar : PubMed/NCBI | |
Chen LL, Bindereif A, Bozzoni I, Chang HY, Matera AG, Gorospe M, Hansen TB, Kjems J, Ma XK, Pek JW, et al: A guide to naming eukaryotic circular RNAs. Nat Cell Biol. 25:1–5. 2023. View Article : Google Scholar : PubMed/NCBI |