Targeting the deubiquitinase USP2 for malignant tumor therapy (Review)
- Authors:
- Shilong Zhang
- Yi Guo
- Shenjie Zhang
- Zhi Wang
- Yewei Zhang
- Shi Zuo
-
Affiliations: Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China - Published online on: August 7, 2023 https://doi.org/10.3892/or.2023.8613
- Article Number: 176
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ding Y, Xing D, Fei Y and Lu B: Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev. 51:8832–8876. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang TY, Shi YY, Cui XW, Pan YF, Lin YK, Feng XF, Ding ZW, Yang C, Tan YX, Dong LW and Wang HY: PTEN deficiency facilitates exosome secretion and metastasis in cholangiocarcinoma by impairing TFEB-mediated lysosome biogenesis. Gastroenterology. 164:424–438. 2023. View Article : Google Scholar : PubMed/NCBI | |
Karbowski M, Oshima Y and Verhoeven N: Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cell Mol Life Sci. 79:5742022. View Article : Google Scholar : PubMed/NCBI | |
Sinam IS, Chanda D, Thoudam T, Kim MJ, Kim BG, Kang HJ, Lee JY, Baek SH, Kim SY, Shim BJ, et al: Pyruvate dehydrogenase kinase 4 promotes ubiquitin-proteasome system-dependent muscle atrophy. J Cachexia Sarcopenia Muscle. 13:3122–3136. 2022. View Article : Google Scholar : PubMed/NCBI | |
O'Brien S, Kelso S, Steinhart Z, Orlicky S, Mis M, Kim Y, Lin S, Sicheri F and Angers S: SCF FBXW7 regulates G2-M progression through control of CCNL1 ubiquitination. EMBO Rep. 23:e550442022. View Article : Google Scholar : PubMed/NCBI | |
Capecchi MR and Pozner A: ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination. Nat Commun. 6:87632015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li Q, Yang J, Xu P, Xuan Z, Xu J and Xu Z: Cytosolic TGM2 promotes malignant progression in gastric cancer by suppressing the TRIM21-mediated ubiquitination/degradation of STAT1 in a GTP binding-dependent modality. Cancer Commun (Lond). 43:123–149. 2023. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Jia Y, Zhang Y, Ma F, Zhu Y, Hong X, Zhou Q, He R, Zhang H, Jin J, et al: Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy. 15:1130–1149. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang N, Jiang Y, Wang H, Xin Z, An H, Pan H, Ma W, Zhang T, Wang X and Lin W: E3 ubiquitin ligase NEDD4L negatively regulates inflammation by promoting ubiquitination of MEKK2. EMBO Rep. 23:e546032022. View Article : Google Scholar : PubMed/NCBI | |
Nan Y, Luo Q, Wu X, Chang W, Zhao P, Liu S and Liu Z: HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity. Mol Ther. 31:552–568. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cao HJ, Jiang H, Ding K, Qiu XS, Ma N, Zhang FK, Wang YK, Zheng QW, Xia J, Ni QZ, et al: ARID2 mitigates hepatic steatosis via promoting the ubiquitination of JAK2. Cell Death Differ. 30:383–396. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mattiroli F and Penengo L: Histone ubiquitination: An integrative signaling platform in genome stability. Trends Genet. 37:566–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roberts JZ, Crawford N and Longley DB: The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 29:272–284. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Liu J, Li YL, Li JP and Zhang R: Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer. 1877:1887232022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wei L, Hu N, Wang D, Ni J, Zhang S, Liu H, Lv T, Yin J, Ye M and Song Y: FBW7-mediated ubiquitination and destruction of PD-1 protein primes sensitivity to anti-PD-1 immunotherapy in non-small cell lung cancer. J Immunother Cancer. 10:e0051162022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C and Zhou Y: N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Zhao N, Zhou Z, Chen J, Han S, Zhang X, Bao H, Yuan W and Shu X: PLAGL2 promotes the proliferation and migration of gastric cancer cells via USP37-mediated deubiquitination of Snail1. Theranostics. 11:700–714. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Zhou J, Liu X, Xu Y, Hepperla AJ, Simon JM, Wang T, Yao H, Liao C, Baldwin AS, et al: USP13 promotes deubiquitination of ZHX2 and tumorigenesis in kidney cancer. Proc Natl Acad Sci USA. 119:e21198541192022. View Article : Google Scholar : PubMed/NCBI | |
Rasaei R, Sarodaya N, Kim KS, Ramakrishna S and Hong SH: Importance of deubiquitination in macrophage-mediated viral response and inflammation. Int J Mol Sci. 21:80902020. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Liu Z and Yang Q: The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 19:1462020. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Culley MK, Zhao Y and Zhao J: The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell. 9:754–769. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Park SH and Chua NH: UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. Mol Plant. 16:232–244. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Liu Y and Zhou H: Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int J Mol Sci. 22:45462021. View Article : Google Scholar : PubMed/NCBI | |
Sato Y, Goto E, Shibata Y, Kubota Y, Yamagata A, Goto-Ito S, Kubota K, Inoue J, Takekawa M, Tokunaga F and Fukai S: Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol. 22:222–229. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K and Peters G: Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J. 29:2553–2565. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cruz L, Soares P and Correia M: Ubiquitin-Specific proteases: Players in cancer cellular processes. Pharmaceuticals (Basel). 14:8482021. View Article : Google Scholar : PubMed/NCBI | |
Mansilla A, Martin FA, Martin D and Ferrus A: Ligand-independent requirements of steroid receptors EcR and USP for cell survival. Cell Death Differ. 23:405–416. 2016. View Article : Google Scholar : PubMed/NCBI | |
An Z, Liu Y, Ou Y, Li J, Zhang B, Sun D, Sun Y and Tang W: Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc Natl Acad Sci USA. 115:1123–1128. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, Matsuno T, Xu X, Huang Y, Zhang W, et al: CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt. Nat Commun. 3:7712012. View Article : Google Scholar : PubMed/NCBI | |
Bonacci T and Emanuele MJ: Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin Cancer Biol. 67((Pt 2)): 145–158. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Xia S, Li H, Wang X, Li C, Chao Y, Zhang L and Han C: The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ. 27:1747–1764. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baek SH, Choi KS, Yoo YJ, Cho JM, Baker RT, Tanaka K and Chung CH: Molecular cloning of a novel ubiquitin-specific protease, UBP41, with isopeptidase activity in chick skeletal muscle. J Biol Chem. 272:25560–25565. 1997. View Article : Google Scholar : PubMed/NCBI | |
Gousseva N and Baker RT: Gene structure, alternate splicing, tissue distribution, cellular localization, and developmental expression pattern of mouse deubiquitinating enzyme isoforms Usp2-45 and Usp2-69. Gene Expr. 11:163–179. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moremen KW, Touster O and Robbins PW: Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem. 266:16876–16885. 1991. View Article : Google Scholar : PubMed/NCBI | |
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, et al: The status, quality, and expansion of the NIH full-length cDNA project: The Mammalian Gene Collection (MGC). Genome Res. 14((10B)): 2121–2127. 2004.PubMed/NCBI | |
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, et al: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 36:40–45. 2004. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Ji Y, Gao X, Liu X and Wu Y and Wu Y: Ubiquitin specific protease 2: Structure, isoforms, cellular function, relateddiseases and its inhibitors. Oncologie. 24:85–99. 2022. View Article : Google Scholar | |
Zhu HQ and Gao FH: The molecular mechanisms of regulation on USP2′s alternative splicing and the significance of its products. Int J Biol Sci. 13:1489–1496. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pouly D, Chenaux S, Martin V, Babis M, Koch R, Nagoshi E, Katanaev VL, Gachon F and Staub O: USP2-45 is a circadian clock output effector regulating calcium absorption at the post-translational level. PLoS One. 11:e01451552016. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Buelow K, Guha A, Rausch R and Yin L: USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals. J Biol Chem. 287:25280–25291. 2012. View Article : Google Scholar : PubMed/NCBI | |
Molusky MM, Li S, Ma D, Yu L and Lin JD: Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11β-hydroxysteroid dehydrogenase 1. Diabetes. 61:1025–1035. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kitamura H, Kimura S, Shimamoto Y, Okabe J, Ito M, Miyamoto T, Naoe Y, Kikuguchi C, Meek B, Toda C, et al: Ubiquitin-specific protease 2–69 in macrophages potentially modulates metainflammation. FASEB J. 27:4940–4953. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wu H, Liu Y, Sun J, Zhao Z, Chen Q, Guo M, Ma D and Zhang Z: Expression of USP2-69 in mesangial cells in vivo and in vitro. Pathol Int. 60:184–192. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haimerl F, Erhardt A, Sass G and Tiegs G: Down-regulation of the de-ubiquitinating enzyme ubiquitin-specific protease 2 contributes to tumor necrosis factor-alpha-induced hepatocyte survival. J Biol Chem. 284:495–504. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Kim BG, Qian S, Letterio JJ, Fung JJ, Lu L and Lin F: Hepatic stellate cells inhibit T cells through active TGF-β1 from a cell surface-bound latent TGF-β1/GARP complex. J Immunol. 195:2648–2656. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Luo W, Sun J, Yang N, Zhang LW, Zhao Z, Zhang Z and Wu H: Usp2-69 overexpression slows down the progression of rat anti-Thy1.1 nephritis. Exp Mol Pathol. 101:249–258. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kitamura H, Ishino T, Shimamoto Y, Okabe J, Miyamoto T, Takahashi E and Miyoshi I: Ubiquitin-Specific protease 2 modulates the lipopolysaccharide-elicited expression of proinflammatory cytokines in macrophage-like HL-60 cells. Mediators Inflamm. 2017:69094152017. View Article : Google Scholar : PubMed/NCBI | |
Mahul-Mellier AL, Datler C, Pazarentzos E, Lin B, Chaisaklert W, Abuali G and Grimm S: De-ubiquitinating proteases USP2a and USP2c cause apoptosis by stabilising RIP1. Biochim Biophys Acta. 1823:1353–1365. 2012. View Article : Google Scholar : PubMed/NCBI | |
Davis MI, Pragani R, Fox JT, Shen M, Parmar K, Gaudiano EF, Liu L, Tanega C, McGee L, Hall MD, et al: Small molecule inhibition of the ubiquitin-specific protease USP2 Accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J Biol Chem. 291:24628–24640. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bedard N, Yang Y, Gregory M, Cyr DG, Suzuki J, Yu X, Chian RC, Hermo L, O'Flaherty C, Smith CE, et al: Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod. 85:594–604. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Liu M, Zhang F, Liu X, Ling S, Chen X, Gu J, Ou W, Liu S and Liu N: Ubiquitin-specific protease 2 regulates Ang II-induced cardiac fibroblasts activation by up-regulating cyclin D1 and stabilizing β-catenin in vitro. J Cell Mol Med. 25:1001–1011. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto M, Fujimoto M, Konno K, Lee ML, Yamada Y, Yamashita K, Toda C, Tomura M, Watanabe M, Inanami O and Kitamura H: Ubiquitin-Specific protease 2 in the ventromedial hypothalamus modifies blood glucose levels by controlling sympathetic nervous activation. J Neurosci. 42:4607–4618. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu XQ, Shao XR, Liu Y, Dong ZX, Chan SH, Shi YY, Chen SN, Qi L, Zhong L, Yu Y, et al: Tight junction protein 1 promotes vasculature remodeling via regulating USP2/TWIST1 in bladder cancer. Oncogene. 41:502–514. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tu Y, Xu L, Xu J, Bao Z, Tian W, Ye Y, Sun G, Miao Z, Chao H, You Y, et al: Loss of deubiquitylase USP2 triggers development of glioblastoma via TGF-β signaling. Oncogene. 41:2597–2608. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nadolny C, Zhang X, Chen Q, Hashmi SF, Ali W, Hemme C, Ahsan N, Chen Y and Deng R: Dysregulation and activities of ubiquitin specific peptidase 2b in the pathogenesis of hepatocellular carcinoma. Am J Cancer Res. 11:4746–4767. 2021.PubMed/NCBI | |
Zhang J, Liu S, Li Q, Shi Y, Wu Y, Liu F, Wang S, Zaky MY, Yousuf W, Sun Q, et al: The deubiquitylase USP2 maintains ErbB2 abundance via counteracting endocytic degradation and represents a therapeutic target in ErbB2-positive breast cancer. Cell Death Differ. 27:2710–2725. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qu Q, Mao Y, Xiao G, Fei X, Wang J, Zhang Y, Liu J, Cheng G, Chen X, Wang J and Shen K: USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol. 36:5415–5423. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang XR, Liu YF, Chen F, Zhou ZX, Zhang LJ and Lin ZJ: Cell Cycle-Related lncRNAs as innovative targets to advance cancer management. Cancer Manag Res. 15:547–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Wang J, Wang X, Cai S, Guo Y, Ye L, Li D, Hu A, Jin S, Yuan B, et al: Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy. 18:2615–2635. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Wang H, Ding Y, Yang Y, Xu Z, Shi L and Zhang N: Ribonucleotide reductase holoenzyme inhibitor COH29 interacts with deubiquitinase ubiquitin-specific protease 2 and downregulates its substrate protein cyclin D1. FASEB J. 36:e223292022. View Article : Google Scholar : PubMed/NCBI | |
Shan J, Zhao W and Gu W: Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell. 36:469–476. 2009. View Article : Google Scholar : PubMed/NCBI | |
Magiera K, Tomala M, Kubica K, De Cesare V, Trost M, Zieba BJ, Kachamakova-Trojanowska N, Les M, Dubin G, Holak TA and Skalniak L: Lithocholic acid hydroxyamide destabilizes cyclin D1 and Induces G (0)/G (1) arrest by inhibiting deubiquitinase USP2a. Cell Chem Biol. 24:458–470. e182017. View Article : Google Scholar : PubMed/NCBI | |
Nepal S, Shrestha A and Park PH: Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells. Mol Cell Endocrinol. 412:44–55. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tomala MD, Magiera-Mularz K, Kubica K, Krzanik S, Zieba B, Musielak B, Pustula M, Popowicz GM, Sattler M, Dubin G, et al: Identification of small-molecule inhibitors of USP2a. Eur J Med Chem. 150:261–267. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kim WJ, Liu Z, Loda M and Freeman MR: The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer. Cell Cycle. 11:1123–1130. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gabay M, Li Y and Felsher DW: MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 4:a0142412014. View Article : Google Scholar : PubMed/NCBI | |
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, Metabolism, and Cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P and Felsher DW: Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA. 104:13028–13033. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA, Berman AE, Giordano TJ, Prochownik EV, Soengas MS and Nikiforov MA: C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene. 27:6623–6634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li B, Zhang G, Wang Z, Yang Y, Wang C, Fang D, Liu K, Wang F and Mei Y: c-Myc-activated USP2-AS1 suppresses senescence and promotes tumor progression via stabilization of E2F1 mRNA. Cell Death Dis. 12:10062021. View Article : Google Scholar : PubMed/NCBI | |
Iemura K, Natsume T, Maehara K, Kanemaki MT and Tanaka K: Chromosome oscillation promotes Aurora A-dependent Hec1 phosphorylation and mitotic fidelity. J Cell Biol. 220:e2020061162021. View Article : Google Scholar : PubMed/NCBI | |
Li P, Chen T, Kuang P, Liu F, Li Z, Liu F, Wang Y, Zhang W and Cai X: Aurora-A/FOXO3A/SKP2 axis promotes tumor progression in clear cell renal cell carcinoma and dual-targeting Aurora-A/SKP2 shows synthetic lethality. Cell Death Dis. 13:6062022. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Solomon LR, Pereda-Lopez A, Giranda VL, Luo Y, Johnson EF, Shoemaker AR, Leverson J and Liu X: Ubiquitin-specific cysteine protease 2a (USP2a) regulates the stability of Aurora-A. J Biol Chem. 286:38960–38968. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Zhang Z, Camps MGM, Ossendorp F, Wijdeven RH and Ten Dijke P: Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. Sci Adv. 9:eadf99152023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ding ZY, Li S, Liu S, Xiao C, Li Z, Zhang BX, Chen XP and Yang X: Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics. 11:1345–1363. 2021. View Article : Google Scholar : PubMed/NCBI | |
He Q, Cao H, Zhao Y, Chen P, Wang N, Li W, Cui R, Hou P, Zhang X and Ji M: Dipeptidyl Peptidase-4 Stabilizes Integrin alpha4β1 complex to promote thyroid cancer cell metastasis by activating transforming growth factor-beta signaling pathway. Thyroid. 32:1411–1422. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tuersuntuoheti A, Li Q, Teng Y, Li X, Huang R, Lu Y, Li K, Liang J, Miao S, Wu W and Song W: YWK-II/APLP2 inhibits TGF-β signaling by interfering with the TGFBR2-Hsp90 interaction. Biochim Biophys Acta Mol Cell Res. Jul 19–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Miyazawa K and Miyazono K: Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 9:a0220952017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang X, Wang Q, Deng Y, Li K, Zhang M, Zhang Q, Zhou J, Wang HY, Bai P, et al: USP2a supports metastasis by tuning TGF-β signaling. Cell Rep. 22:2442–2454. 2018. View Article : Google Scholar : PubMed/NCBI | |
Blenman KRM, Marczyk M, Karn T, Qing T, Li X, Gunasekharan V, Yaghoobi V, Bai Y, Ibrahim EY, Park T, et al: Predictive markers of response to neoadjuvant durvalumab with nab-paclitaxel and dose-dense doxorubicin/cyclophosphamide in basal-like triple-negative breast cancer. Clin Cancer Res. 28:2587–2597. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Zhao M, Yang Y, Xu R, Tong L, Liang J, Zhang X, Sun Y and Fan Y: Reversal of epithelial-mesenchymal transition and inhibition of tumor stemness of breast cancer cells through advanced combined chemotherapy. Acta Biomater. 152:380–392. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, et al: Saracatinib, a selective src kinase inhibitor, blocks fibrotic responses in preclinical models of pulmonary fibrosis. Am J Respir Crit Care Med. 206:1463–1479. 2022. View Article : Google Scholar : PubMed/NCBI | |
van der Wal T and van Amerongen R: Walking the tight wire between cell adhesion and WNT signalling: A balancing act for beta-catenin. Open Biol. 10:2002672020. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Alavi Naini F, Sun Y and Ma L: Ubiquitin-specific peptidase 2a (USP2a) deubiquitinates and stabilizes β-catenin. Am J Cancer Res. 8:1823–1836, eCollection 2018. 2018.PubMed/NCBI | |
Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Zhou W, Benson DM Jr, Hofmainster C, Alder H, et al: Retraction notice to: Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 40:14412022. View Article : Google Scholar : PubMed/NCBI | |
Wu B and Ellisen LW: Loss of p53 and genetic evolution in pancreatic cancer: Ordered chaos after the guardian is gone. Cancer Cell. 40:1276–1278. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hassin O and Oren M: Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dobbelstein M and Levine AJ: Mdm2: Open questions. Cancer Sci. 111:2203–2211. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP and Saville MK: The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 26:976–986. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei T, Biskup E, Gjerdrum LM, Niazi O, Odum N and Gniadecki R: Ubiquitin-specific protease 2 decreases p53-dependent apoptosis in cutaneous T-cell lymphoma. Oncotarget. 7:48391–48400. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ and Lu YC: Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 35:1500–1509. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shrestha M and Park PH: p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells. Korean J Physiol Pharmacol. 20:487–498. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Shi K, Liu J, Yang P, Han R, Pan M, Yuan L, Fang C, Yu Y and Qian Z: Sustained co-delivery of 5-fluorouracil and cis-platinum via biodegradable thermo-sensitive hydrogel for intraoperative synergistic combination chemotherapy of gastric cancer. Bioact Mater. 23:1–15. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang Y, Zhang G, Xiang L, Pang H, Xiong K, Lu Y, Li J, Dai J, Lin S and Fu S: Radiotherapy-induced enrichment of EGF-modified doxorubicin nanoparticles enhances the therapeutic outcome of lung cancer. Drug Deliv. 29:588–599. 2022. View Article : Google Scholar : PubMed/NCBI | |
Smith ER, Wang JQ, Yang DH and Xu XX: Paclitaxel resistance related to nuclear envelope structural sturdiness. Drug Resist Updat. 65:1008812022. View Article : Google Scholar : PubMed/NCBI | |
Jang JH, Lee TJ, Sung EG, Song IH and Kim JY: Dapagliflozin induces apoptosis by downregulating cFILPL and increasing cFILPS instability in Caki-1 cells. Oncol Lett. 24:4012022. View Article : Google Scholar : PubMed/NCBI | |
Poukkula M, Kaunisto A, Hietakangas V, Denessiouk K, Katajamaki T, Johnson MS, Sistonen L and Eriksson JE: Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem. 280:27345–27355. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Fan Y, Li J, Cheng B, Lin W, Li X, Du J and Ling C: Inhibition of cFLIP overcomes acquired resistance to sorafenib via reducing ER stress-related autophagy in hepatocellular carcinoma. Oncol Rep. 40:2206–2214. 2018.PubMed/NCBI | |
Iyer AK, Azad N, Talbot S, Stehlik C, Lu B, Wang L and Rojanasakul Y: Antioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner. J Immunol. 187:3256–3266. 2011. View Article : Google Scholar : PubMed/NCBI | |
Quintavalle C, Incoronato M, Puca L, Acunzo M, Zanca C, Romano G, Garofalo M, Iaboni M, Croce CM and Condorelli G: c-FLIPL enhances anti-apoptotic Akt functions by modulation of Gsk3β activity. Cell Death Differ. 24:11342017. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Liu Y, Li Q, Liu Q, Liu Y, Luo Y and Wei S: EVs delivery of miR-1915-3p improves the chemotherapeutic efficacy of oxaliplatin in colorectal cancer. Cancer Chemother Pharmacol. 88:1021–1031. 2021. View Article : Google Scholar : PubMed/NCBI | |
He J, Lee HJ, Saha S, Ruan D, Guo H and Chan CH: Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis. 10:2852019. View Article : Google Scholar : PubMed/NCBI | |
Min HY and Lee HY: Molecular targeted therapy for anticancer treatment. Exp Mol Med. 54:1670–1694. 2022. View Article : Google Scholar : PubMed/NCBI | |
Assoun S, Lemiale V and Azoulay E: Molecular targeted therapy-related life-threatening toxicity in patients with malignancies. A systematic review of published cases. Intensive Care Med. 45:988–997. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg T, Yeo KK, Mauguen A, Alexandrescu S, Prabhu SP, Tsai JW, Malinowski S, Joshirao M, Parikh K, Farouk Sait S, et al: Upfront molecular targeted therapy for the treatment of BRAF-mutant pediatric high-grade glioma. Neuro Oncol. 24:1964–1975. 2022. View Article : Google Scholar : PubMed/NCBI | |
Harakandi C, Nininahazwe L, Xu H, Liu B, He C, Zheng YC and Zhang H: Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy. Bioorg Chem. 116:1052732021. View Article : Google Scholar : PubMed/NCBI | |
Huang YT, Cheng AC, Tang HC, Huang GC, Cai L, Lin TH, Wu KJ, Tseng PH, Wang GG and Chen WY: USP7 facilitates SMAD3 autoregulation to repress cancer progression in p53-deficient lung cancer. Cell Death Dis. 12:8802021. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, Brea LT, Wadosky K, Guo C, Abdulkadir SA, et al: Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 7:eabe22612021. View Article : Google Scholar : PubMed/NCBI | |
Su D, Wang W, Hou Y, Wang L, Yi X, Cao C, Wang Y, Gao H, Wang Y, Yang C, et al: Bimodal regulation of the PRC2 complex by USP7 underlies tumorigenesis. Nucleic Acids Res. 49:4421–4440. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang H, Tian L and Li H: Expression of USP7 and MARCH7 is correlated with poor prognosis in epithelial ovarian cancer. Tohoku J Exp Med. 239:165–175. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zhang Y, Wu Y, Jin J, Cao Y, Fang Z, Geng L, Yang L, Yu M, Bu Z, et al: IKZF1 selectively enhances homologous recombination repair by interacting with CtIP and USP7 in multiple myeloma. Int J Biol Sci. 18:2515–2526. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Gu L, Lin X, Cui K, Liu C, Lu B, Zhou F, Zhao Q, Shen H and Li Y: LINC00265 promotes colorectal tumorigenesis via ZMIZ2 and USP7-mediated stabilization of β-catenin. Cell Death Differ. 27:1316–1327. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ullah S, Junaid M, Liu Y, Chen S, Zhao Y and Wadood A: Validation of catalytic site residues of Ubiquitin Specific Protease 2 (USP2) by molecular dynamic simulation and novel kinetics assay for rational drug design. Mol Divers. 27:1323–1332. 2023. View Article : Google Scholar : PubMed/NCBI | |
Metzig M, Nickles D, Falschlehner C, Lehmann-Koch J, Straub BK, Roth W and Boutros M: An RNAi screen identifies USP2 as a factor required for TNF-α-induced NF-κB signaling. Int J Cancer. 129:607–618. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peinado H and Cano A: A hypoxic twist in metastasis. Nat Cell Biol. 10:253–254. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mladinich M, Ruan D and Chan CH: Tackling cancer stem cells via inhibition of EMT transcription factors. Stem Cells Int. 2016:52858922016. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Cho TM, Park JM, Park S, Park M, Nam KD, Ko D, Seo J, Kim S, Jung E, et al: A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene. 41:3289–3297. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shih YY, Lin HY, Jan HM, Chen YJ, Ong LL, Yu AL and Lin CH: S-glutathionylation of Hsp90 enhances its degradation and correlates with favorable prognosis of breast cancer. Redox Biol. 57:1025012022. View Article : Google Scholar : PubMed/NCBI | |
Leow CC, Chesebrough J, Coffman KT, Fazenbaker CA, Gooya J, Weng D, Coats S, Jackson D, Jallal B and Chang Y: Antitumor efficacy of IPI-504, a selective heat shock protein 90 inhibitor against human epidermal growth factor receptor 2-positive human xenograft models as a single agent and in combination with trastuzumab or lapatinib. Mol Cancer Ther. 8:2131–2141. 2009. View Article : Google Scholar : PubMed/NCBI | |
Workman P, Burrows F, Neckers L and Rosen N: Drugging the cancer chaperone HSP90: Combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 1113:202–216. 2007. View Article : Google Scholar : PubMed/NCBI | |
Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, D'Andrea G, Dickler M, Moynahan ME, Sugarman S, et al: HSP90 inhibition is effective in breast cancer: A phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 17:5132–5139. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sesto N, Wurtzel O, Archambaud C, Sorek R and Cossart P: The excludon: A new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol. 11:75–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Alsager S, Zhuo Y and Shan B: HOX transcript antisense RNA (HOTAIR) in cancer. Cancer Lett. 454:90–97. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen SP, Zhu GQ, Xing XX, Wan JL, Cai JL, Du JX, Song LN, Dai Z and Zhou J: LncRNA USP2-AS1 promotes hepatocellular carcinoma growth by enhancing YBX1-Mediated HIF1α protein translation under hypoxia. Front Oncol. 12:8823722022. View Article : Google Scholar : PubMed/NCBI | |
Pirnia F, Schneider E, Betticher DC and Borner MM: Mitomycin C induces apoptosis and caspase-8 and −9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 9:905–914. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang WD, Shang Y, Wang C, Ni J, Wang AM, Li GJ, Su L and Chen SZ: c-FLIP promotes drug resistance in non-small-cell lung cancer cells via upregulating FoxM1 expression. Acta Pharmacol Sin. 43:2956–2966. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Hou JQ, Qu LY, Wang GQ, Ju HW, Zhao ZW, Yu ZH and Yang HJ: Differential expression of USP2, USP14 and UBE4A between ovarian serous cystadenocarcinoma and adjacent normal tissues. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 23:504–506. 2007.(In Chinese). PubMed/NCBI | |
Guo B, Yu L, Sun Y, Yao N and Ma L: Long Non-Coding RNA USP2-AS1 accelerates cell proliferation and migration in ovarian cancer by sponging miR-520d-3p and Up-Regulating KIAA1522. Cancer Manag Res. 12:10541–10550. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li D, Bao J, Yao J and Li J: lncRNA USP2-AS1 promotes colon cancer progression by modulating Hippo/YAP1 signaling. Am J Transl Res. 12:5670–5682, eCollection 2020. 2020.PubMed/NCBI | |
Tatari N, Khan S, Livingstone J, Zhai K, McKenna D, Ignatchenko V, Chokshi C, Gwynne WD, Singh M, Revill S, et al: The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol. 144:1127–1142. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ji YR, Cheng CC, Lee AL, Shieh JC, Wu HJ, Huang AP, Hsu YH and Young TH: Poly (allylguanidine)-coated surfaces regulate TGF-β in glioblastoma cells to induce apoptosis via NF-κB Pathway Activation. ACS Appl Mater Interfaces. 13:59400–59410. 2021. View Article : Google Scholar : PubMed/NCBI | |
Joseph JV, Magaut CR, Storevik S, Geraldo LH, Mathivet T, Latif MA, Rudewicz J, Guyon J, Gambaretti M, Haukas F, et al: TGF-β promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. 24:541–553. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Liao H, Cheng M, Shi X, Lin X, Feng XH and Chen YG: Smad7 protein interacts with receptor-regulated smads (R-Smads) to inhibit transforming growth factor-β (TGF-β)/smad signaling. J Biol Chem. 291:382–392. 2016. View Article : Google Scholar : PubMed/NCBI | |
Girish V, Lakhani AA, Thompson SL, Scaduto CM, Brown LM, Hagenson RA, Sausville EL, Mendelson BE, Kandikuppa PK, Lukow DA, et al: Oncogene-like addiction to aneuploidy in human cancers. Science. Jul 6–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Mejia-Hernandez JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, et al: Targeting MDM4 as a novel therapeutic approach in prostate cancer independent of p53 status. Cancers (Basel). 14:39472022. View Article : Google Scholar : PubMed/NCBI | |
Tsai KW, Kuo WT and Jeng SY: Tight junction protein 1 dysfunction contributes to cell motility in bladder cancer. Anticancer Res. 38:4607–4615. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chuang SJ, Cheng SC, Tang HC, Sun CY and Chou CY: 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2. Sci Rep. 8:31022018. View Article : Google Scholar : PubMed/NCBI | |
Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S and Kroemer M: Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure. 14:1293–1302. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kitamura H and Hashimoto M: USP2-Related cellular signaling and consequent pathophysiological outcomes. Int J Mol Sci. 22:12092021. View Article : Google Scholar : PubMed/NCBI | |
Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S and Loda M: The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 5:253–261. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, Lu P, Bartlett AM, Wu BX, Keane BJ, et al: Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest. 123:4344–4358. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mizutani N, Inoue M, Omori Y, Ito H, Tamiya-Koizumi K, Takagi A, Kojima T, Nakamura M, Iwaki S, Nakatochi M, et al: Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. J Biochem. 158:309–319. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vieyra-Garcia PA and Wolf P: A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther. 222:1077842021. View Article : Google Scholar : PubMed/NCBI | |
Nakahashi K, Nihira K, Suzuki M, Ishii T, Masuda K and Mori K: A novel mouse model of cutaneous T-cell lymphoma revealed the combined effect of mogamulizumab with psoralen and ultraviolet a therapy. Exp Dermatol. 31:1693–1698. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hsu J and Sage J: Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle. 15:3183–3190. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moghadami AA, Aboutalebi Vand Beilankouhi E, Kalantary-Charvadeh A, Hamzavi M, Mosayyebi B, Sedghi H, Ghorbani Haghjo A and Nazari Soltan Ahmad S: Inhibition of USP14 induces ER stress-mediated autophagy without apoptosis in lung cancer cell line A549. Cell Stress Chaperones. 25:909–917. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Chen Z, Ding X, Qiao Y and Li B: Ubiquitin-specific protease 35 (USP35) mediates cisplatin-induced apoptosis by stabilizing BIRC3 in non-small cell lung cancer. Lab Invest. 102:524–533. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, Maloney DJ, Jadhav A, Simeonov A and Zhuang Z: Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 18:1390–1400. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Du C, Xu D, Lu J, Zhou L, Wu C, Wu B and Huang J: Knockdown of ubiquitin-specific protease 51 attenuates cisplatin resistance in lung cancer through ubiquitination of zinc-finger E-box binding homeobox 1. Mol Med Rep. 22:1382–1390. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xu B, Qiang Y, Huang H, Wang C, Li D and Qian J: Overexpression of deubiquitinating enzyme USP28 promoted non-small cell lung cancer growth. J Cell Mol Med. 19:799–805. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Cui Z, Xie Z, Li C, Xu C, Guo X, Yu J, Chen T, Facchinetti F, Bohnenberger H, et al: Deubiquitinase USP5 promotes non-small cell lung cancer cell proliferation by stabilizing cyclin D1. Transl Lung Cancer Res. 10:3995–4011. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Zhang H, Lu F, Wang Z, Wu Y, Chen H, Fan X, Yin Z and Liang F: USP52 inhibits cell proliferation by stabilizing PTEN protein in non-small cell lung cancer. Biosci Rep. 41:BSR202104862021. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Zhao Y and Sun Y: USP2 is an SKP2 deubiquitylase that stabilizes both SKP2 and its substrates. J Biol Chem. 297:1011092021. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Wang T, Qiu T, Chen Z, Ma X, Zhang L and Zou J: Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma. BMC Cancer. 20:2142020. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Su Y, Fei X, Wang X, Zhang G, Su C, Du T, Yang T, Wang G, Tang Z and Zhang J: Ubiquitin specific peptidase 19 is a prognostic biomarker and affect the proliferation and migration of clear cell renal cell carcinoma. Oncol Rep. 43:1964–1974. 2020.PubMed/NCBI | |
Meng X, Xiong Z, Xiao W, Yuan C, Wang C, Huang Y, Tong J, Shi J, Chen Z, Liu C, et al: Downregulation of ubiquitin-specific protease 2 possesses prognostic and diagnostic value and promotes the clear cell renal cell carcinoma progression. Ann Transl Med. 8:3192020. View Article : Google Scholar : PubMed/NCBI | |
Yi J, Tavana O, Li H, Wang D, Baer RJ and Gu W: Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy. Nat Commun. 14:19412023. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Chen Z, Guo T, Chen W, Zhao L, Guo L and Pan X: USP2 inhibits lung cancer pathogenesis by reducing ARID2 protein degradation via ubiquitination. Biomed Res Int. 2022:15252162022. View Article : Google Scholar : PubMed/NCBI | |
Estlin EJ: Continuing therapy for childhood acute lymphoblastic leukaemia: Clinical and cellular pharmacology of methotrexate, 6-mercaptopurine and 6-thioguanine. Cancer Treat Rev. 27:351–363. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vora A, Mitchell CD, Lennard L, Eden TO, Kinsey SE, Lilleyman J and Richards SM; Medical Research Council; National Cancer Research Network Childhood Leukaemia Working Party, : Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: A randomised trial. Lancet. 368:1339–1348. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin HC, Kuan Y, Chu HF, Cheng SC, Pan HC, Chen WY, Sun CY and Lin TH: Disulfiram and 6-Thioguanine synergistically inhibit the enzymatic activities of USP2 and USP21. Int J Biol Macromol. 176:490–497. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsai HK, Gibson CJ, Murdock HM, Davineni P, Harris MH, Wang ES, Gondek LP, Kim AS, Nardi V and Lindsley RC: Allelic complexity of KMT2A partial tandem duplications in acute myeloid leukemia and myelodysplastic syndromes. Blood Adv. 6:4236–4240. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zhang P, Aryal S, Zhang L and Lu R: UTX loss alters therapeutic responses in KMT2A-rearranged acute myeloid leukemia. Leukemia. 37:226–230. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ikeda J, Shiba N, Tsujimoto SI, Yoshida M, Nakabayashi K, Ogata-Kawata H, Okamura K, Takeuchi M, Osumi T, Tomizawa D, et al: Whole transcriptome sequencing reveals a KMT2A-USP2 fusion in infant acute myeloid leukemia. Genes Chromosomes Cancer. 58:669–672. 2019.PubMed/NCBI | |
Lopes BA, Poubel CP, Teixeira CE, Caye-Eude A, Cave H, Meyer C, Marschalek R, Boroni M and Emerenciano M: Novel Diagnostic and therapeutic options for KMT2A-Rearranged acute leukemias. Front Pharmacol. 13:7494722022. View Article : Google Scholar : PubMed/NCBI | |
Blackburn PR, Smadbeck JB, Znoyko I, Webley MR, Pitel BA, Vasmatzis G, Xu X, Greipp PT, Hoppman NL, Ketterling RP, et al: Cryptic and atypical KMT2A-USP2 and KMT2A-USP8 rearrangements identified by mate pair sequencing in infant and childhood leukemia. Genes Chromosomes Cancer. 59:422–427. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meyer C, Lopes BA, Caye-Eude A, Cave H, Arfeuille C, Cuccuini W, Sutton R, Venn NC, Oh SH, Tsaur G, et al: Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions. Leukemia. 33:2306–2340. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Cheng Y, Zheng M, Yuan B, Wang Z, Li X, Yin J, Ye M and Song Y: Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct Target Ther. 6:282021. View Article : Google Scholar : PubMed/NCBI | |
Savage RE, Tyler AN, Miao XS and Chan TC: Identification of a novel glucosylsulfate conjugate as a metabolite of 3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione (ARQ 501, beta-lapachone) in mammals. Drug Metab Dispos. 36:753–758. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ohayon S, Refua M, Hendler A, Aharoni A and Brik A: Harnessing the oxidation susceptibility of deubiquitinases for inhibition with small molecules. Angew Chem Int Ed Engl. 54:599–603. 2015.PubMed/NCBI | |
Nguyen TT, Ung TT, Li S, Sah DK, Park SY, Lian S and Jung YD: Lithocholic Acid Induces miR21, Promoting PTEN Inhibition via STAT3 and ERK-1/2 signaling in colorectal cancer cells. Int J Mol Sci. 22:102092021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Wang Z, Lin R, Huang S, Miao H, Zou L, Liu K, Cui X, Wang Z, Zhang Y, et al: Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism. Biochem Pharmacol. 205:1152532022. View Article : Google Scholar : PubMed/NCBI | |
Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KG, Konietzny R, Fischer R, Kogan E, et al: Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol. 18:1401–1412. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gupta SC, Kim JH, Prasad S and Aggarwal BB: Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 29:405–434. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Landis-Piwowar KR, Chen D, Milacic V and Dou QP: Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci. 9:227–239. 2008. View Article : Google Scholar : PubMed/NCBI | |
Issaenko OA and Amerik AY: Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes. Cell Cycle. 11:1804–1817. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aleo E, Henderson CJ, Fontanini A, Solazzo B and Brancolini C: Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res. 66:9235–9244. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nicholson B, Leach CA, Goldenberg SJ, Francis DM, Kodrasov MP, Tian X, Shanks J, Sterner DE, Bernal A, Mattern MR, et al: Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities. Protein Sci. 17:1035–1043. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vamisetti GB, Meledin R, Gopinath P and Brik A: Halogen Substituents in the Isoquinoline Scaffold Switches the Selectivity of Inhibition between USP2 and USP7. Chembiochem. 20:282–286. 2019.PubMed/NCBI |