The macrophage polarization by miRNAs and its potential role in the treatment of tumor and inflammation (Review)
- Authors:
- Chaozhe Wang
- Xidi Wang
- Danfeng Zhang
- Xiaolin Sun
- Yunhua Wu
- Jing Wang
- Qing Li
- Guosheng Jiang
-
Affiliations: Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China, Department of Laboratory Medicine, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China, Department of Laboratory Medicine, Lixia People's Hospital, Jinan, Shandong 250013, P.R. China, Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China, Department of Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250013, P.R. China - Published online on: September 12, 2023 https://doi.org/10.3892/or.2023.8627
- Article Number: 190
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Haniffa M, Bigley V and Collin M: Human mononuclear phagocyte system reunited. Semin Cell Dev Biol. 41:59–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
Santoni G, Morelli MB, Amantini C, Santoni M, Nabissi M, Marinelli O and Santoni A: ‘Immuno-Transient Receptor Potential Ion Channels’: The role in monocyte- and macrophage-mediated inflammatory responses. Front Immunol. 9:12732018. View Article : Google Scholar : PubMed/NCBI | |
Kawakami A, Iwamoto N and Fujio K: Editorial: The role of monocytes/macrophages in autoimmunity and autoinflammation. Front Immunol. 13:10934302022. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C and Li J: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar : PubMed/NCBI | |
Juhas U, Ryba-Stanislawowska M, Szargiej P and Mysliwska J: Different pathways of macrophage activation and polarization. Postepy Hig Med Dosw (Online). 69:496–502. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lawrence T and Natoli G: Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat Rev Immunol. 11:750–761. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li H, Jiang T, Li MQ, Zheng XL and Zhao GJ: Transcriptional regulation of macrophages polarization by MicroRNAs. Front Immunol. 9:11752018. View Article : Google Scholar : PubMed/NCBI | |
Kishore A and Petrek M: Roles of macrophage polarization and macrophage-derived miRNAs in pulmonary fibrosis. Front Immunol. 12:6784572021. View Article : Google Scholar : PubMed/NCBI | |
Essandoh K, Li Y, Huo J and Fan GC: MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock. 46:122–131. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mohapatra S, Pioppini C, Ozpolat B and Calin GA: Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer. 20:242021. View Article : Google Scholar : PubMed/NCBI | |
Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y and Tsukihara T: A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 326:1275–1279. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Gu H, Qin D, Yang L, Huang W, Essandoh K, Wang Y, Caldwell CC, Peng T, Zingarelli B, et al: Exosomal miR-223 contributes to mesenchymal stem Cell-elicited cardioprotection in polymicrobial sepsis. Sci Rep. 5:137212015. View Article : Google Scholar : PubMed/NCBI | |
Ying W, Tseng A, Chang RC, Morin A, Brehm T, Triff K, Nair V, Zhuang G, Song H, Kanameni S, et al: MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest. 125:4149–4159. 2015. View Article : Google Scholar : PubMed/NCBI | |
Derynck R, Turley SJ and Akhurst RJ: TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 18:9–34. 2021. View Article : Google Scholar : PubMed/NCBI | |
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA and Miele L: Targeting Notch in oncology: The path forward. Nat Rev Drug Discov. 20:125–144. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang P, Zhang Y, Wang F, Qin M and Ren L: MiRNA-205-5p regulates the ERBB4/AKT signaling pathway to inhibit the proliferation and migration of HAVSMCs induced by ox-LDL. Pathol Res Pract. 233:1538582022. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Cheng X, Wang R, Tan Y, Ge M, Li D, Xu Q, Sun Y, Zhao C, Chen S and Liu H: Restoration of microRNA function impairs MYC-dependent maintenance of MLL leukemia. Leukemia. 34:2484–2488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mittal A, Chitkara D, Behrman SW and Mahato RI: Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials. 35:7077–7087. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A and Sancho D: Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 19:384–408. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Liang H and Zen K: Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 5:6142014. View Article : Google Scholar : PubMed/NCBI | |
Liu YC, Zou XB, Chai YF and Yao YM: Macrophage polarization in inflammatory diseases. Int J Biol Sci. 10:520–529. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI | |
Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR and Yang SM: Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012:9480982012. View Article : Google Scholar : PubMed/NCBI | |
Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, et al: Krüppel-like factor 4 regulates macrophage polarization. J Clin Invest. 121:2736–2749. 2011. View Article : Google Scholar : PubMed/NCBI | |
Locati M, Mantovani A and Sica A: Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 120:163–184. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Cao X, Fang J, Li Y and Fan M: Macrophages polarization is mediated by the combination of PRR ligands and distinct inflammatory cytokines. Int J Clin Exp Pathol. 8:10964–10974. PubMed/NCBI | |
El KK and Stenmark KR: Contribution of metabolic reprogramming to macrophage plasticity and function. Semin Immunol. 27:267–275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schultze JL, Schmieder A and Goerdt S: Macrophage activation in human diseases. Semin Immunol. 27:249–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, Thangavelu L, Singh SK, Rama Raju Allam VS, Jha NK, et al: Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact. 345:1095682021. View Article : Google Scholar : PubMed/NCBI | |
Ning H, Chen H, Deng J, Xiao C, Xu M, Shan L, Yang C and Zhang Z: Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther. 12:5192021. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wang Z, Shi J, Yu X, Li C, Liu J, Zhang F, Chen H and Zheng W: Macrophage polarization toward M1 phenotype through NF-κB signaling in patients with Behçet's disease. Arthritis Res Ther. 24:2492022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Lu M, Wang W, Yu S, Yu R, Cai C, Li Y, Shi Z, Zou J, He M, et al: Macrophage polarization modulated by NF-κB in polylactide membranes-treated peritendinous adhesion. Small. 18:e21041122022. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Shen P, Yu B, Xu X, Ge R, Cheng X, Chen Q, Bian J, Li Z and Wang J: Janus kinases JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur J Med Chem. 192:1121552020. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Yang N, Pan G, Jin B, Wang S and Ji W: Elevated IL-33 promotes expression of MMP2 and MMP9 via activating STAT3 in alveolar macrophages during LPS-induced acute lung injury. Cell Mol Biol Lett. 23:522018. View Article : Google Scholar : PubMed/NCBI | |
Yan T, Wang K, Li J, Hu H, Yang H, Cai M, Liu R, Li H, Wang N, Shi Y, et al: Suppression of the hyaluronic acid pathway induces M1 macrophages polarization via STAT1 in glioblastoma. Cell Death Discov. 8:1932022. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Luo F and Yan T: Transcription factor KLF4 regulated STAT1 to promote M1 polarization of macrophages in rheumatoid arthritis. Aging (Albany NY). 14:5669–5680. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rinnenthal JL, Goebel HH, Preusse C, Lebenheim L, Schumann M, Moos V, Schneider T, Heppner FL and Stenzel W: Inflammatory myopathy with abundant macrophages (IMAM): The immunology revisited. Neuromuscul Disord. 24:151–155. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Chen C, Chen L, Chua KV, Hung H, Hsu JT and Huang TS: Extracellular HSP90α Induces MyD88-IRAK Complex-associated IKKα/β-NF-κB/IRF3 and JAK2/TYK2-STAT-3 signaling in macrophages for tumor-promoting M2-polarization. Cells. 11:2292022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang L, Li S, Zhang T, Chen C, Hu J, Sun D and Lu H: Mechanical stimulation improves rotator cuff tendon-bone healing via activating IL-4/JAK/STAT signaling pathway mediated macrophage M2 polarization. J Orthop Translat. 37:78–88. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang L and He C: Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol. 13:9671932022. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Hu G, He J, Wang T, Zuo Y, Cao Y, Zheng Q, Tu J, Ma J, Cai R, et al: SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Rep. 39:1106602022. View Article : Google Scholar : PubMed/NCBI | |
Hu L, Li S, Li H, Lai B and Wen H: Interferon regulatory factor 4 (IRF4) promotes lipopolysaccharide-induced colonic mucosal epithelial cell proliferation by regulating macrophage polarization. Eur Surg Res. 63:257–268. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hedl M, Yan J and Abraham C: IRF5 and IRF5 Disease-risk variants increase glycolysis and human m1 macrophage polarization by regulating proximal signaling and akt2 activation. Cell Rep. 16:2442–2455. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Lin F, Chen L, Chen W, Pan X, Bai Y, Cai Y and Lu H: Lipoxin A4 regulates M1/M2 macrophage polarization via FPR2–IRF pathway. Inflammopharmacology. 30:487–498. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan Q, Zhao B, Cao YH, Yan JC, Sun LJ, Liu X, Xu Y, Wang XY and Wang B: BCR-associated Protein 31 regulates macrophages polarization and wound healing function via early growth response 2/C/EBPβ and IL-4Rα/C/EBPβ pathways. J Immunol. 209:1059–1070. 2022. View Article : Google Scholar : PubMed/NCBI | |
Arranz A, Doxaki C, Vergadi E, Martinez De La Torre Y, Vaporidi K, Lagoudaki ED, Ieronymaki E, Androulidaki A, Venihaki M, Margioris AN, et al: Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA. 109:9517–9522. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vaghf A, Khansarinejad B, Ghaznavi-Rad E and Mondanizadeh M: The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep. 49:6789–6801. 2022. View Article : Google Scholar : PubMed/NCBI | |
Panni S, Lovering RC, Porras P and Orchard S: Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech. 1863:1944172020. View Article : Google Scholar : PubMed/NCBI | |
Liu ZP, Wu C, Miao H and Wu H: RegNetwork: An integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford). 2015:bav0952015. View Article : Google Scholar : PubMed/NCBI | |
Gov E and Arga KY: Interactive cooperation and hierarchical operation of microRNA and transcription factor crosstalk in human transcriptional regulatory network. Iet Syst Biol. 10:219–228. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Saliminejad K, Khorram KH, Soleymani FS and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Abak A, Tavakkoli AS, Shoorei H, Taheri M and Samadian M: The impact of non-coding RNAs on macrophage polarization. Biomed Pharmacother. 142:1121122021. View Article : Google Scholar : PubMed/NCBI | |
Saradna A, Do DC, Kumar S, Fu QL and Gao P: Macrophage polarization and allergic asthma. Transl Res. 191:1–14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Viktoriia K, Polina V, Andrey E, Timur F and Gennady S: Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective. Int Immunopharmacol. 122:1105832023. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Yin Y, Li N, Zhu D, Zhang J, Zhang CY and Zen K: Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J Mol Cell Biol. 4:341–343. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fei Y, Wang Z, Huang M, Wu X, Hu F, Zhu J, Yu Y, Shen H, Wu Y, Xie G and Zhou Z: MiR-155 regulates M2 polarization of hepatitis B virus-infected tumor-associated macrophages which in turn regulates malignant progression of hepatocellular carcinoma. J Viral Hepat. 30:417–426. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bi J, Liu J, Chen X, Shi N, Wu H, Tang H and Mao J: MiR-155-5p-SOCS1/JAK1/STAT1 participates in hepatic lymphangiogenesis in liver fibrosis and cirrhosis by regulating M1 macrophage polarization. Hum Exp Toxicol. 42:96032712211416952023. View Article : Google Scholar : PubMed/NCBI | |
Yang HT, Li LL, Li SN, Wu JT, Chen K, Song WF, Zhang GB, Ma JF, Fu HX, Cao S, et al: MicroRNA-155 inhibition attenuates myocardial infarction-induced connexin 43 degradation in cardiomyocytes by reducing pro-inflammatory macrophage activation. Cardiovasc Diagn Ther. 12:325–339. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan C, Zhou Q, Wu J, Xu N, Du Y, Li J, Liu JX, Koda S, Zhang BB, Yu Q, et al: Csi-let-7a-5p delivered by extracellular vesicles from a liver fluke activates M1-like macrophages and exacerbates biliary injuries. Proc Natl Acad Sci USA. 118:e21022061182021. View Article : Google Scholar : PubMed/NCBI | |
Song M, Cui X, Zhang J, Li Y, Li J, Zang Y, Li Q, Yang Q, Chen Y, Cai W, et al: Shenlian extract attenuates myocardial ischaemia-reperfusion injury via inhibiting M1 macrophage polarization by silencing miR-155. Pharm Biol. 60:2011–2024. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gwiggner M, Martinez-Nunez RT, Whiteoak SR, Bondanese VP, Claridge A, Collins JE, Cummings JRF and Sanchez-Elsner T: MicroRNA-31 and MicroRNA-155 are overexpressed in ulcerative colitis and regulate IL-13 signaling by targeting interleukin 13 receptor α-1. Genes (Basel). 9:852018. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Tao B, Yang F, Xia K, Yang X, Chen L, Peng T, Xia X, Li X and Peng L: Histone demethylase JMJD1C promotes the polarization of M1 macrophages to prevent glioma by upregulating miR-302a. Clin Transl Med. 11:e4242021. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Zhu X, Wei R, Zhao L, Zhang Z, Yin X, Zhang Y, Chu C, Wang B and Li X: miR-130b-3p regulates M1 macrophage polarization via targeting IRF1. J Cell Physiol. 236:2008–2022. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Wang X, Zhang X, Ha T, Ma H, Liu L, Kalbfleisch JH, Gao X, Kao RL, Williams DL and Li C: Attenuation of cardiac dysfunction in polymicrobial sepsis by MicroRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol. 195:672–682. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cui W, Zhou S, Wang Y, Shi X and Liu H: Cadmium exposure activates the PI3K/AKT signaling pathway through miRNA-21, induces an increase in M1 polarization of macrophages, and leads to fibrosis of pig liver tissue. Ecotoxicol Environ Saf. 228:1130152021. View Article : Google Scholar : PubMed/NCBI | |
Thulin P, Wei T, Werngren O, Cheung L, Fisher RM, Grandér D, Corcoran M and Ehrenborg E: MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor delta in human monocytes during the inflammatory response. Int J Mol Med. 31:1003–1010. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tong F, Mao X, Zhang S, Xie H, Yan B, Wang B, Sun J and Wei L: HPV + HNSCC-derived exosomal miR-9 induces macrophage M1 polarization and increases tumor radiosensitivity. Cancer Lett. 478:34–44. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu A, Chen X, Bi Q, Xiang Y, Jin R, Ai H and Nie Y: A parallel and cascade control system: Magnetofection of miR-125b for synergistic tumor-association macrophage polarization regulation and tumor cell suppression in breast cancer treatment. Nanoscale. 12:22615–22627. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo XB, Li LT, Xi JC, Liu HT, Liu Z, Yu L and Tang PF: Negative pressure promotes macrophage M1 polarization after Mycobacterium tuberculosis infection via the lncRNA XIST/microRNA-125b-5p/A20/NF-κB axis. Ann N Y Acad Sci. 1514:116–131. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bao P, Zhao W, Mou M and Liu X: MicroRNA-21 mediates bone marrow mesenchymal stem cells protection of radiation-induced lung injury during the acute phase by regulating polarization of alveolar macrophages. Transl Cancer Res. 9:231–239. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Xiao T, Wei S, Sun J, Zou Z, Shi M, Sun Q, Dai X, Wu L, Li J, et al: miR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells. J Cell Physiol. 236:6025–6041. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yang B, Gao M, Xiao X, Zhao S and Liu Z: Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR-21 axis. Mol Ther Nucleic Acids. 25:502–514. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yao M, Cui B, Zhang W, Ma W, Zhao G and Xing L: Exosomal miR-21 secreted by IL-1beta-primed-mesenchymal stem cells induces macrophage M2 polarization and ameliorates sepsis. Life Sci. 264:1186582021. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Xie L and Sun S: The inhibitor miR-21 regulates macrophage polarization in an experimental model of chronic obstructive pulmonary disease. Tob Induc Dis. 19:1–10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Brandt S, Medeiros A, Wang S, Wu H, Dent A and Serezani CH: MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS One. 10:e1158552015. | |
Sheedy FJ: Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 6:192015. View Article : Google Scholar : PubMed/NCBI | |
An Y and Yang Q: MiR-21 modulates the polarization of macrophages and increases the effects of M2 macrophages on promoting the chemoresistance of ovarian cancer. Life Sci. 242:1171622020. View Article : Google Scholar : PubMed/NCBI | |
Jin J and Yu G: Hypoxic lung cancer cell-derived exosomal miR-21 mediates macrophage M2 polarization and promotes cancer cell proliferation through targeting IRF1. World J Surg Oncol. 20:2412022. View Article : Google Scholar : PubMed/NCBI | |
Lin F, Yin HB, Li XY, Zhu GM, He WY and Gou X: Bladder cancer cell-secreted exosomal miR-21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int J Oncol. 56:151–164. 2020.PubMed/NCBI | |
Ma C, He D, Tian P, Wang Y, He Y, Wu Q, Jia Z, Zhang X, Zhang P, Ying H, et al: miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci USa. 119:e21140061192022. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J and Xu B: Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 115:1205–1216. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Liu XJ, Qun Zhou, Xie J, Ma TT, Meng XM and Li J: MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages. Int Immunopharmacol. 32:46–54. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng X, He F, Mao Y, Lin Y, Fang J, Chen Y, Sun Z, Zhuo Y and Jiang J: miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis. J Mol Endocrinol. 69:315–327. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schulert GS, Fall N, Harley JB, Shen N, Lovell DJ, Thornton S and Grom AA: Monocyte MicroRNA expression in active systemic juvenile idiopathic arthritis implicates MicroRNA-125a-5p in polarized monocyte phenotypes. Arthritis Rheumatol. 68:2300–2313. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Chen L, Zhu X, Li Q, Hu L and Li H: Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 53:1227–1236. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang K, Zhi Y, Wu Y, Chen B, Bai J and Wang X: Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clin Transl Med. 11:e4782021. View Article : Google Scholar : PubMed/NCBI | |
Zhao G, Yu H, Ding L, Wang W, Wang H, Hu Y, Qin L, Deng G, Xie B, Li G and Qi L: microRNA-27a-3p delivered by extracellular vesicles from glioblastoma cells induces M2 macrophage polarization via the EZH1/KDM3A/CTGF axis. Cell Death Discov. 8:2602022. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Hui X, Hoo R, Ye D, Chan C, Feng T, Wang Y, Lam KSL and Xu A: Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest. 129:834–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang M, Zhong M, Suo Q and Lv K: Expression profiles of miRNAs in polarized macrophages. Int J Mol Med. 31:797–802. 2013. View Article : Google Scholar : PubMed/NCBI | |
Graff JW, Dickson AM, Clay G, McCaffrey AP and Wilson ME: Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem. 287:21816–21825. 2012. View Article : Google Scholar : PubMed/NCBI | |
Curtale G, Rubino M and Locati M: MicroRNAs as molecular switches in macrophage activation. Front Immunol. 10:7992019. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Nunez RT, Louafi F and Sanchez-Elsner T: The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem. 286:1786–1794. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang M, Li X, Tang Z, Wang X, Zhong M, Suo Q, Zhang Y and Lv K: Silencing MicroRNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci Rep. 6:226132016. View Article : Google Scholar : PubMed/NCBI | |
Ying H, Kang Y, Zhang H, Zhao D, Xia J, Lu Z, Wang H, Xu F and Shi L: MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J Immunol. 194:1239–1251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD, O'Connell RM and Baltimore D: MicroRNA-125b potentiates macrophage activation. J Immunol. 187:5062–5068. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y and Yi C: MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci Rep. 36:e003632016. View Article : Google Scholar : PubMed/NCBI | |
Cobos JV, Bradley EJ, Willemsen AM, van Kampen AH, Baas F and Kootstra NA: Next-generation sequencing of microRNAs uncovers expression signatures in polarized macrophages. Physiol Genomics. 46:91–103. 2014. View Article : Google Scholar : PubMed/NCBI | |
Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A, Casazza A, Mazzone M, Lyle R, Naldini L and De Palma M: miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep. 1:141–154. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen Q, Song Y, Lai L, Wang J, Yu H, Cao X and Wang Q: MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation. Febs Lett. 585:1963–1968. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H, Li H, Wang G, Evans AR, Safe S, et al: A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation. 125:2892–2903. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Liu H, Liu W, Liu Y and Xu J: Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-kappaB pathway. Cell Death Differ. 22:287–297. 2015. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Xie N, Cui H, Tan Z, Yang S, Icyuz M, Abraham E and Liu G: MicroRNA let-7c regulates macrophage polarization. J Immunol. 190:6542–6549. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Liu M, Xu Z, Li Y, Guo H, Ge Y, Liu Y, Zheng D and Shi J: A double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression. Oncotarget. 7:13502–13519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu XQ, Dai Y, Yang Y, Huang C, Meng XM, Wu BM and Li J: Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation. Immunology. 148:237–248. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alam MM and O'Neill LA: MicroRNAs and the resolution phase of inflammation in macrophages. Eur J Immunol. 41:2482–2485. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu G and Abraham E: MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol. 33:170–177. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bi Y, Liu G and Yang R: MicroRNAs: Novel regulators during the immune response. J Cell Physiol. 218:467–472. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu XQ, Huang C, Liu XH and Li J: MicroRNA let-7a: A novel therapeutic candidate in prostate cancer. Asian J Androl. 16:327–328. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thomas M, Lieberman J and Lal A: Desperately seeking microRNA targets. Nat Struct Mol Biol. 17:1169–1174. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Chen B, Zhang Z, Huang Y, Li J, Wei Q, Cao D and Ai J: Crosstalk between Tumor-associated macrophages and MicroRNAs: A key role in tumor microenvironment. Int J Mol Sci. 23:132582022. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Han X, Yang L, Fu J, Sun C, Huang S, Xiao W, Gao Y, Liang Q, Wang X, et al: Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus. Theranostics. 10:10908–10924. 2020. View Article : Google Scholar : PubMed/NCBI | |
van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cortez MA, Anfossi S, Ramapriyan R, Menon H, Atalar SC, Aliru M, Welsh J and Calin GA: Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer. 58:244–253. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G and Calin GA: microRNA therapeutics in cancer-an emerging concept. EBioMedicine. 12:34–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smolle MA, Calin HN, Pichler M and Calin GA: Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 284:1952–1966. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li D, Yan M, Sun F, Song J, Hu X, Yu S, Tang L and Deng S: miR-498 inhibits autophagy and M2-like polarization of tumor-associated macrophages in esophageal cancer via MDM2/ATF3. Epigenomics. 13:1013–1030. 2021. View Article : Google Scholar : PubMed/NCBI | |
Garofalo M and Croce CM: MicroRNAs as therapeutic targets in chemoresistance. Drug Resist Updat. 16:47–59. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Yuan Y, Gong Y, Luo X, Su X, Hu X and Zhu W: Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. J Cancer Res Clin Oncol. 145:2951–2967. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH, Li N, Gomez-Cabrero A, Reisfeld RA, Xiang R and Luo Y: MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene. 33:3014–3023. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Shan WF, Jin TT, Wu GQ, Xiong XX, Jin HY and Zhu SM: Propofol exerts anti-hepatocellular carcinoma by microvesicle-mediated transfer of miR-142-3p from macrophage to cancer cells. J Transl Med. 12:2792014. View Article : Google Scholar : PubMed/NCBI | |
Syed SN, Frank AC, Raue R and Brune B: MicroRNA-A tumor trojan horse for tumor-associated macrophages. Cells. 8:14822019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhao L, Shi B, Ma S, Xu Z, Ge Y, Liu Y, Zheng D and Shi J: Functions of miR-146a and miR-222 in Tumor-associated macrophages in breast cancer. Sci Rep. 5:186482015. View Article : Google Scholar : PubMed/NCBI | |
Pirlog R, Cismaru A, Nutu A and Berindan-Neagoe I: Field Cancerization in NSCLC: A new perspective on MicroRNAs in macrophage polarization. Int J Mol Sci. 22:7462021. View Article : Google Scholar : PubMed/NCBI | |
Jang JY, Lee JK, Jeon YK and Kim CW: Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer. 13:4212013. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Xu X, Xu Q, Ren J, Shen S, Fan C and Hou Y: miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops. Oncogene. 36:3240–3251. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CH, Tai SK and Yang MH: Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering MiR-21-abundant Exosomes. Neoplasia. 20:775–788. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Qiao B, Gao N, Lin N and He W: Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol. 316:C731–C740. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Liao Y and Tang L: MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 38:532019. View Article : Google Scholar : PubMed/NCBI | |
Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Wei J, Wang F, Kong LY, Ling XY, Nduom E, Gabrusiewicz K, Doucette T, Yang Y, Yaghi NK, et al: Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy against murine glioblastoma. J Natl Cancer Inst. 106:dju1622014. View Article : Google Scholar : PubMed/NCBI | |
Shinohara H, Kuranaga Y, Kumazaki M, Sugito N, Yoshikawa Y, Takai T, Taniguchi K, Ito Y and Akao Y: Regulated polarization of tumor-associated macrophages by miR-145 via colorectal cancer-derived extracellular vesicles. J Immunol. 199:1505–1515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG and Antonarakis SE: Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 81:405–413. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin ZY, Huang YQ, Zhang YQ, Han ZD, He HC, Ling XH, Fu X, Dai QS, Cai C, Chen JH, et al: MicroRNA-224 inhibits progression of human prostate cancer by downregulating TRIB1. Int J Cancer. 135:541–550. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Hypoxic Tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 78:4586–4598. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xing F, Liu Y, Wu SY, Wu K, Sharma S, Mo YY, Feng J, Sanders S, Jin G, Singh R, et al: Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to promote brain metastasis. Cancer Res. 78:4316–4330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qian M, Wang S, Guo X, Wang J, Zhang Z, Qiu W, Gao X, Chen Z, Xu J, Zhao R, et al: Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways. Oncogene. 39:428–442. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kanlikilicer P, Bayraktar R, Denizli M, Rashed MH, Ivan C, Aslan B, Mitra R, Karagoz K, Bayraktar E, Zhang X, et al: Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine. 38:100–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Xu L, Hu Y, Huang Y, Zhang Y, Zheng X, Wang S, Wang Y, Yu Y, Zhang M, et al: miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis and mobility in prostate cancer. Sci Rep. 6:256022016. View Article : Google Scholar : PubMed/NCBI | |
Shin JI and Brusselle GG: Mechanistic links between COPD and lung cancer: A role of microRNA let-7? Nat Rev Cancer. 14:702014. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Cheng X, Chen H, Chen C, Xie S, Zhao M, Liu D, Deng Q, Liu Y, Wang X, et al: Induction of breast cancer stem cells by M1 macrophages through Lin-28B-let-7-HMGA2 axis. Cancer Lett. 452:213–225. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jerome T, Laurie P, Louis B and Pierre C: Enjoy the silence: The story of let-7 MicroRNA and cancer. Curr Genomics. 8:229–233. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xun J, Du L, Gao R, Shen L, Wang D, Kang L, Chen C, Zhang Z, Zhang Y, Yue S, et al: Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B. Theranostics. 11:6847–6859. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Li M, Pan Z, Zhang Z, Gao Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, et al: miR-3184-3p enriched in cerebrospinal fluid exosomes contributes to progression of glioma and promotes M2-like macrophage polarization. Cancer Sci. 113:2668–2680. 2022. View Article : Google Scholar : PubMed/NCBI | |
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, et al: Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol. 173:1036802022. View Article : Google Scholar : PubMed/NCBI | |
Qiu S, Xie L, Lu C, Gu C, Xia Y, Lv J, Xuan Z, Fang L, Yang J, Zhang L, et al: Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis. J Exp Clin Cancer Res. 41:2962022. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Chen S, Liu Y, Han H, Gong M and Song Y: The role of exosomal miR-181b in the crosstalk between NSCLC cells and tumor-associated macrophages. Genes Genomics. 44:1243–1258. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Cao Y, Yuan W, Guo J and Sun G: Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN. Cell Death Dis. 13:5062022. View Article : Google Scholar : PubMed/NCBI | |
Chuang HY, Su YK, Liu HW, Chen CH, Chiu SC, Cho DY, Lin SZ, Chen YS and Lin CM: Preclinical evidence of STAT3 inhibitor pacritinib overcoming temozolomide resistance via downregulating miR-21-enriched exosomes from M2 Glioblastoma-associated macrophages. J Clin Med. 8:9592019. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Ren Y, Liu R, Ma J, Shi Y, Zhang L and Bu R: miR-195-5p suppresses the proliferation, migration, and invasion of oral squamous cell carcinoma by targeting TRIM14. Biomed Res Int. 2017:73781482017. View Article : Google Scholar : PubMed/NCBI | |
Pakravan G, Foroughmand AM, Peymani M, Ghaedi K, Hashemi MS, Hajjari M and Nasr-Esfahani MH: Downregulation of miR-130a, antagonized doxorubicin-induced cardiotoxicity via increasing the PPARγ expression in mESCs-derived cardiac cells. Cell Death Dis. 9:7582018. View Article : Google Scholar : PubMed/NCBI | |
Anandappa G, Lampis A, Cunningham D, Khan KH, Kouvelakis K, Vlachogiannis G, Hedayat S, Tunariu N, Rao S, Watkins D, et al: miR-31-3p expression and benefit from Anti-EGFR inhibitors in metastatic colorectal cancer patients enrolled in the prospective phase II PROSPECT-C trial. Clin Cancer Res. 25:3830–3838. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sokilde R, Persson H, Ehinger A, Pirona AC, Ferno M, Hegardt C, Larsson C, Loman N, Malmberg M, Rydén L, et al: Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics. 20:5032019. View Article : Google Scholar : PubMed/NCBI | |
Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, Shlomi T and Gil Z: Transfer of miRNA in Macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 78:5287–5299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moradi-Chaleshtori M, Shojaei S, Mohammadi-Yeganeh S and Hashemi SM: Transfer of miRNA in tumor-derived exosomes suppresses breast tumor cell invasion and migration by inducing M1 polarization in macrophages. Life Sci. 282:1198002021. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liu JM and Luo YP: MicroRNAs in tumor immunity: Functional regulation in tumor-associated macrophages. J Zhejiang Univ Sci B. 21:12–28. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qiao L, Dong C, Jia W and Ma B: Exosomal miR-655-3p inhibits growth, and invasion and macrophage M2 polarization through targeting CXCR4 in papillary thyroid carcinoma. Acta Biochim Pol. 69:773–779. 2022.PubMed/NCBI | |
Zhao M, Zhuang A and Fang Y: Cancer-associated fibroblast-derived exosomal miRNA-320a promotes macrophage M2 polarization in vitro by regulating PTEN/PI3Kγ signaling in pancreatic cancer. J Oncol. 2022:95146972022. View Article : Google Scholar : PubMed/NCBI | |
Hong S, You JY, Paek K, Park J, Kang SJ, Han EH, Choi N, Chung S, Rhee WJ and Kim JA: Inhibition of tumor progression and M2 microglial polarization by extracellular vesicle-mediated microRNA-124 in a 3D microfluidic glioblastoma microenvironment. Theranostics. 11:9687–9704. 2021. View Article : Google Scholar : PubMed/NCBI | |
Labonte AC, Tosello-Trampont AC and Hahn YS: The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells. 37:275–285. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bashir S, Sharma Y, Elahi A and Khan F: Macrophage polarization: The link between inflammation and related diseases. Inflamm Res. 65:1–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Biswas SK, Chittezhath M, Shalova IN and Lim JY: Macrophage polarization and plasticity in health and disease. Immunol Res. 53:11–24. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hawiger J, Veach RA and Zienkiewicz J: New paradigms in sepsis: From prevention to protection of failing microcirculation. J Thromb Haemost. 13:1743–1756. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mayr FB, Yende S and Angus DC: Epidemiology of severe sepsis. Virulence. 5:4–11. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martin GS: Sepsis, severe sepsis and septic shock: Changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 10:701–706. 2012. View Article : Google Scholar : PubMed/NCBI | |
Melamed A and Sorvillo FJ: The burden of sepsis-associated mortality in the United States from 1999 to 2005: An analysis of multiple-cause-of-death data. Crit Care. 13:R282009. View Article : Google Scholar : PubMed/NCBI | |
Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, Moldawer LL and Moore FA: Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 72:1491–1501. 2012. View Article : Google Scholar : PubMed/NCBI | |
Essandoh K and Fan GC: Role of extracellular and intracellular microRNAs in sepsis. Biochim Biophys Acta. 1842:2155–2162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL and Mochizuki H: Role of Toll-like receptors in the development of sepsis. Shock. 29:315–321. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cristofaro P and Opal SM: The Toll-like receptors and their role in septic shock. Expert Opin Ther Targets. 7:603–612. 2003. View Article : Google Scholar : PubMed/NCBI | |
Savva A and Roger T: Targeting Toll-like receptors: Promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol. 4:3872013. View Article : Google Scholar : PubMed/NCBI | |
Weighardt H and Holzmann B: Role of Toll-like receptor responses for sepsis pathogenesis. Immunobiology. 212:715–722. 2007. View Article : Google Scholar : PubMed/NCBI | |
Foley NM, Wang J, Redmond HP and Wang JH: Current knowledge and future directions of TLR and NOD signaling in sepsis. Mil Med Res. 2:12015.PubMed/NCBI | |
Salomao R, Martins PS, Brunialti MK, Fernandes ML, Martos LS, Mendes ME, Gomes NE and Rigato O: TLR signaling pathway in patients with sepsis. Shock. 30 (Suppl 1):S73–S77. 2008. View Article : Google Scholar | |
Wang JF, Yu ML, Yu G, Bian JJ, Deng XM, Wan XJ and Zhu KM: Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun. 394:184–188. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fabian B, Sanchari R, Christian T, Christoph R and Tom L: Circulating MicroRNAs as Biomarkers for Sepsis. Int J Mol Sci. 17:782016. View Article : Google Scholar | |
Arner P and Kulyte A: MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol. 11:276–288. 2015. View Article : Google Scholar : PubMed/NCBI | |
Monteiro R and Azevedo I: Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010:2896452010. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA and Chen H: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 112:1821–1830. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gregor MF and Hotamisligil GS: Inflammatory mechanisms in obesity. Annu Rev Immunol. 29:415–445. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nishimura S, Manabe I and Nagai R: Adipose tissue inflammation in obesity and metabolic syndrome. Discov Med. 8:55–60. 2009.PubMed/NCBI | |
Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J and Feve B: Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 17:4–12. 2006.PubMed/NCBI | |
Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A and Antel JP: miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol. 74:709–720. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM and Weiner HL: MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med. 17:64–70. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karunakaran D, Richards L, Geoffrion M, Barrette D, Gotfrit RJ, Harper ME and Rayner KJ: Therapeutic inhibition of miR-33 promotes fatty acid oxidation but does not ameliorate metabolic dysfunction in diet-induced obesity. Arterioscler Thromb Vasc Biol. 35:2536–2543. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yang L, Liang X and Zhu G: MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1. Cell Physiol Biochem. 36:1371–1381. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Jia X, Du F, Wang J, Wang Y, Ai W and Fan D: miR-155-deficient bone marrow promotes tumor metastasis. Mol Cancer Res. 11:923–936. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C, Fullerton MD, Cecchini K, et al: MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 125:4334–4348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu QY, Liu Q, Chen JX, Lan K and Ge BX: MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol. 185:7435–7442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Liu F, Fang L, Cai R, Zong C and Qi Y: Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages. PLoS One. 9:e967412014. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y and Abraham E: miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA. 106:15819–15824. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Huang X, Zhang Z, Jia W, Zhao Z, Zhang Y, Liu X and Xu G: MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells. Mol Immunol. 55:303–309. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie N, Cui H, Banerjee S, Tan Z, Salomao R, Fu M, Abraham E, Thannickal VJ and Liu G: miR-27a regulates inflammatory response of macrophages by targeting IL-10. J Immunol. 193:327–334. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong X, Wu WJ, Chen J, Ni HF, Tang TT, et al: Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 27:210–226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Arora S, Dev K, Agarwal B, Das P and Syed MA: Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology. 223:383–396. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Xu E and Zhan L: Epigenetic regulations of Microglia/macrophage polarization in ischemic stroke. Front Mol Neurosci. 14:6974162021. View Article : Google Scholar : PubMed/NCBI | |
Dang CP and Leelahavanichkul A: Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One. 15:e2360382020. View Article : Google Scholar | |
Li B, Dasgupta C, Huang L, Meng X and Zhang L: MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy. Cell Mol Immunol. 17:976–991. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Xu Y, Zhu Y, Sun H, Juguilon C, Li F, Fan D, Yin L and Zhang Y: Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol Ther. 28:202–216. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Qiu F, Cao H, Li H, Dai G, Ma T, Gong Y, Luo W, Zhu D, Qiu Z, et al: Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics. 13:685–703. 2023. View Article : Google Scholar : PubMed/NCBI |