Targeting TRIP13 for overcoming anticancer drug resistance (Review)
- Authors:
- Liwen Zhao
- Siyu Ye
- Shengnan Jing
- Yong-Jing Gao
- Tianzhen He
-
Affiliations: Institute of Pain Medicine and Special Environmental Medicine, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China - Published online on: September 29, 2023 https://doi.org/10.3892/or.2023.8639
- Article Number: 202
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Jeong H, Wie M, Baek IJ, Sohn G, Um SH, Lee SG, Seo Y, Ra J, Lee EA, Kim S, et al: TRIP13 participates in immediate-early sensing of DNA strand breaks and ATM signaling amplification through MRE11. Cells. 11:40952022. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Choi HS, Gyuris J, Brent R and Moore DD: Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol. 9:243–254. 1995. View Article : Google Scholar : PubMed/NCBI | |
San-Segundo PA and Roeder GS: Pch2 links chromatin silencing to meiotic checkpoint control. Cell. 97:313–324. 1999. View Article : Google Scholar : PubMed/NCBI | |
Miao C, Tang D, Zhang H, Wang M, Li Y, Tang S, Yu H, Gu M and Cheng Z: Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell. 25:2998–3009. 2013. View Article : Google Scholar : PubMed/NCBI | |
Farmer S, Hong EJ, Leung WK, Argunhan B, Terentyev Y, Humphryes N, Toyoizumi H and Tsubouchi H: Budding yeast Pch2, a widely conserved meiotic protein, is involved in the initiation of meiotic recombination. PLoS One. 7:e397242012. View Article : Google Scholar : PubMed/NCBI | |
Joyce EF and McKim KS: Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation. Genetics. 181:39–51. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Rosenberg SC, Moeller A, Speir JA, Su TY and Corbett KD: TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. Elife. 4:e073672015. View Article : Google Scholar : PubMed/NCBI | |
Li XC and Schimenti JC: Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet. 3:e1302007. View Article : Google Scholar : PubMed/NCBI | |
Roig I, Dowdle JA, Toth A, de Rooij DG, Jasin M and Keeney S: Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet. 6:e10010622010. View Article : Google Scholar : PubMed/NCBI | |
Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, Eckmann CR, Cooke HJ, Jasin M, Keeney S, et al: Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 5:e10007022009. View Article : Google Scholar : PubMed/NCBI | |
Tipton AR, Wang K, Oladimeji P, Sufi S, Gu Z and Liu ST: Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries. BMC Cell Biol. 13:152012. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Sturt-Gillespie B, Hittle JC, Macdonald D, Chan GK, Yen TJ and Liu ST: Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein. J Biol Chem. 289:23928–23937. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eytan E, Wang K, Miniowitz-Shemtov S, Sitry-Shevah D, Kaisari S, Yen TJ, Liu ST and Hershko A: Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc Natl Acad Sci USA. 111:12019–12024. 2014. View Article : Google Scholar : PubMed/NCBI | |
Silva RD, Mirkovic M, Guilgur LG, Rathore OS, Martinho RG and Oliveira RA: Absence of the spindle assembly checkpoint restores mitotic fidelity upon loss of sister chromatid cohesion. Curr Biol. 28:2837–2844.e2833. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bhalla N and Dernburg AF: A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science. 310:1683–1686. 2005. View Article : Google Scholar : PubMed/NCBI | |
Börner GV, Barot A and Kleckner N: Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. Proc Natl Acad Sci USA. 105:3327–3332. 2008. View Article : Google Scholar : PubMed/NCBI | |
Joshi N, Barot A, Jamison C and Börner GV: Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLoS Genet. 5:e10005572009. View Article : Google Scholar : PubMed/NCBI | |
Vader G, Blitzblau HG, Tame MA, Falk JE, Curtin L and Hochwagen A: Protection of repetitive DNA borders from self-induced meiotic instability. Nature. 477:115–119. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vader G: Pch2(TRIP13): Controlling cell division through regulation of HORMA domains. Chromosoma. 124:333–339. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Jomaa A, Ortega J and Alani EE: Pch2 is a hexameric ring ATPase that remodels the chromosome axis protein Hop1. Proc Natl Acad Sci USA. 111:E44–E53. 2014.PubMed/NCBI | |
Yedidi RS, Wendler P and Enenkel C: AAA-ATPases in protein degradation. Front Mol Biosci. 4:422017. View Article : Google Scholar : PubMed/NCBI | |
Sheng N, Yan L, Wu K, You W, Gong J, Hu L, Tan G, Chen H and Wang Z: TRIP13 promotes tumor growth and is associated with poor prognosis in colorectal cancer. Cell Death Dis. 9:4022018. View Article : Google Scholar : PubMed/NCBI | |
Kurita K, Maeda M, Mansour MA, Kokuryo T, Uehara K, Yokoyama Y, Nagino M, Hamaguchi M and Senga T: TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion. Oncol Lett. 12:5240–5246. 2016. View Article : Google Scholar : PubMed/NCBI | |
Agarwal S, Behring M, Kim HG, Chandrashekar DS, Chakravarthi BVSK, Gupta N, Bajpai P, Elkholy A, Al Diffalha S, Datta PK, et al: TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Mol Oncol. 14:3007–3029. 2020. View Article : Google Scholar : PubMed/NCBI | |
Banerjee R, Russo N, Liu M, Basrur V, Bellile E, Palanisamy N, Scanlon CS, van Tubergen E, Inglehart RC, Metwally T, et al: TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nat Commun. 5:45272014. View Article : Google Scholar : PubMed/NCBI | |
Lan J, Huang J, Tao X, Gao Y, Zhang L, Huang W, Luo J, Liu C, Deng Y, Liu L and Liu X: Evaluation of the TRIP13 level in breast cancer and insights into potential molecular pathways. J Cell Mol Med. 26:2673–2685. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhang Z, Xia X and Lei J: KIF18B promotes breast cancer cell proliferation, migration and invasion by targeting TRIP13 and activating the Wnt/β-catenin signaling pathway. Oncol Lett. 23:1122022. View Article : Google Scholar : PubMed/NCBI | |
Li ZH, Lei L, Fei LR, Huang WJ, Zheng YW, Yang MQ, Wang Z, Liu CC and Xu HT: TRIP13 promotes the proliferation and invasion of lung cancer cells via the Wnt signaling pathway and epithelial-mesenchymal transition. J Mol Histol. 52:11–20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cai W, Ni W, Jin Y and Li Y: TRIP13 promotes lung cancer cell growth and metastasis through AKT/mTORC1/c-Myc signaling. Cancer Biomark. 30:237–248. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Dong Y, Hao S, Tong Y, Luo Q and Aerxiding P: The oncogenic role of TRIP13 in regulating proliferation, invasion, and cell cycle checkpoint in NSCLC cells. Int J Clin Exp Pathol. 12:3357–3366. 2019.PubMed/NCBI | |
Yao J, Zhang X, Li J, Zhao D, Gao B, Zhou H, Gao S and Zhang L: Silencing TRIP13 inhibits cell growth and metastasis of hepatocellular carcinoma by activating of TGF-β1/smad3. Cancer Cell Int. 18:2082018. View Article : Google Scholar : PubMed/NCBI | |
Garcia MR, Meissburger B, Chan J, de Guia RM, Mattijssen F, Roessler S, Birkenfeld AL, Raschzok N, Riols F, Tokarz J, et al: Trip13 depletion in liver cancer induces a lipogenic response contributing to plin2-dependent mitotic cell death. Adv Sci (Weinh). 9:e21042912022. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Ding H, Li Y, Xue D, Li Z, Liu Y, Zhang T, Zhou J and Wang P: TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer. Int J Biol Macromol. 121:200–206. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng L, Liu YM, Yang N, Zhang T and Xie H: Hsa_circRNA_100146 promotes prostate cancer progression by upregulating TRIP13 via sponging miR-615-5p. Front Mol Biosci. 8:6934772021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Huang J, Li B, Xue H, Tricot G, Hu L, Xu Z, Sun X, Chang S, Gao L, et al: A small-molecule inhibitor targeting TRIP13 suppresses multiple myeloma progression. Cancer Res. 80:536–548. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Liu S, Guo Q, Zhang S, Zhao Y, Wang H, Li T, Gong Y, Wang Y, Zhang T, et al: Increased expression of TRIP13 drives the tumorigenesis of bladder cancer in association with the EGFR signaling pathway. Int J Biol Sci. 15:1488–1499. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mohammed aI, Ali ME-H, Mohamed FEA and Abd-Elrehim DM: Immunohistochemical expression of TRIP13 in transitional and squamous cell carcinoma of urinary bladder carcinoma. Minia J Med Res. 2023. View Article : Google Scholar | |
Zhou KS, Zhang Q, Zhang WT, Liu YY, Wu SS, Zhou J, Wei XD and Song YP: Study on the expression of TRIP13 mRNA in chronic lymphocytic leukemia B lymphocyte and the molecular mechanism of TRIP13 mediated JVM-2 cell proliferation and apoptosis. Zhonghua Xue Ye Xue Za Zhi. 38:618–622. 2017.(In Chinese). PubMed/NCBI | |
Li W, Zhang G, Li X, Wang X, Li Q, Hong L, Shen Y, Zhao C, Gong X, Chen Y and Zhou J: Thyroid hormone receptor interactor 13 (TRIP13) overexpression associated with tumor progression and poor prognosis in lung adenocarcinoma. Biochem Biophys Res Commun. 499:416–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ju L, Li X, Shao J, Lu R, Wang Y and Bian Z: Upregulation of thyroid hormone receptor interactor 13 is associated with human hepatocellular carcinoma. Oncol Rep. 40:3794–3802. 2018.PubMed/NCBI | |
Lu W, Mengxuan Z, Ming R, Zixu G, Yong Z, Simin Z, Yang Y, Leqi Q, Kangjie S, Yanlin L, et al: TRIP13/FLNA complex promotes tumor progression and is associated with unfavorable outcomes in melanoma. J Oncol. 2022:14191792022. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Yang G, Yang H, Song D, Hu L, Xie B, Wang H, Gao L, Gao M, Xu H, et al: TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma. Oncotarget. 8:26718–26731. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang LT, Ke LX, Wu XY, Tian HT, Deng HZ, Xu LY, Li EM and Long L: TRIP13 induces nedaplatin resistance in esophageal squamous cell carcinoma by enhancing repair of DNA damage and inhibiting apoptosis. Biomed Res Int. 2022:72954582022.PubMed/NCBI | |
Xu H, Ma Z, Mo X, Chen X, Xu F, Wu F, Chen H, Zhou G, Xia H and Zhang C: Inducing synergistic DNA damage by TRIP13 and PARP1 inhibitors provides a potential treatment for hepatocellular carcinoma. J Cancer. 13:2226–2237. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Kim DH, Dereli I, Rosenberg SC, Hagemann G, Herzog F, Tóth A, Cleveland DW and Corbett KD: The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding. EMBO J. 36:2419–2434. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mapelli M, Massimiliano L, Santaguida S and Musacchio A: The Mad2 conformational dimer: Structure and implications for the spindle assembly checkpoint. Cell. 131:730–743. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marks DH, Thomas R, Chin Y, Shah R, Khoo C and Benezra R: Mad2 overexpression uncovers a critical role for TRIP13 in mitotic exit. Cell Rep. 19:1832–1845. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Li B, Tomchick DR, Machius M, Rizo J, Yu H and Luo X: p31comet blocks Mad2 activation through structural mimicry. Cell. 131:744–755. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SC and Corbett KD: The multifaceted roles of the HORMA domain in cellular signaling. J Cell Biol. 211:745–755. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou K, Zhang W, Zhang Q, Gui R, Zhao H, Chai X, Li Y, Wei X and Song Y: Loss of thyroid hormone receptor interactor 13 inhibits cell proliferation and survival in human chronic lymphocytic leukemia. Oncotarget. 8:25469–25481. 2017. View Article : Google Scholar : PubMed/NCBI | |
Furlong F, Fitzpatrick P, O'Toole S, Phelan S, McGrogan B, Maguire A, O'Grady A, Gallagher M, Prencipe M, McGoldrick A, et al: Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J Pathol. 226:746–755. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou XY and Shu XM: TRIP13 promotes proliferation and invasion of epithelial ovarian cancer cells through Notch signaling pathway. Eur Rev Med Pharmacol Sci. 23:522–529. 2019.PubMed/NCBI | |
Amawi H, Sim HM, Tiwari AK, Ambudkar SV and Shukla S: ABC transporter-mediated multidrug-resistant cancer. Adv Exp Med Biol. 1141:549–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khatami M: Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and ‘Dark Energy’: Loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med. 7:202018. View Article : Google Scholar : PubMed/NCBI | |
Wang DC, Wang W, Zhu B and Wang X: Lung cancer heterogeneity and new strategies for drug therapy. Annu Rev Pharmacol Toxicol. 58:531–546. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bukowski K, Kciuk M and Kontek R: Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 21:32332020. View Article : Google Scholar : PubMed/NCBI | |
Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Guo M, Fan Z, Chen Y, Shi X, Gu C and Yang Y: Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer. Am J Transl Res. 11:4397–4410. 2019.PubMed/NCBI | |
Li C, Xia J, Franqui-Machin R, Chen F, He Y, Ashby TC, Teng F, Xu H, Liu D, Gai D, et al: TRIP13 modulates protein deubiquitination and accelerates tumor development and progression of B cell malignancies. J Clin Invest. 131:e1468932021. View Article : Google Scholar : PubMed/NCBI | |
Ozols RF and Young RC: High-dose cisplatin therapy in ovarian cancer. Semin Oncol. 12:21–30. 1985.PubMed/NCBI | |
Markman M: Intraperitoneal cisplatin and carboplatin in the management of ovarian cancer. Semin Oncol. 21:17–19; quiz 20. 581994.PubMed/NCBI | |
Zoń A and Bednarek I: Cisplatin in ovarian cancer treatment-known limitations in therapy force new solutions. Int J Mol Sci. 24:75852023. View Article : Google Scholar : PubMed/NCBI | |
Mittica G, Ghisoni E, Giannone G, Genta S, Aglietta M, Sapino A and Valabrega G: PARP inhibitors in ovarian cancer. Recent Pat Anticancer Drug Discov. 13:392–410. 2018. View Article : Google Scholar : PubMed/NCBI | |
Smith M and Pothuri B: Appropriate selection of PARP inhibitors in ovarian cancer. Curr Treat Options Oncol. 23:887–903. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Li X, Li W, Bai H and Zhang Z: PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J Cell Mol Med. 23:2303–2313. 2019. View Article : Google Scholar : PubMed/NCBI | |
Musacchio A and Salmon ED: The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 8:379–393. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lara-Gonzalez P, Westhorpe FG and Taylor SS: The spindle assembly checkpoint. Curr Biol. 22:R966–R980. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chao WC, Kulkarni K, Zhang Z, Kong EH and Barford D: Structure of the mitotic checkpoint complex. Nature. 484:208–213. 2012. View Article : Google Scholar : PubMed/NCBI | |
de Cárcer G and Malumbres M: A centrosomal route for cancer genome instability. Nat Cell Biol. 16:504–506. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sotillo R, Schvartzman JM, Socci ND and Benezra R: Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature. 464:436–440. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bargiela-Iparraguirre J, Prado-Marchal L, Pajuelo-Lozano N, Jiménez B, Perona R and Sánchez-Pérez I: Mad2 and BubR1 modulates tumourigenesis and paclitaxel response in MKN45 gastric cancer cells. Cell Cycle. 13:3590–3601. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tusell L, Pampalona J, Soler D, Frías C and Genescà A: Different outcomes of telomere-dependent anaphase bridges. Biochem Soc Trans. 38:1698–1703. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stewénius Y, Gorunova L, Jonson T, Larsson N, Höglund M, Mandahl N, Mertens F, Mitelman F and Gisselsson D: Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proc Natl Acad Sci USA. 102:5541–5546. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bailey SM and Murnane JP: Telomeres, chromosome instability and cancer. Nucleic Acids Res. 34:2408–2417. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mills KD, Ferguson DO and Alt FW: The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev. 194:77–95. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, et al: NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell. 23:48–62. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carter SL, Eklund AC, Kohane IS, Harris LN and Szallasi Z: A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 38:1043–1048. 2006. View Article : Google Scholar : PubMed/NCBI | |
Clairmont CS, Sarangi P, Ponnienselvan K, Galli LD, Csete I, Moreau L, Adelmant G, Chowdhury D, Marto JA and D'Andrea AD: TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat Cell Biol. 22:87–96. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sudakin V, Chan GK and Yen TJ: Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 154:925–936. 2001. View Article : Google Scholar : PubMed/NCBI | |
Overlack K, Bange T, Weissmann F, Faesen AC, Maffini S, Primorac I, Müller F, Peters JM and Musacchio A: BubR1 promotes Bub3-dependent APC/C inhibition during spindle assembly checkpoint signaling. Curr Biol. 27:2915–2927.e2917. 2017. View Article : Google Scholar : PubMed/NCBI | |
Burton JL and Solomon MJ: Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 21:655–667. 2007. View Article : Google Scholar : PubMed/NCBI | |
McGranahan N, Burrell RA, Endesfelder D, Novelli MR and Swanton C: Cancer chromosomal instability: Therapeutic and diagnostic challenges. EMBO Rep. 13:528–538. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lischetti T and Nilsson J: Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol. 2:e9704842015. View Article : Google Scholar : PubMed/NCBI | |
Sudo T, Nitta M, Saya H and Ueno NT: Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res. 64:2502–2508. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Chen S and Ao D: Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm. 2020.2:654–691. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Vlatkovic T, Li M, Zhan T, Veldwijk MR and Herskind C: Targeting the DNA damage response and DNA repair pathways to enhance radiosensitivity in colorectal cancer. Cancers (Basel). 14:48742022. View Article : Google Scholar : PubMed/NCBI | |
Mirza MR, Pignata S and Ledermann JA: Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol. 29:1366–1376. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schettini F, Giudici F, Bernocchi O, Sirico M, Corona SP, Giuliano M, Locci M, Paris I, Scambia G, De Placido S, et al: Poly (ADP-ribose) polymerase inhibitors in solid tumours: Systematic review and meta-analysis. Eur J Cancer. 149:134–152. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, Gelber RD, de Azambuja E, Fielding A, Balmaña J, et al: Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 384:2394–2405. 2021. View Article : Google Scholar : PubMed/NCBI | |
Carreira S, Porta N, Arce-Gallego S, Seed G, Llop-Guevara A, Bianchini D, Rescigno P, Paschalis A, Bertan C, Baker C, et al: Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial. Cancer Discov. 11:2812–2827. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mateo J, Porta N, Bianchini D, McGovern U, Elliott T, Jones R, Syndikus I, Ralph C, Jain S, Varughese M, et al: Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21:162–174. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maughan BL and Antonarakis ES: Olaparib and rucaparib for the treatment of DNA repair-deficient metastatic castration-resistant prostate cancer. Expert Opin Pharmacother. 22:1625–1632. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cleary JM, Wolpin BM, Dougan SK, Raghavan S, Singh H, Huffman B, Sethi NS, Nowak JA, Shapiro GI, Aguirre AJ and D'Andrea AD: Opportunities for utilization of DNA repair inhibitors in homologous recombination repair-deficient and proficient pancreatic adenocarcinoma. Clin Cancer Res. 27:6622–6637. 2021. View Article : Google Scholar : PubMed/NCBI | |
van Waardenburg R and Yang ES: Targeting DNA repair pathways to overcome cancer drug resistance. Cancer Drug Resist. 4:837–841. 2021.PubMed/NCBI | |
Ghosh S, Mazumdar T, Xu W, Powell RT, Stephan C, Shen L, Shah PA, Pickering CR, Myers JN, Wang J, et al: Combined TRIP13 and aurora kinase inhibition induces apoptosis in human papillomavirus–driven cancers. Clin Cancer Res. 28:4479–4493. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chang H and Zou Z: Targeting autophagy to overcome drug resistance: Further developments. J Hematol Oncol. 13:1592020. View Article : Google Scholar : PubMed/NCBI | |
Ahmadi-Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S and Mansouri K: Autophagy: A challengeable paradox in cancer treatment. Cancer Med. 12:11542–11569. 2023. View Article : Google Scholar : PubMed/NCBI | |
Salimi-Jeda A, Ghabeshi S, Pour ZGM, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M and Abdoli A: Autophagy modulation and cancer combination therapy: A smart approach in cancer therapy. Cancer Treat Res Commun. 30:1005122022. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Kroemer G: Biological functions of autophagy genes: A disease perspective. Cell. 176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L and Green DR: Autophagy-independent functions of the autophagy machinery. Cell. 177:1682–1699. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu M and Zhang P: EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett. 469:207–216. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI | |
Amaravadi RK, Kimmelman AC and Debnath J: Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Li M, Zhang X, Rong X and Xu H: TRIP13 overexpression promotes gefitinib resistance in non-small cell lung cancer via regulating autophagy and phosphorylation of the EGFR signaling pathway. Oncol Rep. 49:842023. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017. View Article : Google Scholar : PubMed/NCBI | |
Agarwal S, Afaq F, Bajpai P, Kim HG, Elkholy A, Behring M, Chandrashekar DS, Diffalha SA, Khushman M, Sugandha SP, et al: DCZ0415, a small-molecule inhibitor targeting TRIP13, inhibits EMT and metastasis via inactivation of the FGFR4/STAT3 axis and the Wnt/β-catenin pathway in colorectal cancer. Mol Oncol. 16:1728–1745. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qie S and Diehl JA: Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 94:1313–1326. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lindahl T and Barnes DE: Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65:127–133. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sarangi P, Clairmont CS, Galli LD, Moreau LA and D'Andrea AD: p31(comet) promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proc Natl Acad Sci USA. 117:26795–26803. 2020. View Article : Google Scholar : PubMed/NCBI | |
Corbett KD: p31comet and TRIP13 recycle Rev7 to regulate DNA repair. Proc Natl Acad Sci USA. 117:27761–27763. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, Flaifel A, Novak JS, Gulati A, Buss E, et al: Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival. Cancer Discov. 9:230–247. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Du J, Parsons SH, Merzoug FF, Webster Y, Iversen PW, Chio LC, Van Horn RD, Lin X, Blosser W, et al: Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 9:248–263. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schvartzman JM, Duijf PH, Sotillo R, Coker C and Benezra R: Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell. 19:701–714. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Liu J, Chen T, Sun R, Liu Z, Qiu B, Xu Y and Zhang Z: HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. J Exp Clin Cancer Res. 40:862021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhou J, Xue D, Li Z, Liu Y and Dong L: MiR-515-5p acts as a tumor suppressor via targeting TRIP13 in prostate cancer. Int J Biol Macromol. 129:227–232. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Chen D, Qin Y, Qiu C, Zhou Y, Dai M, Li L, Sun Q and Jiang Y: TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Discov. 8:352022. View Article : Google Scholar : PubMed/NCBI | |
Zhu MX, Wei CY, Zhang PF, Gao DM, Chen J, Zhao Y, Dong SS and Liu BB: Elevated TRIP13 drives the AKT/mTOR pathway to induce the progression of hepatocellular carcinoma via interacting with ACTN4. J Exp Clin Cancer Res. 38:4092019. View Article : Google Scholar : PubMed/NCBI | |
Arun G, Diermeier SD and Spector DL: Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 24:257–277. 2018. View Article : Google Scholar : PubMed/NCBI |