1
|
Carceles-Cordon M, Kelly WK, Gomella L,
Knudsen KE, Rodriguez-Bravo V and Domingo-Domenech J: Cellular
rewiring in lethal prostate cancer: The architect of drug
resistance. Nat Rev Urol. 17:292–307. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Attard G, Parker C, Eeles RA, Schröder F,
Tomlins SA, Tannock I, Drake CG and de Bono JS: Prostate cancer.
Lancet. 387:70–82. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Litwin MS and Tan HJ: The diagnosis and
treatment of prostate cancer: A review. JAMA. 317:2532–2542. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Sandhu S, Moore CM, Chiong E, Beltran H,
Bristow RG and Williams SG: Prostate cancer. Lancet. 398:1075–1090.
2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yap TA, Smith AD, Ferraldeschi R,
Al-Lazikani B, Workman P and de Bono JS: Drug discovery in advanced
prostate cancer: Translating biology into therapy. Nat Rev Drug
Discov. 15:699–718. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ku SY, Gleave ME and Beltran H: Towards
precision oncology in advanced prostate cancer. Nat Rev Urol.
16:645–654. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Matsuda S and Koyasu S: Mechanisms of
action of cyclosporine. Immunopharmacology. 47:119–125. 2000.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Tedesco D and Haragsim L: Cyclosporine: A
review. J Transplant. 2012:2303862012.PubMed/NCBI
|
9
|
Periyasamy S, Hinds T Jr, Shemshedini L,
Shou W and Sanchez ER: FKBP51 and Cyp40 are positive regulators of
androgen-dependent prostate cancer cell growth and the targets of
FK506 and cyclosporin A. Oncogene. 29:1691–1701. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee CR, Chun JN, Kim SY, Park S, Kim SH,
Park EJ, Kim IS, Cho NH, Kim IG, So I, et al: Cyclosporin A
suppresses prostate cancer cell growth through CaMKKβ/AMPK-mediated
inhibition of mTORC1 signaling. Biochem Pharmacol. 84:425–431.
2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Krishnamurthy A, Dasari A, Noonan AM,
Mehnert JM, Lockhart AC, Leong S, Capasso A, Stein MN, Sanoff HK,
Lee JJ, et al: Phase Ib results of the rational combination of
selumetinib and cyclosporin A in advanced solid tumors with an
expansion cohort in metastatic colorectal cancer. Cancer Res.
78:5398–5407. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Flores C, Fouquet G, Moura IC, Maciel TT
and Hermine O: Lessons to learn from low-dose cyclosporin-A: A new
approach for unexpected clinical applications. Front Immunol.
10:5882019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Isshiki Y, Tanaka H, Suzuki Y and Yoshida
Y: Cyclosporine is a potential curative treatment option for
advanced thymoma. Exp Hematol Oncol. 6:132017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li J, Ran C, Li E, Gordon F, Comstock G,
Siddiqui H, Cleghorn W, Chen HZ, Kornacker K, Liu CG, et al:
Synergistic function of E2F7 and E2F8 is essential for cell
survival and embryonic development. Dev Cell. 14:62–75. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Park SA, Platt J, Lee JW, López-Giráldez
F, Herbst RS and Koo JS: E2F8 as a novel therapeutic target for
lung cancer. J Natl Cancer Inst. 107:djv1512015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Deng Q, Wang Q, Zong WY, Zheng DL, Wen YX,
Wang KS, Teng XM, Zhang X, Huang J and Han ZG: E2F8 contributes to
human hepatocellular carcinoma via regulating cell proliferation.
Cancer Res. 70:782–791. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee DY, Chun JN, Cho M, So I and Jeon JH:
Emerging role of E2F8 in human cancer. Biochim Biophys Acta Mol
Basis Dis. 1869:1667452023. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim SH, Lee S, Piccolo SR, Allen-Brady K,
Park EJ, Chun JN, Kim TW, Cho NH, Kim IG, So I and Jeon JH: Menthol
induces cell-cycle arrest in PC-3 cells by down-regulating G2/M
genes, including polo-like kinase 1. Biochem Biophys Res Commun.
422:436–441. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chun JN, Kim SY, Park EJ, Kwon EJ, Bae DJ,
Kim IS, Kim HK, Park JK, Lee SW, Park HH, et al: Schisandrin B
suppresses TGFβ1-induced stress fiber formation by inhibiting
myosin light chain phosphorylation. J Ethnopharmacol. 152:364–371.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lee S, Chun JN, Kim SH, So I and Jeon JH:
Icilin inhibits E2F1-mediated cell cycle regulatory programs in
prostate cancer. Biochem Biophys Res Commun. 441:1005–1010. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee S, Park YR, Kim SH, Park EJ, Kang MJ,
So I, Chun JN and Jeon JH: Geraniol suppresses prostate cancer
growth through down-regulation of E2F8. Cancer Med. 5:2899–2908.
2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chun JN, Park S, Lee S, Kim JK, Park EJ,
Kang M, Kim HK, Park JK, So I and Jeon JH: Schisandrol B and
schisandrin B inhibit TGFβ1-mediated NF-κB activation via a
Smad-independent mechanism. Oncotarget. 9:3121–3130. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Johnson WE, Li C and Rabinovic A:
Adjusting batch effects in microarray expression data using
empirical Bayes methods. Biostatistics. 8:118–127. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee S, Piccolo SR and Allen-Brady K:
Robust meta-analysis shows that glioma transcriptional subtyping
complements traditional approaches. Cell Oncol (Dordr). 37:317–329.
2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Floratos A, Smith K, Ji Z, Watkinson J and
Califano A: geWorkbench: An open source platform for integrative
genomics. Bioinformatics. 26:1779–1780. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Margolin AA, Nemenman I, Basso K, Wiggins
C, Stolovitzky G, Dalla Favera R and Califano A: ARACNE: An
algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context. BMC Bioinformatics. 7 (Suppl 1):S72006.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Tusher VG, Tibshirani R and Chu G:
Significance analysis of microarrays applied to the ionizing
radiation response. Proc Natl Acad Sci USA. 98:5116–5121. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kig C, Beullens M, Beke L, Van Eynde A,
Linders JT, Brehmer D and Bollen M: Maternal embryonic leucine
zipper kinase (MELK) reduces replication stress in glioblastoma
cells. J Biol Chem. 292:127862017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kim SH, Kim SY, Park EJ, Kim J, Park HH,
So I, Kim SJ and Jeon JH: Icilin induces G1 arrest through
activating JNK and p38 kinase in a TRPM8-independent manner.
Biochem Biophys Res Commun. 406:30–35. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kuang J, Yan X, Genders AJ, Granata C and
Bishop DJ: An overview of technical considerations when using
quantitative real-time PCR analysis of gene expression in human
exercise research. PLoS One. 13:e01964382018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang J, Wang Y, Shen F, Xu Y, Zhang Y, Zou
X, Zhou J and Chen Y: Maternal embryonic leucine zipper kinase: A
novel biomarker and a potential therapeutic target of cervical
cancer. Cancer Med. 7:5665–5678. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ramsey J, Glymour M, Sanchez-Romero R and
Glymour C: A million variables and more: the fast greedy
equivalence search algorithm for learning high-dimensional
graphical causal models, with an application to functional magnetic
resonance images. Int J Data Sci Anal. 3:121–129. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Goldman MJ, Craft B, Hastie M, Repečka K,
McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al:
Visualizing and interpreting cancer genomics data via the Xena
platform. Nat Biotechnol. 38:675–678. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Balwierz PJ, Pachkov M, Arnold P, Gruber
AJ, Zavolan M and van Nimwegen E: ISMARA: Automated modeling of
genomic signals as a democracy of regulatory motifs. Genome Res.
24:869–884. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Park YR, Chun JN, So I, Kim HJ, Baek S,
Jeon JH and Shin SY: Data-driven analysis of TRP channels in
cancer: Linking variation in gene expression to clinical
significance. Cancer Genomics Proteomics. 13:83–90. 2016.PubMed/NCBI
|
37
|
Park S, Lim JM, Chun JN, Lee S, Kim TM,
Kim DW, Kim SY, Bae DJ, Bae SM, So I, et al: Altered expression of
fucosylation pathway genes is associated with poor prognosis and
tumor metastasis in non-small cell lung cancer. Int J Oncol.
56:559–567. 2020.PubMed/NCBI
|
38
|
Yu J, Smith VA, Wang PP, Hartemink AJ and
Jarvis ED: Advances to Bayesian network inference for generating
causal networks from observational biological data. Bioinformatics.
20:3594–3603. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang YX and Huang H: Review on statistical
methods for gene network reconstruction using expression data. J
Theor Biol. 362:53–61. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chun JN, Cho M, Park S, So I and Jeon JH:
The conflicting role of E2F1 in prostate cancer: A matter of cell
context or interpretational flexibility? Biochim Biophys Acta Rev
Cancer. 1873:1883362020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Taplin ME, Bubley GJ, Shuster TD, Frantz
ME, Spooner AE, Ogata GK, Keer HN and Balk SP: Mutation of the
androgen-receptor gene in metastatic androgen-independent prostate
cancer. N Engl J Med. 332:1393–1398. 1995. View Article : Google Scholar : PubMed/NCBI
|
42
|
Grasso CS, Wu YM, Robinson DR, Cao X,
Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC,
et al: The mutational landscape of lethal castration-resistant
prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shafi AA, Yen AE and Weigel NL: Androgen
receptors in hormone-dependent and castration-resistant prostate
cancer. Pharmacol Ther. 140:223–238. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Robinson D, Van Allen EM, Wu YM, Schultz
N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC,
Attard G, et al: Integrative clinical genomics of advanced prostate
cancer. Cell. 161:1215–1228. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kuner R, Fälth M, Pressinotti NC, Brase
JC, Puig SB, Metzger J, Gade S, Schäfer G, Bartsch G, Steiner E, et
al: The maternal embryonic leucine zipper kinase (MELK) is
upregulated in high-grade prostate cancer. J Mol Med (Berl).
91:237–248. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Jurmeister S, Ramos-Montoya A, Sandi C,
Pértega-Gomes N, Wadhwa K, Lamb AD, Dunning MJ, Attig J, Carroll
JS, Fryer LG, et al: Identification of potential therapeutic
targets in prostate cancer through a cross-species approach. EMBO
Mol Med. 10:e82742018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sharma NL, Massie CE, Ramos-Montoya A,
Zecchini V, Scott HE, Lamb AD, MacArthur S, Stark R, Warren AY,
Mills IG and Neal DE: The androgen receptor induces a distinct
transcriptional program in castration-resistant prostate cancer in
man. Cancer Cell. 23:35–47. 2013. View Article : Google Scholar : PubMed/NCBI
|