Copy number variations in esophageal squamous cell carcinoma: Emerging cancer drivers and biomarkers (Review)
- Authors:
- Jing Ren
- Pengzhou Kong
- Yanqiang Wang
- Dawei Guo
- Ling Zhang
-
Affiliations: School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China, Key Laboratory of Cellular Physiology of The Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China, School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China - Published online on: November 16, 2023 https://doi.org/10.3892/or.2023.8667
- Article Number: 8
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P and Cunningham D: Oesophageal cancer. Nat Rev Dis Primers. 3:170482017. View Article : Google Scholar : PubMed/NCBI | |
Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang J, Tan W, Ling Z, Xi R, Shao M, Chen M, Luo Y, Zhao Y, Liu Y, Huang X, et al: Genomic analysis of oesophageal squamous-cell carcinoma identifies alcohol drinking-related mutation signature and genomic alterations. Nat Commun. 8:152902017. View Article : Google Scholar : PubMed/NCBI | |
Chen XX, Zhong Q, Liu Y, Yan SM, Chen ZH, Jin SZ, Xia TL, Li RY, Zhou AJ, Su Z, et al: Genomic comparison of esophageal squamous cell carcinoma and its precursor lesions by multi-region whole-exome sequencing. Nat Commun. 8:5242017. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 509:91–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhou Y, Cheng C, Cui H, Cheng L, Kong P, Wang J, Li Y, Chen W, Song B, et al: Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am J Hum Genet. 96:597–611. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Zhou Y, Li H, Xiong T, Li S, Bi Y, Kong P, Wang F, Cui H, Li Y, et al: Whole-genome sequencing reveals diverse models of structural variations in esophageal squamous cell carcinoma. Am J Hum Genet. 98:256–274. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Cui H, Zhang L, Jia Z, Song B, Wang F, Li Y, Liu J, Kong P, Shi R, et al: Genomic analyses reveal FAM84B and the NOTCH pathway are associated with the progression of esophageal squamous cell carcinoma. Gigascience. 5:12016. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Chen H, Xi R, Cui H, Zhao Y, Xu E, Yan T, Lu X, Huang F, Kong P, et al: Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res. 30:902–913. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lian Y, Niu X, Cai H, Yang X, Ma H, Ma S, Zhang Y and Chen Y: Clinicopathological significance of c-MYC in esophageal squamous cell carcinoma. Tumour Biol. 39:10104283177158042017. View Article : Google Scholar : PubMed/NCBI | |
Yan T, Cui H, Zhou Y, Yang B, Kong P, Zhang Y, Liu Y, Wang B, Cheng Y, Li J, et al: Multi-region sequencing unveils novel actionable targets and spatial heterogeneity in esophageal squamous cell carcinoma. Nat Commun. 10:16702019. View Article : Google Scholar : PubMed/NCBI | |
Lin DC, Wang MR and Koeffler HP: Targeting genetic lesions in esophageal cancer. Cell Cycle. 13:2013–2014. 2014. View Article : Google Scholar : PubMed/NCBI | |
Almal SH and Padh H: Implications of gene copy-number variation in health and diseases. J Hum Genet. 57:6–13. 2012. View Article : Google Scholar : PubMed/NCBI | |
Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, et al: Origins and functional impact of copy number variation in the human genome. Nature. 464:704–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, et al: Global variation in copy number in the human genome. Nature. 444:444–454. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Gu W, Hurles ME and Lupski JR: Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 10:451–481. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lupski JR and Stankiewicz P: Genomic disorders: Molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet. 1:e492005. View Article : Google Scholar : PubMed/NCBI | |
Lieber MR, Ma Y, Pannicke U and Schwarz K: Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 4:712–720. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lieber MR: The mechanism of human nonhomologous DNA end joining. J Biol Chem. 283:1–5. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee JA, Carvalho CMB and Lupski JR: A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell. 131:1235–1247. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kazazian HH Jr and Moran JV: The impact of L1 retrotransposons on the human genome. Nat Genet. 19:19–24. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Lu Z, Unruh AK, Ivan C, Baggerly KA, Calin GA, Li Z, Bast RC Jr and Le XF: Clinically relevant microRNAs in ovarian cancer. Mol Cancer Res. 13:393–401. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zucman-Rossi J, Villanueva A, Nault JC and Llovet JM: Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 149:1226–1239.e4. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liang L, Fang JY and Xu J: Somatic gene copy number alterations in colorectal cancer: New quest for cancer drivers and biomarkers. Oncogene. 35:2011–2019. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi W, Ochoa A, McConkey DJ, Aine M, Höglund M, Kim WY, Real FX, Kiltie AE, Milsom I, Dyrskjøt L and Lerner SP: Genetic alterations in the molecular subtypes of bladder cancer: Illustration in the cancer genome atlas dataset. Eur Urol. 72:354–365. 2017. View Article : Google Scholar : PubMed/NCBI | |
Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, Liu Y, Fan H, Shen H, Ravikumar V, et al: A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell. 33:690–705.e9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kleinjan DA and van Heyningen V: Long-range control of gene expression: Emerging mechanisms and disruption in disease. Am J Hum Genet. 76:8–32. 2005. View Article : Google Scholar : PubMed/NCBI | |
Girirajan S, Campbell CD and Eichler EE: Human copy number variation and complex genetic disease. Annu Rev Genet. 45:203–226. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meyerson M, Gabriel S and Getz G: Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 11:685–696. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alkan C, Coe BP and Eichler EE: Genome structural variation discovery and genotyping. Nat Rev Genet. 12:363–376. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J and Turner DJ: Target-enrichment strategies for next-generation sequencing. Nat Methods. 7:111–118. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ari Å and Arikan M: Next-generation sequencing: Advantages, disadvantages, and future. In: Plant omics: Trends and applications. Springer; Berlin: pp. 109–135. 2016 | |
Ogawa A, Celikkol-Aydin S, Gaylarde C, Baptista-Neto JA and Beech I: Microbiomes of biofilms on decorative siliceous stone: Drawbacks and advantages of next generation sequencing. Curr Microbiol. 74:848–853. 2017. View Article : Google Scholar : PubMed/NCBI | |
Berná L, Rodriguez M, Chiribao ML, Parodi-Talice A, Pita S, Rijo G, Alvarez-Valin F and Robello C: Expanding an expanded genome: Long-read sequencing of Trypanosoma cruzi. Microb Genom. 4:e0001772018.PubMed/NCBI | |
Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, et al: Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 46:467–473. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shi ZZ, Shang L, Jiang YY, Hao JJ, Zhang Y, Zhang TT, Lin DC, Liu SG, Wang BS, Gong T, et al: Consistent and differential genetic aberrations between esophageal dysplasia and squamous cell carcinoma detected by array comparative genomic hybridization. Clin Cancer Res. 19:5867–5878. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qin HD, Liao XY, Chen YB, Huang SY, Xue WQ, Li FF, Ge XS, Liu DQ, Cai Q, Long J, et al: Genomic characterization of esophageal squamous cell carcinoma reveals critical genes underlying tumorigenesis and poor prognosis. Am J Hum Genet. 98:709–727. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin DC, Wang MR and Koeffler HP: Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients. Gastroenterology. 154:374–389. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Dai Q, Yang R, Duan Y, Zhao Q, Haybaeck J and Yang Z: A review: PI3K/AKT/mTOR signaling pathway and its regulated eukaryotic translation initiation factors may be a potential therapeutic target in esophageal squamous cell carcinoma. Front Oncol. 12:8179162022. View Article : Google Scholar : PubMed/NCBI | |
Zang W, Wang T, Wang Y, Chen X, Du Y, Sun Q, Li M, Dong Z and Zhao G: Knockdown of long non-coding RNA TP73-AS1 inhibits cell proliferation and induces apoptosis in esophageal squamous cell carcinoma. Oncotarget. 7:19960–19974. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu ZX, Wu QN, Lu YX, Wong CW, Miao L, Wang Y, Wang Z, Jin Y, He MM, et al: Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun. 11:15072020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang M, Ying S, Zhang C, Lin R, Zheng J, Zhang G, Tian D, Guo Y, Du C, et al: Genetic alterations in esophageal tissues from squamous dysplasia to carcinoma. Gastroenterology. 153:166–177. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Paiboonrungruan C, Yan T, Williams KP, Major MB and Chen XL: Targeted therapy of esophageal squamous cell carcinoma: The NRF2 signaling pathway as target. Ann N Y Acad Sci. 1434:164–172. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Yang Y, Xia S, Rao B, Zhang J and Wang J: Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus. 27:685–692. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kawasaki Y, Okumura H, Uchikado Y, Kita Y, Sasaki K, Owaki T, Ishigami S and Natsugoe S: Nrf2 is useful for predicting the effect of chemoradiation therapy on esophageal squamous cell carcinoma. Ann Surg Oncol. 21:2347–2352. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H, Aoyagi K, Yoshimatsu Y, Tachimori Y, Kushima R, Kiyono T and Yamamoto M: NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia. 13:864–873. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bollong MJ, Yun H, Sherwood L, Woods AK, Lairson LL and Schultz PG: A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chem Biol. 10:2193–2198. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S, et al: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 11:3214–3225. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhu CL, Nie CJ, Li JC, Zeng TT, Zhou J, Chen J, Chen K, Fu L, Liu H, et al: Investigation of tumor suppressing function of CACNA2D3 in esophageal squamous cell carcinoma. PLoS One. 8:e600272013. View Article : Google Scholar : PubMed/NCBI | |
Nie C, Qin X, Li X, Tian B, Zhao Y, Jin Y, Li Y, Wang Q, Zeng D, Hong A and Chen X: CACNA2D3 enhances the chemosensitivity of esophageal squamous cell carcinoma to cisplatin via inducing Ca2+-mediated apoptosis and suppressing PI3K/Akt pathways. Front Oncol. 9:1852019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Xu J, Qiu G, Ying J, Du Z, Xiang T, Wong KY, Srivastava G, Zhu XF, Mok TS, et al: Epigenomic characterization of a p53-regulated 3p22.2 tumor suppressor that inhibits STAT3 phosphorylation via protein docking and is frequently methylated in esophageal and other carcinomas. Theranostics. 8:61–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen L, Nie CJ, Zeng TT, Liu H, Mao X, Qin Y, Zhu YH, Fu L and Guan XY: Downregulation of RBMS3 is associated with poor prognosis in esophageal squamous cell carcinoma. Cancer Res. 71:6106–6115. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Jiang L, Zhu C, Liu R, Wu Y, Yan Q, Liu M, Jia Y, Chen J, Qin Y, et al: Loss of cell adhesion molecule L1 like promotes tumor growth and metastasis in esophageal squamous cell carcinoma. Oncogene. 38:3119–3133. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sugita M, Tanaka N, Davidson S, Sekiya S, Varella-Garcia M, West J, Drabkin HA and Gemmill RM: Molecular definition of a small amplification domain within 3q26 in tumors of cervix, ovary, and lung. Cancer Genet Cytogenet. 117:9–18. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yang YL, Chu JY, Luo ML, Wu YP, Zhang Y, Feng YB, Shi ZZ, Xu X, Han YL, Cai Y, et al: Amplification of PRKCI, located in 3q26, is associated with lymph node metastasis in esophageal squamous cell carcinoma. Genes Chromosomes Cancer. 47:127–136. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Liu X, Hu L, Tao H, Guan X, Zhang K, Bai Y and Yang K: Copy number loss of variation_91720 in PIK3CA predicts risk of esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 8:14479–14485. 2015.PubMed/NCBI | |
Wang P, Shan L, Xue L, Zheng B and Lu N: Genome wide copy number analyses of superficial esophageal squamous cell carcinoma with and without metastasis. Oncotarget. 8:5069–5080. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li B, Cheung PY, Wang X, Tsao SW, Ling MT, Wong YC and Cheung AL: Id-1 activation of PI3K/Akt/NFkappaB signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis. 28:2313–2320. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gen Y, Yasui K, Zen Y, Zen K, Dohi O, Endo M, Tsuji K, Wakabayashi N, Itoh Y, Naito Y, et al: SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma. Cancer Genet Cytogenet. 202:82–93. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gen Y, Yasui K, Nishikawa T and Yoshikawa T: SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway. Cancer Sci. 104:810–816. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ge X, Wang H, Huang J, Song Q, Xu C, Jiang Z, Su J, Wang H, Tan L, et al: SOX2 amplification and chromosome 3 gain significantly impact prognosis in esophageal squamous cell carcinoma. Ann Transl Med. 9:3212021. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Teng C, Huang W, Peng J and Wang C: SOX2 promotes the epithelial to mesenchymal transition of esophageal squamous cells by modulating slug expression through the activation of STAT3/HIF-α Signaling. Int J Mol Sci. 16:21643–21657. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Liu S, Gan L, Wang J, Hu B, Xu H, Tong R, Yang H, Cristina I, Xue J, et al: FGFR1 signaling potentiates tumor growth and predicts poor prognosis in esophageal squamous cell carcinoma patients. Cancer Biol Ther. 19:76–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guagnano V, Kauffmann A, Wöhrle S, Stamm C, Ito M, Barys L, Pornon A, Yao Y, Li F, Zhang Y, et al: FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2:1118–1133. 2012. View Article : Google Scholar : PubMed/NCBI | |
von Loga K, Kohlhaussen J, Burkhardt L, Simon R, Steurer S, Burdak-Rothkamm S, Jacobsen F, Sauter G and Krech T: FGFR1 amplification is often homogeneous and strongly linked to the squamous cell carcinoma subtype in esophageal carcinoma. PLoS One. 10:e01418672015. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Quan J, Xiao H, Luo J, Zhang Q, Pi G, Ye Y, He R, Liu Y, Su X, et al: FGFR inhibitor AZD4547 can enhance sensitivity of esophageal squamous cell carcinoma cells with epithelial-mesenchymal transition to gefitinib. Oncol Rep. 39:2270–2278. 2018.PubMed/NCBI | |
Huang J, Jiang D, Zhu T, Wang Y, Wang H, Wang Q, Tan L, Zhu H, Yao J and Hou Y: Prognostic significance of c-MYC amplification in esophageal squamous cell carcinoma. Ann Thorac Surg. 107:436–443. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang HF, Wu C, Alshareef A, Gupta N, Zhao Q, Xu XE, Jiao JW, Li EM, Xu LY and Lai R: The PI3K/AKT/c-MYC axis promotes the acquisition of cancer stem-like features in esophageal squamous cell carcinoma. Stem Cells. 34:2040–2051. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhang L, Guo B, Deng J, Wu S, Li F, Wang Y, Lu J and Zhou Y: Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFκB/c-Myc signaling in female esophageal carcinoma. Mol Cancer. 18:222019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Cheng J, Xie D, Ding X, Hou H, Chen X, Er P, Zhang F, Zhao L, Yuan Z, et al: NS1-binding protein radiosensitizes esophageal squamous cell carcinoma by transcriptionally suppressing c-Myc. Cancer Commun (Lond). 38:332018.PubMed/NCBI | |
Yang J, Kong P, Yang J, Jia Z, Hu X, Wang Z, Cui H, Bi Y, Qian Y, Li H, et al: High TSTA3 expression as a candidate biomarker for poor prognosis of patients with ESCC. Technol Cancer Res Treat. 17:5330338187814052018. View Article : Google Scholar | |
Zhang L, Gao Y, Zhang X, Guo M, Yang J, Cui H, Kong P, Niu X, Bi Y, Xu J, et al: TSTA3 facilitates esophageal squamous cell carcinoma progression through regulating fucosylation of LAMP2 and ERBB2. Theranostics. 10:11339–11358. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Yan C, Gao Y, Du J, Zhu X, Yu F, Huang T, Dai J, Ma H, Jiang Y, et al: Genetic variants at 9p21.3 are associated with risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Sci. 108:250–255. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen TY, Mei LL, Qiu YT and Shi ZZ: Identification of candidate target genes of genomic aberrations in esophageal squamous cell carcinoma. Oncol Lett. 12:2956–2961. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Bai J, Abliz A, Liu Y, Gong K, Li J, Shi W, Pan Y, Liu F, Lai S, et al: An old story retold: Loss of G1 control defines a distinct genomic subtype of esophageal squamous cell carcinoma. Genomics Proteomics Bioinformatics. 13:258–270. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su D, Zhang D, Jin J, Ying L, Han M, Chen K, Li B, Wu J, Xie Z, Zhang F, et al: Identification of predictors of drug sensitivity using patient-derived models of esophageal squamous cell carcinoma. Nat Commun. 10:50762019. View Article : Google Scholar : PubMed/NCBI | |
Clark ES, Brown B, Whigham AS, Kochaishvili A, Yarbrough WG and Weaver AM: Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene in the 11q13 amplicon. Oncogene. 28:431–444. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kwek SS, Roy R, Zhou H, Climent J, Martinez-Climent JA, Fridlyand J and Albertson DG: Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene. 28:1892–1903. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Song Q, Wang H, Wang H, Xu C, Wang X, Jiang Z, Wang Y, Xu Y, Su J, et al: Poor prognostic impact of FGF4 amplification in patients with esophageal squamous cell carcinoma. Hum Pathol. 80:210–218. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Cao J, Wu W, Zhu Q, Tang Y, Zhu C, Dai J, Li Z, Wang J, Xue L, et al: Genome-wide copy number variation analysis identified ANO1 as a novel oncogene and prognostic biomarker in esophageal squamous cell cancer. Carcinogenesis. 40:1198–1208. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shang L, Hao JJ, Zhao XK, He JZ, Shi ZZ, Liu HJ, Wu LF, Jiang YY, Shi F, Yang H, et al: ANO1 protein as a potential biomarker for esophageal cancer prognosis and precancerous lesion development prediction. Oncotarget. 7:24374–24382. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Hong R, Li L, Wang Y, Du P, Ou Y, Zhao Z, Liu X, Xiao W, Dong D, et al: The chromosome 11q13.3 amplification associated lymph node metastasis is driven by miR-548k through modulating tumor microenvironment. Mol Cancer. 17:1252018. View Article : Google Scholar : PubMed/NCBI | |
Dong G, Mao Q, Yu D, Zhang Y, Qiu M, Dong G, Chen Q, Xia W, Wang J, Xu L and Jiang F: Integrative analysis of copy number and transcriptional expression profiles in esophageal cancer to identify a novel driver gene for therapy. Sci Rep. 7:420602017. View Article : Google Scholar : PubMed/NCBI | |
Sawada R, Maehara R, Oshikiri T, Nakamura T, Itoh T, Kodama Y, Kakeji Y and Zen Y: MDM2 copy number increase: A poor prognostic, molecular event in esophageal squamous cell carcinoma. Hum Pathol. 89:1–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiao FK, Guo S, Yang F, Zhao LS and Wang LD: MDM2 and its functional polymorphism SNP309 contribute to the development of esophageal carcinoma. J Gene Med. 21:e30862019. View Article : Google Scholar : PubMed/NCBI | |
He T, Guo J, Song H, Zhu H, Di X, Min H, Wang Y, Chen G, Dai W, Ma J, et al: Nutlin-3, an antagonist of MDM2, enhances the radiosensitivity of esophageal squamous cancer with wild-type p53. Pathol Oncol Res. 24:75–81. 2018. View Article : Google Scholar : PubMed/NCBI | |
Okamoto H, Fujishima F, Kamei T, Nakamura Y, Ozawa Y, Miyata G, Nakano T, Katsura K, Abe S, Taniyama Y, et al: Murine double minute 2 predicts response of advanced esophageal squamous cell carcinoma to definitive chemoradiotherapy. BMC Cancer. 15:2082015. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Shi N, Lu H, Zhang J, Ma Y, Qiao Y, Mao Y, Jia K, Han L, Liu F, et al: ABCC4 copy number variation is associated with susceptibility to esophageal squamous cell carcinoma. Carcinogenesis. 35:1941–1950. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yasui K, Imoto I, Fukuda Y, Pimkhaokham A, Yang ZQ, Naruto T, Shimada Y, Nakamura Y and Inazawa J: Identification of target genes within an amplicon at 14q12-q13 in esophageal squamous cell carcinoma. Genes Chromosomes Cancer. 32:112–118. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sano M, Aoyagi K, Takahashi H, Kawamura T, Mabuchi T, Igaki H, Tachimori Y, Kato H, Ochiai A, Honda H, et al: Forkhead box A1 transcriptional pathway in KRT7-expressing esophageal squamous cell carcinomas with extensive lymph node metastasis. Int J Oncol. 36:321–330. 2010.PubMed/NCBI | |
Xu Y, Wang W, Li L, Liu J, Wu X, Yu J, Wang H, Cui W and Zhang R: FOXA1 and CK7 expression in esophageal squamous cell carcinoma and its prognostic significance. Neoplasma. 65:469–476. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bi Y, Guo S, Xu X, Kong P, Cui H, Yan T, Ma Y, Cheng Y, Chen Y, Liu X, et al: Decreased ZNF750 promotes angiogenesis in a paracrine manner via activating DANCR/miR-4707-3p/FOXC2 axis in esophageal squamous cell carcinoma. Cell Death Dis. 11:2962020. View Article : Google Scholar : PubMed/NCBI | |
Kong P, Xu E, Bi Y, Xu X, Liu X, Song B, Zhang L, Cheng C, Yan T, Qian Y, et al: Novel ESCC-related gene ZNF750 as potential prognostic biomarker and inhibits epithelial-mesenchymal transition through directly depressing SNAI1 promoter in ESCC. Theranostics. 10:1798–1813. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du Plessis L, Dietzsch E, Van Gele M, Van Roy N, Van Helden P, Parker MI, Mugwanya DK, De Groot M, Marx MP, Kotze MJ and Speleman F: Mapping of novel regions of DNA gain and loss by comparative genomic hybridization in esophageal carcinoma in the black and colored populations of South Africa. Cancer Res. 59:1877–1883. 1999.PubMed/NCBI | |
Gorringe KL, Ramakrishna M, Williams LH, Sridhar A, Boyle SE, Bearfoot JL, Li J, Anglesio MS and Campbell IG: Are there any more ovarian tumor suppressor genes? A new perspective using ultra high-resolution copy number and loss of heterozygosity analysis. Genes Chromosomes Cancer. 48:931–942. 2009. View Article : Google Scholar : PubMed/NCBI | |
Girard L, Zöchbauer-Müller S, Virmani AK, Gazdar AF and Minna JD: Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res. 60:4894–4906. 2000.PubMed/NCBI | |
Zhu YH, Fu L, Chen L, Qin YR, Liu H, Xie F, Zeng T, Dong SS, Li J, Li Y, et al: Downregulation of the novel tumor suppressor DIRAS1 predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Res. 73:2298–2309. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qin H, Li Y, Zhang H, Wang F, He H, Bai X and Li S: Prognostic implications and oncogenic roles of MYBL2 protein expression in esophageal squamous-cell carcinoma. Onco Targets Ther. 12:1917–1927. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chong CR and Jänne PA: The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 19:1389–1400. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ciardiello F and Tortora G: EGFR antagonists in cancer treatment. N Engl J Med. 358:1160–1174. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ruhstaller T, Thuss-Patience P, Hayoz S, Schacher S, Knorrenschild JR, Schnider A, Plasswilm L, Budach W, Eisterer W, Hawle H, et al: Neoadjuvant chemotherapy followed by chemoradiation and surgery with and without cetuximab in patients with resectable esophageal cancer: A randomized, open-label, phase III trial (SAKK 75/08). Ann Oncol. 29:1386–1393. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han X, Lu N, Pan Y and Xu J: Nimotuzumab combined with chemotherapy is a promising treatment for locally advanced and metastatic esophageal cancer. Med Sci Monit. 23:412–418. 2017. View Article : Google Scholar : PubMed/NCBI | |
Olsson AK, Dimberg A, Kreuger J and Claesson-Welsh L: VEGF receptor signalling-in control of vascular function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li J and Wang L: Efficacy and safety of apatinib treatment for advanced esophageal squamous cell carcinoma. Onco Targets Ther. 10:3965–3969. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Qi L, Wang X, Xu J, Liu Y, Mu L, Wang X, Bai L and Huang J: Phase II clinical trial using camrelizumab combined with apatinib and chemotherapy as the first-line treatment of advanced esophageal squamous cell carcinoma. Cancer Commun (Lond). 40:711–720. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Huang H, Xiong Y, Peng B, Zhou Z, Wang D and Yang X: Combined chemotherapy plus endostar with sequential stereotactic radiotherapy as salvage treatment for recurrent esophageal cancer with severe dyspnea: A case report and review of the literature. Oncol Lett. 8:291–294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Waks AG and Winer EP: Breast cancer treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hecht JR, Bang YJ, Qin SK, Chung HC, Xu JM, Park JO, Jeziorski K, Shparyk Y, Hoff PM, Sobrero A, et al: Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC-a randomized phase III trial. J Clin Oncol. 34:443–451. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hirata H, Niida A, Kakiuchi N, Uchi R, Sugimachi K, Masuda T, Saito T, Kageyama SI, Motomura Y, Ito S, et al: The evolving genomic landscape of esophageal squamous cell carcinoma under chemoradiotherapy. Cancer Res. 81:4926–4938. 2021. View Article : Google Scholar : PubMed/NCBI | |
Batista PJ and Chang HY: Long noncoding RNAs: Cellular address codes in development and disease. Cell. 152:1298–1307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Flynn RA and Chang HY: Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell. 14:752–761. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sugimura K, Miyata H, Tanaka K, Hamano R, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Mori M and Doki Y: Let-7 expression is a significant determinant of response to chemotherapy through the regulation of IL-6/STAT3 pathway in esophageal squamous cell carcinoma. Clin Cancer Res. 18:5144–5153. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Wang Y, Chen J, Wang Y, Zhao Y, Wang Y, Ma Y, Chen X, Liu W, Li Z, et al: Long noncoding RNA PCAT1, a novel serum-based biomarker, enhances cell growth by sponging miR-326 in oesophageal squamous cell carcinoma. Cell Death Dis. 10:5132019. View Article : Google Scholar : PubMed/NCBI | |
Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y and Yang K: Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 34:72015. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhou Y, Tu B, Bu Y, Liu A and Kong J: Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression. J Oral Pathol Med. 46:583–590. 2017. View Article : Google Scholar : PubMed/NCBI | |
Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M, et al: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 174:1293–1308.e36. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Yan L, Wang R, Li J, Yong J, Zhou X, Wei Y, Wu X, Wang X, Fan X, et al: Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat Cell Biol. 20:721–734. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Dai Z and Locasale JW: Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 10:37632019. View Article : Google Scholar : PubMed/NCBI | |
Zong C, Lu S, Chapman AR and Xie XS: Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 338:1622–1626. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH, Carbone L, Steemers FJ and Adey A: Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods. 14:302–308. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zhao M, Liang J, Hu Z, Huang Y, Li M, Pang Y, Lu T, Sui Q, Zhan C, et al: Dissecting the single-cell transcriptome network underlying esophagus non-malignant tissues and esophageal squamous cell carcinoma. EBioMedicine. 69:1034592021. View Article : Google Scholar : PubMed/NCBI |