1
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Berenguer CV, Pereira F, Camara JS and
Pereira JAM: Underlying features of prostate cancer-statistics,
risk factors, and emerging methods for its diagnosis. Curr Oncol.
30:2300–2321. 2023. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huang Y, Jiang X, Liang X and Jiang G:
Molecular and cellular mechanisms of castration resistant prostate
cancer. Oncol Lett. 15:6063–6076. 2018.PubMed/NCBI
|
4
|
Yanagisawa T, Kawada T, Rajwa P, Kimura T
and Shariat SF: Emerging systemic treatment for metastatic
castration-resistant prostate cancer: A review of recent randomized
controlled trials. Curr Opin Urol. 33:219–229. 2023. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cai M, Song XL, Li XA, Chen M, Guo J, Yang
DH, Chen Z and Zhao SC: Current therapy and drug resistance in
metastatic castration-resistant prostate cancer. Drug Resist Updat.
68:1009622023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jackson BC, Carpenter C, Nebert DW and
Vasiliou V: Update of human and mouse forkhead box (FOX) gene
families. Hum Genomics. 4:345–352. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Myatt SS and Lam EW: The emerging roles of
forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 7:847–859.
2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Herman L, Todeschini AL and Veitia RA:
Forkhead transcription factors in health and disease. Trends Genet.
37:460–475. 2021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Castaneda M, Hollander PD and Mani SA:
Forkhead box transcription factors: Double-Edged swords in cancer.
Cancer Res. 82:2057–2065. 2022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kalin TV, Ustiyan V and Kalinichenko VV:
Multiple faces of FoxM1 transcription factor: Lessons from
transgenic mouse models. Cell Cycle. 10:396–405. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gartel AL: FOXM1 in Cancer: Interactions
and vulnerabilities. Cancer Res. 77:3135–3139. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liao GB, Li XZ, Zeng S, Liu C, Yang SM,
Yang L, Hu CJ and Bai JY: Regulation of the master regulator FOXM1
in cancer. Cell Commun Signal. 16:572018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kalathil D, John S and Nair AS: FOXM1 and
cancer: Faulty cellular signaling derails homeostasis. Front Oncol.
10:6268362021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu C, Barger CJ and Karpf AR: FOXM1: A
multifunctional oncoprotein and emerging therapeutic target in
ovarian cancer. Cancers (Basel). 13:30652021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Katzenellenbogen BS, Guillen VS and
Katzenellenbogen JA: Targeting the oncogenic transcription factor
FOXM1 to improve outcomes in all subtypes of breast cancer. Breast
Cancer Res. 25:762023. View Article : Google Scholar : PubMed/NCBI
|
16
|
Khan MA, Khan P, Ahmad A, Fatima M and
Nasser MW: FOXM1: A small fox that makes more tracks for cancer
progression and metastasis. Semin Cancer Biol. 92:1–15. 2023.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kalin TV, Wang IC, Ackerson TJ, Major ML,
Detrisac CJ, Kalinichenko VV, Lyubimov A and Costa RH: Increased
levels of the FoxM1 transcription factor accelerate development and
progression of prostate carcinomas in both TRAMP and LADY
transgenic mice. Cancer Res. 66:1712–1720. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chandran UR, Ma C, Dhir R, Bisceglia M,
Lyons-Weiler M, Liang W, Michalopoulos G, Becich M and Monzon FA:
Gene expression profiles of prostate cancer reveal involvement of
multiple molecular pathways in the metastatic process. BMC Cancer.
7:642007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Y, Yao B, Wang Y, Zhang M, Fu S, Gao
H, Peng R, Zhang L and Tang J: Increased FoxM1 expression is a
target for metformin in the suppression of EMT in prostate cancer.
Int J Mol Med. 33:1514–1522. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ketola K, Munuganti RSN, Davies A, Nip KM,
Bishop JL and Zoubeidi A: Targeting prostate cancer subtype 1 by
forkhead box M1 pathway inhibition. Clin Cancer Res. 23:6923–6933.
2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pan H, Zhu Y, Wei W, Shao S and Rui X:
Transcription factor FoxM1 is the downstream target of c-Myc and
contributes to the development of prostate cancer. World J Surg
Oncol. 16:592018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim MY, Jung AR, Kim GE, Yang J, Ha US,
Hong SH, Choi YJ, Moon MH, Kim SW, Lee JY and Park YH: High FOXM1
expression is a prognostic marker for poor clinical outcomes in
prostate cancer. J Cancer. 10:749–756. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mazzu YZ, Yoshikawa Y, Nandakumar S,
Chakraborty G, Armenia J, Jehane LE, Lee GM and Kantoff PW:
Methylation-associated miR-193b silencing activates master drivers
of aggressive prostate cancer. Mol Oncol. 13:1944–1958. 2019.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang C, Liu T, Wang K, Wang X, Xu S, He D
and Zeng J: Transcriptional regulation of FoxM1 by HIF-1α mediates
hypoxia-induced EMT in prostate cancer. Oncol Rep. 42:1307–1318.
2019.PubMed/NCBI
|
25
|
Yang L, Jin M, Park SJ, Seo SY and Jeong
KW: SETD1A promotes proliferation of castration-resistant prostate
cancer cells via FOXM1 transcription. Cancers (Basel). 12:17362020.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Tian JH, Mu LJ, Wang MY, Zeng J, Long QZ,
Bin-Guan Wang W, Jiang YM, Bai XJ and Du YF: FOXM1-Dependent
transcriptional regulation of EZH2 induces proliferation and
progression in prostate cancer. Anticancer Agents Med Chem.
21:1835–1841. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu H, Zhang J, Zheng X, Tan P, Xiong X, Yi
X, Yang Y, Wang Y, Liao D, Li H, et al: SR9009 inhibits lethal
prostate cancer subtype 1 by regulating the LXRα/FOXM1 pathway
independently of REV-ERBs. Cell Death Dis. 13:9492022. View Article : Google Scholar : PubMed/NCBI
|
28
|
Aytes A, Mitrofanova A, Lefebvre C,
Alvarez MJ, Castillo-Martin M, Zheng T, Eastham JA, Gopalan A,
Pienta KJ, Shen MM, et al: Cross-species regulatory network
analysis identifies a synergistic interaction between FOXM1 and
CENPF that drives prostate cancer malignancy. Cancer Cell.
25:638–651. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yuan B, Liu Y, Yu X, Yin L, Peng Y, Gao Y,
Zhu Q, Cao T, Yang Y, Fan X and Li X: FOXM1 contributes to taxane
resistance by regulating UHRF1-controlled cancer cell stemness.
Cell Death Dis. 9:5622018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cheng XH, Black M, Ustiyan V, Le T,
Fulford L, Sridharan A, Medvedovic M, Kalinichenko VV, Whitsett JA
and Kalin TV: SPDEF inhibits prostate carcinogenesis by disrupting
a positive feedback loop in regulation of the Foxm1 oncogene. PLoS
Genet. 10:e10046562014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mitrofanova A, Aytes A, Zou M, Shen MM,
Abate-Shen C and Califano A: Predicting drug response in human
prostate cancer from preclinical analysis of in vivo mouse models.
Cell Rep. 12:2060–2071. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sharma S, Pei X, Xing F, Wu SY, Wu K,
Tyagi A, Zhao D, Deshpande R, Ruiz MG, Singh R, et al: Regucalcin
promotes dormancy of prostate cancer. Oncogene. 40:1012–1026. 2021.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Koo JI, Sim DY, Lee HJ, Ahn CH, Park J,
Park SY, Lee D, Shim BS, Kim B and Kim SH: Apoptotic and
anti-Warburg effect of Morusin via ROS mediated inhibition of
FOXM1/c-Myc signaling in prostate cancer cells. Phytother Res.
37:4473–4487. 2023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin SC, Kao CY, Lee HJ, Creighton CJ,
Ittmann MM, Tsai SJ, Tsai SY and Tsai MJ: Dysregulation of
miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of
prostate cancer. Nat Commun. 7:114182016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Holmes AG, Parker JB, Sagar V, Truica MI,
Soni PN, Han H, Schiltz GE, Abdulkadir SA and Chakravarti D: A MYC
inhibitor selectively alters the MYC and MAX cistromes and
modulates the epigenomic landscape to regulate target gene
expression. Sci Adv. 8:eabh36352022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lai W, Zhu W, Li X, Han Y, Wang Y, Leng Q,
Li M and Wen X: GTSE1 promotes prostate cancer cell proliferation
via the SP1/FOXM1 signaling pathway. Lab Invest. 101:554–563. 2021.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Li Z, Jiao X, Robertson AG, Di Sante G,
Ashton AW, DiRocco A, Wang M, Zhao J, Addya S, Wang C, et al: The
DACH1 gene is frequently deleted in prostate cancer, restrains
prostatic intraepithelial neoplasia, decreases DNA damage repair,
and predicts therapy responses. Oncogene. 42:1857–1873. 2023.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Gu P, Chen X, Xie R, Han J, Xie W, Wang B,
Dong W, Chen C, Yang M, Jiang J, et al: lncRNA HOXD-AS1 regulates
proliferation and chemo-resistance of castration-resistant prostate
cancer via recruiting WDR5. Mol Ther. 25:1959–1973. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhou Y, Zhou Z, Ji Z, Yan W, Li H and Yu
X: Tetramethylpyrazine reduces prostate cancer malignancy through
inactivation of the DPP10-AS1/CBP/FOXM1 signaling pathway. Int J
Oncol. 57:314–324. 2020.PubMed/NCBI
|
40
|
Jiang Y, Zhao H, Chen Y, Li K, Li T, Chen
J, Zhang B, Guo C, Qing L, Shen J, et al: Exosomal long noncoding
RNA HOXD-AS1 promotes prostate cancer metastasis via
miR-361-5p/FOXM1 axis. Cell Death Dis. 12:11292021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lin PC, Chiu YL, Banerjee S, Park K,
Mosquera JM, Giannopoulou E, Alves P, Tewari AK, Gerstein MB,
Beltran H, et al: Epigenetic repression of miR-31 disrupts androgen
receptor homeostasis and contributes to prostate cancer
progression. Cancer Res. 73:1232–1244. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang B, Diao H, Wang P, Guan F and Liu H:
microRNA-877-5p exerts tumor-suppressive functions in prostate
cancer through repressing transcription of forkhead box M1.
Bioengineered. 12:9094–9102. 2021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lynch TP, Ferrer CM, Jackson SR, Shahriari
KS, Vosseller K and Reginato MJ: Critical role of O-Linked
β-N-acetylglucosamine transferase in prostate cancer invasion,
angiogenesis, and metastasis. J Biol Chem. 287:11070–11081. 2012.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wan L, Tan HL, Thomas-Ahner JM, Pearl DK,
Erdman JW Jr, Moran NE and Clinton SK: Dietary tomato and lycopene
impact androgen signaling- and carcinogenesis-related gene
expression during early TRAMP prostate carcinogenesis. Cancer Prev
Res (Phila). 7:1228–1239. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liu Y, Liu Y, Yuan B, Yin L, Peng Y, Yu X,
Zhou W, Gong Z, Liu J, He L and Li X: FOXM1 promotes the
progression of prostate cancer by regulating PSA gene
transcription. Oncotarget. 8:17027–17037. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ingersoll MA, Chou YW, Lin JS, Yuan TC,
Miller DR, Xie Y, Tu Y, Oberley-Deegan RE, Batra SK and Lin MF:
p66Shc regulates migration of castration-resistant prostate cancer
cells. Cell Signal. 46:1–14. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yu Z, Zhan C, Du H and Zhang L, Liang C
and Zhang L: Baicalin suppresses the cell cycle progression and
proliferation of prostate cancer cells through the CDK6/FOXM1 axis.
Mol Cell Biochem. 469:169–178. 2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yu H, Xu Z, Guo M, Wang W, Zhang W, Liang
S, Xu Z, Ye J, Zhu G, Zhang C and Lin J: FOXM1 modulates docetaxel
resistance in prostate cancer by regulating KIF20A. Cancer Cell
Int. 20:5452020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lin JZ, Wang WW, Hu TT, Zhu GY, Li LN,
Zhang CY, Xu Z, Yu HB, Wu HF and Zhu JG: FOXM1 contributes to
docetaxel resistance in castration-resistant prostate cancer by
inducing AMPK/mTOR-mediated autophagy. Cancer Lett. 469:481–489.
2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mazzu YZ, Armenia J, Chakraborty G,
Yoshikawa Y, Coggins SA, Nandakumar S, Gerke TA, Pomerantz MM, Qiu
X, Zhao H, et al: A novel mechanism driving poor-prognosis prostate
cancer: Overexpression of the DNA repair gene, ribonucleotide
reductase small subunit M2 (RRM2). Clin Cancer Res. 25:4480–4492.
2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Varambally S, Dhanasekaran SM, Zhou M,
Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt
RG, Otte AP, et al: The polycomb group protein EZH2 is involved in
progression of prostate cancer. Nature. 419:624–629. 2002.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Kim MY, Jung AR, Shin D, Kwon H, Cho HJ,
Ha US, Hong SH, Lee JY, Kim SW and Park YH: Niclosamide exerts
anticancer effects through inhibition of the FOXM1-mediated DNA
damage response in prostate cancer. Am J Cancer Res. 11:2944–2959.
2021.PubMed/NCBI
|
53
|
Gopalakrishnan S and Ismail A: Aromatic
monophenols from cinnamon bark act as proteasome inhibitors by
upregulating ER stress, suppressing FoxM1 expression, and inducing
apoptosis in prostate cancer cells. Phytother Res. 35:5781–5794.
2021. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wu M, Zhao H, Guo L, Wang Y, Song J, Zhao
X, Li C, Hao L, Wang D and Tang J: Ultrasound-mediated nanobubble
destruction (UMND) facilitates the delivery of A10-3.2 aptamer
targeted and siRNA-loaded cationic nanobubbles for therapy of
prostate cancer. Drug Deliv. 25:226–240. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Li Y, Ligr M, McCarron JP, Daniels G,
Zhang D, Zhao X, Ye F, Wang J, Liu X, Osman I, et al: Natura-alpha
targets forkhead box m1 and inhibits androgen-dependent and
-independent prostate cancer growth and invasion. Clin Cancer Res.
17:4414–4424. 2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhou Y, Ji Z, Yan W, Zhou Z, Li H and Xiao
Y: Tetramethylpyrazine inhibits prostate cancer progression by
downregulation of forkhead box M1. Oncol Rep. 38:837–842. 2017.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Bu H, Tang S, Liu G, Miao C, Zhou X, Yang
H and Liu B: In silico, in vitro and in vivo studies: Dibutyl
phthalate promotes prostate cancer cell proliferation by activating
Forkhead Box M1 and remission after Natura-alpha pretreatment.
Toxicology. 488:1534652023. View Article : Google Scholar : PubMed/NCBI
|
58
|
Cai Y, Balli D, Ustiyan V, Fulford L,
Hiller A, Misetic V, Zhang Y, Paluch AM, Waltz SE, Kasper S and
Kalin TV: Foxm1 expression in prostate epithelial cells is
essential for prostate carcinogenesis. J Biol Chem.
288:22527–22541. 2013. View Article : Google Scholar : PubMed/NCBI
|
59
|
Liu Y, Gong Z, Sun L and Li X: FOXM1 and
androgen receptor co-regulate CDC6 gene transcription and DNA
replication in prostate cancer cells. Biochim Biophys Acta.
1839:297–305. 2014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Qu S, Ci X, Xue H, Dong X, Hao J, Lin D,
Clermont PL, Wu R, Collins CC, Gout PW and Wang Y: Treatment with
docetaxel in combination with Aneustat leads to potent inhibition
of metastasis in a patient-derived xenograft model of advanced
prostate cancer. Br J Cancer. 118:802–812. 2018. View Article : Google Scholar : PubMed/NCBI
|
61
|
Pandit B and Gartel AL: New potential
anti-cancer agents synergize with bortezomib and ABT-737 against
prostate cancer. Prostate. 70:825–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
62
|
Kaochar S, Rusin A, Foley C, Rajapakshe K,
Robertson M, Skapura D, Mason C, Berman De Ruiz K, Tyryshkin AM,
Deng J, et al: Inhibition of GATA2 in prostate cancer by a
clinically available small molecule. Endocr Relat Cancer. 29:15–31.
2021. View Article : Google Scholar : PubMed/NCBI
|