Epigenetic regulation of mRNA mediates the phenotypic plasticity of cancer cells during metastasis and therapeutic resistance (Review)
- Authors:
- Chunzhi Zhang
- Siyuan Liang
- Hanning Zhang
- Ruoxi Wang
- Huanhuan Qiao
-
Affiliations: Department of Radiation Oncology, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China, Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China, Clinical Medical College of Tianjin Medical University, Tianjin 300270, P.R. China, Sophomore, Farragut School #3 of Yangtai Road, Tianjin 300042, P.R. China - Published online on: December 19, 2023 https://doi.org/10.3892/or.2023.8687
- Article Number: 28
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
This article is mentioned in:
Abstract
Lyden D, Ghajar CM, Correia AL, Aguirre-Ghiso JA, Cai S, Rescigno M, Zhang P, Hu G, Fendt SM, Boire A, et al: Metastasis. Cancer Cell. 40:787–791. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Jones MG, Naranjo S, Rideout WM III, Min KHJ, Ho R, Wu W, Replogle JM, Page JL, Quinn JJ, et al: Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 185:1905–1923.e25. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vendramin R, Litchfield K and Swanton C: Cancer evolution: Darwin and beyond. EMBO J. 40:e1083892021. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Pradhan N B N, Mahadevappa R, Minocha S and Kumar S: Cancer plasticity: Investigating the causes for this agility. Semin Cancer Biol. 88:138–156. 2023. View Article : Google Scholar : PubMed/NCBI | |
Barkley D, Moncada R, Pour M, Liberman DA, Dryg I, Werba G, Wang W, Baron M, Rao A, Xia B, et al: Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat Genet. 54:1192–1201. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lih TM, Dhanasekaran SM, Mannan R, Chen L, Cieslik M, Wu Y, Lu RJ, Clark DJ, Kolodziejczak I, et al: Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell. 41:139–163.e17. 2023. View Article : Google Scholar : PubMed/NCBI | |
Drapkin BJ and Minna JD: Studying lineage plasticity one cell at a time. Cancer Cell. 38:150–152. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lambert AW and Weinberg RA: Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer. 21:325–338. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal V, Montoya CA, Donnenberg VS and Sant S: Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience. 24:1021132021. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chang HY and Qi LS: Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Mol Cell. 83:442–451. 2023. View Article : Google Scholar : PubMed/NCBI | |
Buccitelli C and Selbach M: mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet. 21:630–644. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fabbri L, Chakraborty A, Robert C and Vagner S: The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer. 21:558–577. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee LJ, Papadopoli D, Jewer M, Del Rincon S, Topisirovic I, Lawrence MG and Postovit LM: Cancer plasticity: The role of mRNA translation. Trends Cancer. 7:134–145. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pope SD and Medzhitov R: Emerging principles of gene expression programs and their regulation. Mol Cell. 71:389–397. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao LY, Song J, Liu Y, Song CX and Yi C: Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 11:792–808. 2020. View Article : Google Scholar : PubMed/NCBI | |
Joung J, Ma S, Tay T, Geiger-Schuller KR, Kirchgatterer PC, Verdine VK, Guo B, Arias-Garcia MA, Allen WE, Singh A, et al: A transcription factor atlas of directed differentiation. Cell. 186:209–229.e26. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhuo S, Zhou Y, Ma L, Sun Z, Wu X, Wang XW, Gao B and Yang Y: Yap-Sox9 signaling determines hepatocyte plasticity and lineage-specific hepatocarcinogenesis. J Hepatol. 76:652–664. 2022. View Article : Google Scholar : PubMed/NCBI | |
Park S, Mossmann D, Chen Q, Wang X, Dazert E, Colombi M, Schmidt A, Ryback B, Ng CKY, Terracciano LM, et al: Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis. Mol Cell. 82:4246–4261.e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tan SH and Barker N: Stemming colorectal cancer growth and metastasis: HOXA5 forces cancer stem cells to differentiate. Cancer Cell. 28:683–685. 2015. View Article : Google Scholar : PubMed/NCBI | |
Perekatt AO, Shah PP, Cheung S, Jariwala N, Wu A, Gandhi V, Kumar N, Feng Q, Patel N, Chen L, et al: SMAD4 Suppresses WNT-Driven dedifferentiation and oncogenesis in the differentiated gut epithelium. Cancer Res. 78:4878–4890. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Zhou Z, Zhao D and Chen C: The induction of KLF5 transcription factor by progesterone contributes to progesterone-induced breast cancer cell proliferation and dedifferentiation. Mol Endocrinol. 25:1137–1144. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thier B, Zhao F, Stupia S, Bruggemann A, Koch J, Schulze N, Horn S, Coch C, Hartmann G, Sucker A, et al: Innate immune receptor signaling induces transient melanoma dedifferentiation while preserving immunogenicity. J Immunother Cancer. 10:e0038632022. View Article : Google Scholar : PubMed/NCBI | |
Kopanja D, Chand V, O'Brien E, Mukhopadhyay NK, Zappia MP, Islam A, Frolov MV, Merrill BJ and Raychaudhuri P: Transcriptional repression by FoxM1 suppresses tumor differentiation and promotes metastasis of breast cancer. Cancer Res. 82:2458–2471. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kalisz M, Bernardo E, Beucher A, Maestro MA, Del Pozo N, Millan I, Haeberle L, Schlensog M, Safi SA, Knoefel WT, et al: HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO J. 39:e1028082020. View Article : Google Scholar : PubMed/NCBI | |
Nilsson T, Waraky A, Ostlund A, Li S, Staffas A, Asp J, Fogelstrand L, Abrahamsson J and Palmqvist L: An induced pluripotent stem cell t(7;12)(q36;p13) acute myeloid leukemia model shows high expression of MNX1 and a block in differentiation of the erythroid and megakaryocytic lineages. Int J Cancer. 151:770–782. 2022. View Article : Google Scholar : PubMed/NCBI | |
Simeoni F, Romero-Camarero I, Camera F, Amaral FMR, Sinclair OJ, Papachristou EK, Spencer GJ, Lie ALM, Lacaud G, Wiseman DH, et al: Enhancer recruitment of transcription repressors RUNX1 and TLE3 by mis-expressed FOXC1 blocks differentiation in acute myeloid leukemia. Cell Rep. 36:1097252021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhang P, Galbo PM, Zhou X, Aryal S, Qiu S, Zhang H, Zhou Y, Li C, Zheng D, et al: Transcription factor MEF2D is required for the maintenance of MLL-rearranged acute myeloid leukemia. Blood Adv. 5:4727–4740. 2021. View Article : Google Scholar : PubMed/NCBI | |
Baggiolini A, Callahan SJ, Montal E, Weiss JM, Trieu T, Tagore MM, Tischfield SE, Walsh RM, Suresh S, Fan Y, et al: Developmental chromatin programs determine oncogenic competence in melanoma. Science. 373:eabc10482021. View Article : Google Scholar : PubMed/NCBI | |
Xie W, Jiang Q, Wu X, Wang L, Gao B, Sun Z, Zhang X, Bu L, Lin Y, Huang Q, et al: IKBKE phosphorylates and stabilizes Snail to promote breast cancer invasion and metastasis. Cell Death Differ. 29:1528–1540. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A and Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zhang Y, Yang J, Zhan H, Zhou Z, Jiang Y, Shi X, Fan X, Zhang J, Luo W, et al: Zinc-Dependent regulation of ZEB1 and YAP1 coactivation promotes Epithelial-Mesenchymal transition plasticity and metastasis in pancreatic cancer. Gastroenterology. 160:1771–1783.e1. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, Wadosky KM, Gopalan A, Choo ZN, Persad S, Choi J, et al: Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science. 377:1180–1191. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Xue Y, Qin Z, Fang Z, Sun Y, Yuan C, Pan Y, Zhao Y, Tong X, Zhang J, et al: Counteracting lineage-specific transcription factor network finely tunes lung adeno-to-squamous transdifferentiation through remodeling tumor immune microenvironment. Natl Sci Rev. 10:nwad0282023. View Article : Google Scholar : PubMed/NCBI | |
Shiode Y, Kodama T, Shigeno S, Murai K, Tanaka S, Newberg JY, Kondo J, Kobayashi S, Yamada R, Hikita H, et al: TNF receptor-related factor 3 inactivation promotes the development of intrahepatic cholangiocarcinoma through NF-κB-inducing kinase-mediated hepatocyte transdifferentiation. Hepatology. 77:395–410. 2023. View Article : Google Scholar : PubMed/NCBI | |
Choi SI, Yoon C, Park MR, Lee D, Kook MC, Lin JX, Kang JH, Ashktorab H, Smoot DT, Yoon SS, et al: CDX1 Expression induced by CagA-Expressing helicobacter pylori promotes gastric tumorigenesis. Mol Cancer Res. 17:2169–2183. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Lee YT, Zhou Y and Huang Y: Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. Semin Cancer Biol. 83:487–502. 2022. View Article : Google Scholar : PubMed/NCBI | |
Greenberg MVC and Bourc'his D: The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 20:590–607. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama A and Nakanishi M: Navigating the DNA methylation landscape of cancer. Trends Genet. 37:1012–1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Zhao Y, Huang W, Gao Y, Xu W, Tao J, Yang M, Li L, Ping W, Shen H, et al: Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics. 9:2056–2070. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maire CL, Fuh MM, Kaulich K, Fita KD, Stevic I, Heiland DH, Welsh JA, Jones JC, Gorgens A, Ricklefs T, et al: Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro Oncol. 23:1087–1099. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Sandler DP and Taylor JA: Blood DNA Methylation and breast cancer: A prospective Case-Cohort analysis in the sister study. J Natl Cancer Inst. 112:87–94. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wainwright EN and Scaffidi P: Epigenetics and cancer stem cells: Unleashing, hijacking, and restricting cellular plasticity. Trends Cancer. 3:372–386. 2017. View Article : Google Scholar : PubMed/NCBI | |
Davalos V, Lovell CD, Von Itter R, Dolgalev I, Agrawal P, Baptiste G, Kahler DJ, Sokolova E, Moran S, Pique L, et al: An epigenetic switch controls an alternative NR2F2 isoform that unleashes a metastatic program in melanoma. Nat Commun. 14:18672023. View Article : Google Scholar : PubMed/NCBI | |
Mancini M, Grasso M, Muccillo L, Babbio F, Precazzini F, Castiglioni I, Zanetti V, Rizzo F, Pistore C, De Marino MG, et al: DNMT3A epigenetically regulates key microRNAs involved in epithelial-to-mesenchymal transition in prostate cancer. Carcinogenesis. 42:1449–1460. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Cheng K, Zhang H, Kong R, Wang S, Mao C and Liu S: Methylation status of the nanog promoter determines the switch between cancer cells and cancer stem cells. Adv Sci (Weinh). 7:19030352020. View Article : Google Scholar : PubMed/NCBI | |
Morinishi L, Kochanowski K, Levine RL, Wu LF and Altschuler SJ: Loss of TET2 Affects proliferation and drug sensitivity through altered dynamics of Cell-State transitions. Cell Syst. 11:86–94.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wei T and Panchenko AR: Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility. Nat Commun. 14:7692023. View Article : Google Scholar : PubMed/NCBI | |
Bouyahya A, Mechchate H, Oumeslakht L, Zeouk I, Aboulaghras S, Balahbib A, Zengin G, Kamal MA, Gallo M, Montesano D and El Omari N: The role of epigenetic modifications in human cancers and the use of natural compounds as epidrugs: Mechanistic pathways and pharmacodynamic actions. Biomolecules. 12:3672022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang Q, Zhang Y and Han J: The role of histone modification in DNA Replication-Coupled nucleosome assembly and cancer. Int J Mol Sci. 24:49392023. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Allis CD and Wang GG: The language of chromatin modification in human cancers. Nat Rev Cancer. 21:413–430. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu Y and Zhu Q: Histone modifications represent a key epigenetic feature of Epithelial-to-Mesenchyme transition in pancreatic cancer. Int J Mol Sci. 24:48202023. View Article : Google Scholar : PubMed/NCBI | |
He Y, Ji Z, Gong Y, Fan L, Xu P, Chen X, Miao J, Zhang K, Zhang W, Ma P, et al: Numb/Parkin-directed mitochondrial fitness governs cancer cell fate via metabolic regulation of histone lactylation. Cell Rep. 42:1120332023. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Natesan R, Sanchez-Rivera FJ, Li J, Bhanu NV, Yamazoe T, Lin JH, Merrell AJ, Sela Y, Thomas SK, et al: Global regulation of the histone mark H3K36me2 underlies epithelial plasticity and metastatic progression. Cancer Discov. 10:854–871. 2020. View Article : Google Scholar : PubMed/NCBI | |
Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, Sidoli S, Parris JLD, Affronti HC, Sivanand S, et al: Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 9:416–435. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, Carey CD, Rodig SJ, et al: Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell. 20:233–246.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yao J, Chen J, Li LY and Wu M: Epigenetic plasticity of enhancers in cancer. Transcription. 11:26–36. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li GH, Qu Q, Qi TT, Teng XQ, Zhu HH, Wang JJ, Lu Q and Qu J: Super-enhancers: A new frontier for epigenetic modifiers in cancer chemoresistance. J Exp Clin Cancer Res. 40:1742021. View Article : Google Scholar : PubMed/NCBI | |
Chen H and Liang H: A High-Resolution map of human enhancer RNA loci characterizes super-enhancer activities in cancer. Cancer Cell. 38:701–715.e5. View Article : Google Scholar : PubMed/NCBI | |
Mirzadeh Azad F and Atlasi Y: Deregulation of transcriptional enhancers in cancer. Cancers (Basel). 13:35322021. View Article : Google Scholar : PubMed/NCBI | |
Bi M, Zhang Z, Jiang YZ, Xue P, Wang H, Lai Z, Fu X, De Angelis C, Gong Y, Gao Z, et al: Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat Cell Biol. 22:701–715. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han J, Meng J, Chen S, Wang X, Yin S, Zhang Q, Liu H, Qin R, Li Z, Zhong W, et al: YY1 complex promotes quaking expression via Super-Enhancer binding during EMT of hepatocellular carcinoma. Cancer Res. 79:1451–1464. 2019. View Article : Google Scholar : PubMed/NCBI | |
Manning KS and Cooper TA: The roles of RNA processing in translating genotype to phenotype. Nat Rev Mol Cell Biol. 18:102–114. 2017. View Article : Google Scholar : PubMed/NCBI | |
Barbieri I and Kouzarides T: Role of RNA modifications in cancer. Nat Rev Cancer. 20:303–322. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi Y: Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol. 18:655–670. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bonnal SC, Lopez-Oreja I and Valcarcel J: Roles and mechanisms of alternative splicing in cancer-implications for care. Nat Rev Clin Oncol. 17:457–474. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C; ancer Genome Atlas Research Network, ; Rätsch G: Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell. 34:211–224.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bradley RK and Anczukow O: RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 23:135–155. 2023. View Article : Google Scholar : PubMed/NCBI | |
Other-Gee Pohl S and Myant KB: Alternative RNA splicing in tumour heterogeneity, plasticity and therapy. Dis Model Mech. 15:dmm0492332022. View Article : Google Scholar : PubMed/NCBI | |
Labrecque MP, Brown LG, Coleman IM, Lakely B, Brady NJ, Lee JK, Nguyen HM, Li D, Hanratty B, Haffner MC, et al: RNA splicing factors SRRM3 and SRRM4 distinguish molecular phenotypes of castration-resistant neuroendocrine prostate cancer. Cancer Res. 81:4736–4750. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Choi PS, Chaffer CL, Labella K, Hwang JH, Giacomelli AO, Kim JW, Ilic N, Doench JG, Ly SH, et al: An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. Elife. 7:e371842018. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Verhagen M, Joosten R, Sun W, Sacchetti A, Munoz Sagredo L, Orian-Rousseau V and Fodde R: Alternative splicing downstream of EMT enhances phenotypic plasticity and malignant behavior in colon cancer. Elife. 11:e820062022. View Article : Google Scholar : PubMed/NCBI | |
Roundtree IA, Evans ME, Pan T and He C: Dynamic RNA modifications in gene expression regulation. Cell. 169:1187–1200. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frye M, Harada BT, Behm M and He C: RNA modifications modulate gene expression during development. Science. 361:1346–1349. 2018. View Article : Google Scholar : PubMed/NCBI | |
Penning A, Jeschke J and Fuks F: Why novel mRNA modifications are so challenging and what we can do about it. Nat Rev Mol Cell Biol. 23:385–386. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Song M, Hong Z, Chen W, Zhang Q, Zhou J, Yang C, He Z, Yu J, Peng X, et al: The N6-methyladenosine METTL3 regulates tumorigenesis and glycolysis by mediating m6A methylation of the tumor suppressor LATS1 in breast cancer. J Exp Clin Cancer Res. 42:102023. View Article : Google Scholar : PubMed/NCBI | |
Tao M, Li X, He L, Rong X, Wang H, Pan J, Lu Z, Zhang X and Peng Y: Decreased RNA m6A methylation enhances the process of the epithelial mesenchymal transition and vasculogenic mimicry in glioblastoma. Am J Cancer Res. 12:893–906. 2022.PubMed/NCBI | |
Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, Luo G, Tauler J, Du J, Lin S, et al: RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 10:20652019. View Article : Google Scholar : PubMed/NCBI | |
Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z and Zhao G: METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 18:1422019. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Wu Y, Xiao T, Xue J, Sun J, Xia H, Ma H, Lu L, Li J, Shi A, et al: METTL3-mediated m6A modification of ZBTB4 mRNA is involved in the smoking-induced EMT in cancer of the lung. Mol Ther Nucleic Acids. 23:487–500. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xia P, Zhang H, Xu K, Jiang X, Gao M, Wang G, Liu Y, Yao Y, Chen X, Ma W, et al: MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis. 12:6912021. View Article : Google Scholar : PubMed/NCBI | |
Slack FJ and Chinnaiyan AM: The role of non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang C and Peng G: Non-coding RNAs: An emerging player in DNA damage response. Mutat Res Rev Mutat Res. 763:202–211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Liang S and Zhang C: Aberrant miRNAs regulate the biological hallmarks of glioblastoma. Neuromolecular Med. 20:452–474. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou Y, Gao Y, Zhu Z, Zeng X, Liang W, Sun S, Chen X and Wang H: Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med. 20:3882022. View Article : Google Scholar : PubMed/NCBI | |
Goodall GJ and Wickramasinghe VO: RNA in cancer. Nat Rev Cancer. 21:22–36. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li L and Wu J: The members of the miR-148/152 family inhibit cancer stem cell-like properties in gastric cancer via negative regulation of ITGA5. J Transl Med. 21:1052023. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Zhang J, Lu X, Liu F, Shi S and Deng X: MiR-199a-5p-Regulated SMARCA4 promotes oral squamous cell carcinoma tumorigenesis. Int J Mol Sci. 24:47562023. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Zhu Y, Shang L, Qiu Y, Shen N, Wang J, Adam T, Wei W, Song Q, Li J, et al: LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling. Oncogene. 42:1419–1437. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Wang Q, Kuipers TB, Cats D, Iyengar PV, Hagenaars SC, Mesker WE, Devilee P, Tollenaar RAEM, Mei H and Ten Dijke P: LncRNA LITATS1 suppresses TGF-beta-induced EMT and cancer cell plasticity by potentiating TbetaRI degradation. EMBO J. 42:e1128062023. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Liu B, Liu XY, Xia ZK, Lu M, Hu CH and Liu P: circ_rac GTPase-activating protein 1 facilitates stemness and metastasis of non-small cell lung cancer via polypyrimidine tract-binding protein 1 recruitment to promote sirtuin-3-mediated replication timing regulatory factor 1 deacetylation. Lab Invest. 103:1000102023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zheng L, Hu C, Kong D, Zhou Z, Wu B, Wu S, Fei F and Shen Y: CircZFR promotes pancreatic cancer progression through a novel circRNA-miRNA-mRNA pathway and stabilizing epithelial-mesenchymal transition protein. Cell Signal. 107:1106612023. View Article : Google Scholar : PubMed/NCBI | |
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, et al: The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol. 15:182022. View Article : Google Scholar : PubMed/NCBI | |
McCabe EM and Rasmussen TP: lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol. 75:38–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pan G, Liu Y, Shang L, Zhou F and Yang S: EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 41:199–217. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Jakobsen T, Hager H and Kjems J: The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 19:188–206. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gerstberger S, Jiang Q and Ganesh K: Metastasis. Cell. 186:1564–1579. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I and Blanpain C: EMT Transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Ng AS, Cai S, Li Q, Yang L and Kerr D: Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 22:e358–e368. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Qi X, Donnelly L, Elghobashi-Meinhardt N, Long T, Zhou RW, Sun Y, Wang B and Li X: Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature. 607:816–822. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zarzosa P, Garcia-Gilabert L, Hladun R, Guillen G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sanchez de Toledo J, Moreno L, et al: Targeting the hedgehog pathway in rhabdomyosarcoma. Cancers (Basel). 15:7272023. View Article : Google Scholar : PubMed/NCBI | |
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV and Schioth HB: Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol. 87:4577–4597. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tian C, Liu Y, Xue L, Zhang D, Zhang X, Su J, Chen J, Li X, Wang L and Jiao S: Sorafenib inhibits ovarian cancer cell proliferation and mobility and induces radiosensitivity by targeting the tumor cell epithelial-mesenchymal transition. Open Life Sci. 17:616–625. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chan CY, Hong SC, Chang CM, Chen YH, Liao PC and Huang CY: Oral squamous cell carcinoma cells with acquired resistance to erlotinib are sensitive to Anti-Cancer effect of quercetin via pyruvate kinase M2 (PKM2). Cells. 12:1792023. View Article : Google Scholar : PubMed/NCBI | |
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A and Ali MN: TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol. 947:1756782023. View Article : Google Scholar : PubMed/NCBI | |
Dhanyamraju PK, Schell TD, Amin S and Robertson GP: Drug-Tolerant persister cells in cancer therapy resistance. Cancer Res. 82:2503–2514. 2022. View Article : Google Scholar : PubMed/NCBI | |
De Conti G, Dias MH and Bernards R: Fighting drug resistance through the targeting of Drug-Tolerant persister cells. Cancers (Basel). 13:11182021. View Article : Google Scholar : PubMed/NCBI | |
Kim HD, Yoo C, Ryu MH and Kang YK: A randomised phase 2 study of continuous or intermittent dosing schedule of imatinib re-challenge in patients with tyrosine kinase inhibitor-refractory gastrointestinal stromal tumours. Br J Cancer. 129:275–282. 2023. View Article : Google Scholar : PubMed/NCBI | |
East MP and Johnson GL: Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. J Biol Chem. 298:1015252022. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Wang C, Wang Y, Xu Y, Li X, Johnson NA, Mukherji A, Lo UG, Xu L, Gonzalez J, et al: Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Nat Cancer. 3:1071–1087. 2022. View Article : Google Scholar : PubMed/NCBI | |
Matsushima K, Yang D and Oppenheim JJ: Interleukin-8: An evolving chemokine. Cytokine. 153:1558282022. View Article : Google Scholar : PubMed/NCBI | |
Qin Q, Li X, Liang X, Zeng L, Wang J, Sun L and Zhong D: Targeting the EMT transcription factor Snail overcomes resistance to osimertinib in EGFR-mutant non-small cell lung cancer. Thorac Cancer. 12:1708–1715. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS and Han CH: Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther. 8:1132023. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Mayea Y, Mir C, Masson F, Paciucci R and ME LL: Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 60:166–180. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yu H, Dong W, Zhang C, Hu M, Ma W, Jiang X, Li H, Yang P and Xiang D: N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells' properties and lenvatinib resistance through WNT/β-Catenin and hippo signaling pathways. Gastroenterology. 164:990–1005. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hao L, Chen H, Wang L, Zhou H, Zhang Z, Han J, Hou J, Zhu Y, Zhang H and Wang Q: Transformation or tumor heterogeneity: Mutations in EGFR, SOX2, TP53, and RB1 persist in the histological rapid conversion from lung adenocarcinoma to small-cell lung cancer. Thorac Cancer. 14:1036–1041. 2023. View Article : Google Scholar : PubMed/NCBI | |
Quintanal-Villalonga A, Chan JM, Yu HA, Pe'er D, Sawyers CL, Sen T and Rudin CM: Lineage plasticity in cancer: A shared pathway of therapeutic resistance. Nat Rev Clin Oncol. 17:360–371. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marcoux N, Gettinger SN, O'Kane G, Arbour KC, Neal JW, Husain H, Evans TL, Brahmer JR, Muzikansky A, Bonomi PD, et al: EGFR-Mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: Clinical outcomes. J Clin Oncol. 37:278–285. 2019. View Article : Google Scholar : PubMed/NCBI |