1
|
Miller AJ and Mihm MC Jr: Melanoma. N Engl
J Med. 355:51–65. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lo JA and Fisher DE: The melanoma
revolution: from UV carcinogenesis to a new era in therapeutics.
Science. 346:945–949. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schadendorf D, van Akkooi ACJ, Berking C,
Griewank KG, Gutzmer R, Hauschild A, Stang A, Roesch A and Ugurel
S: Melanoma. Lancet. 392:971–984. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hughes MS, Zager J, Faries M, Alexander
HR, Royal RE, Wood B, Choi J, McCluskey K, Whitman E, Agarwala S,
et al: Results of a randomized controlled multicenter phase III
trial of percutaneous hepatic perfusion compared with best
available care for patients with melanoma liver metastases. Ann
Surg Oncol. 23:1309–1319. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhu Z, Liu W and Gotlieb V: The rapidly
evolving therapies for advanced melanoma-towards immunotherapy,
molecular targeted therapy, and beyond. Crit Rev Oncol Hematol.
99:91–99. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Roberts P, Fishman GA, Joshi K and Jampol
LM: Chorioretinal lesions in a case of melanoma-associated
retinopathy treated with pembrolizumab. JAMA Ophthalmol.
134:1184–1188. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chapman PB, Jayaprakasam VS, Panageas KS,
Callahan M, Postow MA, Shoushtari AN, Wolchok JD and Betof Warner
A: Risks and benefits of reinduction ipilimumab/nivolumab in
melanoma patients previously treated with ipilimumab/nivolumab. J
Immunother Cancer. 9:2021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nakanishi H, Shindou H, Hishikawa D,
Harayama T, Ogasawara R, Suwabe A, Taguchi R and Shimizu T: Cloning
and characterization of mouse lung-type
acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1).
Expression in alveolar type II cells and possible involvement in
surfactant production. J Biol Chem. 281:20140–20147. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen X, Hyatt BA, Mucenski ML, Mason RJ
and Shannon JM: Identification and characterization of a
lysophosphatidylcholine acyltransferase in alveolar type II cells.
Proc Natl Acad Sci USA. 103:11724–11729. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kennedy EP and Weiss SB: The function of
cytidine coenzymes in the biosynthesis of phospholipides. J Biol
Chem. 222:193–214. 1956. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lands WE: Metabolism of glycerolipides; a
comparison of lecithin and triglyceride synthesis. J Biol Chem.
231:883–888. 1958. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bridges JP, Ikegami M, Brilli LL, Chen X,
Mason RJ and Shannon JM: LPCAT1 regulates surfactant phospholipid
synthesis and is required for transitioning to air breathing in
mice. J Clin Invest. 120:1736–1748. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Moessinger C, Kuerschner L, Spandl J,
Shevchenko A and Thiele C: Human lysophosphatidylcholine
acyltransferases 1 and 2 are located in lipid droplets where they
catalyze the formation of phosphatidylcholine. J Biol Chem.
286:21330–21339. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Harayama T, Shindou H, Ogasawara R, Suwabe
A and Shimizu T: Identification of a novel noninflammatory
biosynthetic pathway of platelet-activating factor. J Biol Chem.
283:11097–11106. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cheng L, Han X and Shi Y: A regulatory
role of LPCAT1 in the synthesis of inflammatory lipids, PAF and
LPC, in the retina of diabetic mice. Am J Physiol Endocrinol Metab.
297:E1276–E1282. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dai X, Han J, Qi Y, Zhang H, Xiang L, Lv
J, Li J, Deng WT, Chang B, Hauswirth WW and Pang JJ: AAV-mediated
lysophosphatidylcholine acyltransferase 1 (Lpcat1) gene replacement
therapy rescues retinal degeneration in rd11 mice. Invest
Ophthalmol Vis Sci. 55:1724–1734. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang Y, Wang Y, Wang Y, Wang N, Duan Q,
Wang S, Liu M, Bilal MA and Zheng Y: LPCAT1 promotes cutaneous
squamous cell carcinoma via EGFR-mediated protein kinase B/p38MAPK
signaling pathways. J Invest Dermatol. 142:303–313. e3092022.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wei C and Dong X, Lu H, Tong F, Chen L,
Zhang R, Dong J, Hu Y, Wu G and Dong X: LPCAT1 promotes brain
metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC
pathway. J Exp Clin Cancer Res. 38:952019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bi J, Ichu TA, Zanca C, Yang H, Zhang W,
Gu Y, Chowdhry S, Reed A, Ikegami S, Turner KM, et al: Oncogene
amplification in growth factor signaling pathways renders cancers
dependent on membrane lipid remodeling. Cell Metab. 30:525–538.
e5282019. View Article : Google Scholar : PubMed/NCBI
|
20
|
He RQ, Li JD, Du XF, Dang YW, Yang LJ,
Huang ZG, Liu LM, Liao LF, Yang H and Chen G: LPCAT1 overexpression
promotes the progression of hepatocellular carcinoma. Cancer Cell
Int. 21:4422021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ji W, Peng Z, Sun B, Chen L, Zhang Q, Guo
M and Su C: LPCAT1 promotes malignant transformation of
hepatocellular carcinoma cells by directly suppressing STAT1. Front
Oncol. 11:6787142021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Du Y, Wang Q, Zhang X, Wang X, Qin C,
Sheng Z, Yin H, Jiang C, Li J and Xu T: Lysophosphatidylcholine
acyltransferase 1 upregulation and concomitant phospholipid
alterations in clear cell renal cell carcinoma. J Exp Clin Cancer
Res. 36:662017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shida-Sakazume T, Endo-Sakamoto Y, Unozawa
M, Fukumoto C, Shimada K, Kasamatsu A, Ogawara K, Yokoe H, Shiiba
M, Tanzawa H and Uzawa K: Lysophosphatidylcholine acyltransferase1
overexpression promotes oral squamous cell carcinoma progression
via enhanced biosynthesis of platelet-activating factor. PLoS One.
10:e01201432015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu Y, Yang C, Zhang Z and Jiang H: Gut
microbiota dysbiosis accelerates prostate cancer progression
through increased LPCAT1 expression and enhanced DNA repair
pathways. Front Oncol. 11:6797122021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Han C, Yu G, Mao Y, Song S, Li L, Zhou L,
Wang Z, Liu Y, Li M and Xu B: LPCAT1 enhances castration resistant
prostate cancer progression via increased mRNA synthesis and PAF
production. PLoS One. 15:e02408012020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mansilla F, da Costa KA, Wang S, Kruhoffer
M, Lewin TM, Orntoft TF, Coleman RA and Birkenkamp-Demtroder K:
Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression
in human colorectal cancer. J Mol Med (Berl). 87:85–97. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lebok P, von Hassel A, Meiners J,
Hube-Magg C, Simon R, Höflmayer D, Hinsch A, Dum D, Fraune C, Göbel
C, et al: Up-regulation of lysophosphatidylcholine acyltransferase
1 (LPCAT1) is linked to poor prognosis in breast cancer. Aging
(Albany NY). 11:7796–7804. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao T, Zhang Y, Ma X, Wei L, Hou Y, Sun R
and Jiang J: Elevated expression of LPCAT1 predicts a poor
prognosis and is correlated with the tumour microenvironment in
endometrial cancer. Cancer Cell Int. 21:2692021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tao M, Luo J, Gu T, Yu X, Song Z, Jun Y,
Gu H, Han K, Huang X, Yu W, et al: LPCAT1 reprogramming cholesterol
metabolism promotes the progression of esophageal squamous cell
carcinoma. Cell Death Dis. 12:8452021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−delta delta C(T)) method. Methods. 25:12622001. View Article : Google Scholar
|
31
|
Ratnikov BI, Scott DA, Osterman AL, Smith
JW and Ronai ZA: Metabolic rewiring in melanoma. Oncogene.
36:147–157. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gandhi SA and Kampp J: Skin cancer
epidemiology, detection, and management. Med Clin North Am.
99:1323–1335. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ruocco MR, Avagliano A, Granato G, Vigliar
E, Masone S, Montagnani S and Arcucci A: Metabolic flexibility in
melanoma: A potential therapeutic target. Semin Cancer Biol.
59:187–207. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pellerin L, Carrie L, Dufau C, Nieto L,
Segui B, Levade T, Riond J and Andrieu-Abadie N: Lipid metabolic
reprogramming: Role in melanoma progression and therapeutic
perspectives. Cancers (Basel). 12:31472020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bao J, Liu F, Zhang C, Wang K, Jia X, Wang
X, Chen M, Li P, Su H, Wang Y, et al: Anti-melanoma activity of
forsythiae fructus aqueous extract in mice involves regulation of
glycerophospholipid metabolisms by UPLC/Q-TOF MS-based metabolomics
study. Sci Rep. 6:394152016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Davies MA: The role of the PI3K-AKT
pathway in melanoma. Cancer J. 18:142–147. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Govindarajan B, Sligh JE, Vincent BJ, Li
M, Canter JA, Nickoloff BJ, Rodenburg RJ, Smeitink JA, Oberley L,
Zhang Y, et al: Overexpression of Akt converts radial growth
melanoma to vertical growth melanoma. J Clin Invest. 117:719–729.
2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cho JH, Robinson JP, Arave RA, Burnett WJ,
Kircher DA, Chen G, Davies MA, Grossmann AH, VanBrocklin MW,
McMahon M and Holmen SL: AKT1 activation promotes development of
melanoma metastases. Cell Rep. 13:898–905. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Perna D, Karreth FA, Rust AG,
Perez-Mancera PA, Rashid M, Iorio F, Alifrangis C, Arends MJ,
Bosenberg MW, Bollag G, et al: BRAF inhibitor resistance mediated
by the AKT pathway in an oncogenic BRAF mouse melanoma model. Proc
Natl Acad Sci USA. 112:E536–E545. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dai DL, Martinka M and Li G: Prognostic
significance of activated Akt expression in melanoma: A
clinicopathologic study of 292 cases. J Clin Oncol. 23:1473–1482.
2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ding JH, Ding XJ and Leng ZH: LPCAT1
promotes gefitinib resistance via upregulation of the EGFR/PI3K/AKT
signaling pathway in lung adenocarcinoma. J Cancer. 13:1837–1847.
2022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Dummer R, Flaherty KT, Robert C, Arance A,
de Groot JWB, Garbe C, Gogas HJ, Gutzmer R, Krajsová I, Liszkay G,
et al: Encorafenib plus binimetinib versus vemurafenib or
encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): A
multicentre, open-label, randomised phase 3 trial. Lancet Oncol.
19:603–615. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Long GV, Stroyakovskiy D, Gogas H,
Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A,
Grob JJ, et al: Dabrafenib and trametinib versus dabrafenib and
placebo for Val600 BRAF-mutant melanoma: A multicentre,
double-blind, phase 3 randomised controlled trial. Lancet.
386:444–451. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hamid O, Robert C, Daud A, Hodi FS, Hwu
WJ, Kefford R, Wolchok JD, Hersey P, Joseph R, Weber JS, et al:
Five-year survival outcomes for patients with advanced melanoma
treated with pembrolizumab in KEYNOTE-001. Ann Oncol. 30:582–588.
2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Schadendorf D, Hodi FS, Robert C, Weber
JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM and Wolchok JD:
Pooled analysis of long-term survival data from phase II and phase
III trials of ipilimumab in unresectable or metastatic melanoma. J
Clin Oncol. 33:1889–1894. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kozar I, Margue C, Rothengatter S, Haan C
and Kreis S: Many ways to resistance: how melanoma cells evade
targeted therapies. Biochim Biophys Acta Rev Cancer. 1871:313–322.
2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Van Allen EM, Wagle N, Sucker A, Treacy
DJ, Johannessen CM, Goetz EM, Place CS, Taylor-Weiner A, Whittaker
S, et al: The genetic landscape of clinical resistance to RAF
inhibition in metastatic melanoma. Cancer Discov. 4:94–109. 2014.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Shi H, Hugo W, Kong X, Hong A, Koya RC,
Moriceau G, Chodon T, Guo R, Johnson DB, Dahlman KB, et al:
Acquired resistance and clonal evolution in melanoma during BRAF
inhibitor therapy. Cancer Discov. 4:80–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Greger JG, Eastman SD, Zhang V, Bleam MR,
Hughes AM, Smitheman KN, Dickerson SH, Laquerre SG, Liu L and
Gilmer TM: Combinations of BRAF, MEK, and PI3K/mTOR inhibitors
overcome acquired resistance to the BRAF inhibitor GSK2118436
dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther.
11:909–920. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Timar J, Hegedus B and Raso E: The role of
lipid signaling in the progression of malignant melanoma. Cancer
Metastasis Rev. 37:245–255. 2018. View Article : Google Scholar : PubMed/NCBI
|