
Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review)
- Authors:
- Voraporn Yongprayoon
- Napasporn Wattanakul
- Winnada Khomate
- Nathakrit Apithanangsiri
- Tarathip Kasitipradit
- Danupon Nantajit
- Mahvash Tavassoli
-
Affiliations: Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand, Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK - Published online on: April 12, 2024 https://doi.org/10.3892/or.2024.8733
- Article Number: 74
-
Copyright: © Yongprayoon et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI | |
Marur S, D'Souza G, Westra WH and Forastiere AA: HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol. 11:781–789. 2010. View Article : Google Scholar | |
Cipriano A, Milite C, Feoli A, Viviano M, Pepe G, Campiglia P, Sarno G, Picaud S, Imaide S, Makukhin N, et al: Discovery of Benzo[d]imidazole-6-sulfonamides as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the First Bromodomain. ChemMedChem. 17:e2022003432022. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Tian J and Wu T: BRD4 in physiology and pathology: ‘BET’ on its partners. Bioessays. 43:e21001802021. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Liu X, Han L, Chen X, Wu X, Wu J, Yan D, Wang Y, Liu S, Shan L, et al: BRD4-directed super-enhancer organization of transcription repression programs links to chemotherapeutic efficacy in breast cancer. Proc Natl Acad Sci USA. 119:e21091331192022. View Article : Google Scholar : PubMed/NCBI | |
Sakamaki JI, Wilkinson S, Hahn M, Tasdemir N, O'Prey J, Clark W, Hedley A, Nixon C, Long JS, New M, et al: Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function. Mol Cell. 66:517–532.e9. 2017. View Article : Google Scholar | |
Hu J, Pan D, Li G, Chen K and Hu X: Regulation of programmed cell death by Brd4. Cell Death Dis. 13:10592022. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Ling R, Tang X, Yu Y, Zhou Y and Chen D: Post-Translational modifications of BRD4: Therapeutic targets for tumor. Front Oncol. 12:8477012022. View Article : Google Scholar | |
Abedin SM, Boddy CS and Munshi HG: BET inhibitors in the treatment of hematologic malignancies: Current insights and future prospects. Onco Targets Ther. 9:5943–5953. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu T, Lu W and Luo C: A patent review of BRD4 inhibitors (2013–2019). Expert Opin Ther Pat. 30:57–81. 2020. View Article : Google Scholar | |
French CA: NUT Carcinoma: Clinicopathologic features, pathogenesis, and treatment. Pathol Int. 68:583–595. 2018. View Article : Google Scholar | |
Dey A, Yang W, Gegonne A, Nishiyama A, Pan R, Yagi R, Grinberg A, Finkelman FD, Pfeifer K, Zhu J, et al: BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J. 38:e1002932019. View Article : Google Scholar : PubMed/NCBI | |
Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA and Beddington RS: Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol. 22:3794–3802. 2002. View Article : Google Scholar | |
Gonzales-Cope M, Sidoli S, Bhanu NV, Won KJ and Garcia BA: Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics. 17:952016. View Article : Google Scholar : PubMed/NCBI | |
Devaiah BN, Case-Borden C, Gegonne A, Hsu CH, Chen Q, Meerzaman D, Dey A, Ozato K and Singer DS: BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol. 23:540–548. 2016. View Article : Google Scholar | |
Devaiah BN, Gegonne A and Singer DS: Bromodomain 4: A cellular swiss army knife. J Leukoc Biol. 100:679–686. 2016. View Article : Google Scholar | |
Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG, Ozato K, Sims RJ III and Singer DS: BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA. 109:6927–6932. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jha RK, Levens D and Kouzine F: Mechanical determinants of chromatin topology and gene expression. Nucleus. 13:94–115. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kanno T, Kanno Y, LeRoy G, Campos E, Sun HW, Brooks SR, Vahedi G, Heightman TD, Garcia BA, Reinberg D, et al: BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol. 21:1047–1057. 2014. View Article : Google Scholar | |
Farina A, Hattori M, Qin J, Nakatani Y, Minato N and Ozato K: Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol Cell Biol. 24:9059–9069. 2004. View Article : Google Scholar | |
You J, Li Q, Wu C, Kim J, Ottinger M and Howley PM: Regulation of aurora B expression by the bromodomain protein Brd4. Mol Cell Biol. 29:5094–5103. 2009. View Article : Google Scholar | |
Wang R, Cao XJ, Kulej K, Liu W, Ma T, MacDonald M, Chiang CM, Garcia BA and You J: Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci USA. 114:E5352–E5361. 2017.PubMed/NCBI | |
Wu Y, Wang Y, Diao P, Zhang W, Li J, Ge H, Song Y, Li Z, Wang D, Liu L, et al: Therapeutic targeting of BRD4 in head neck squamous cell carcinoma. Theranostics. 9:1777–1793. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu SY, Lee CF, Lai HT, Yu CT, Lee JE, Zuo H, Tsai SY, Tsai MJ, Ge K, Wan Y, et al: Opposing functions of BRD4 isoforms in breast cancer. Mol Cell. 78:1114–1132.e10. 2020. View Article : Google Scholar | |
Drumond-Bock AL and Bieniasz M: The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol Cancer. 20:1452021. View Article : Google Scholar : PubMed/NCBI | |
White ME, Fenger JM and Carson WE III: Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol. 337:48–53. 2019. View Article : Google Scholar | |
Donati B, Lorenzini E and Ciarrocchi A: BRD4 and Cancer: Going beyond transcriptional regulation. Mol Cancer. 17:1642018. View Article : Google Scholar : PubMed/NCBI | |
Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM, Janiszewska M, Huh SJ, Liang Y, Ryan J, et al: Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 529:413–417. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hamad M, Ali A and Muhammad JS: BRD4 regulates the induction and maintenance of cancer stem cells in squamous cell carcinoma. Stem Cell Investig. 9:62022. View Article : Google Scholar : PubMed/NCBI | |
Pagliarini R, Shao W and Sellers WR: Oncogene addiction: Pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 16:280–296. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar | |
Andrieu G, Tran AH, Strissel KJ and Denis GV: BRD4 regulates breast cancer dissemination through Jagged1/Notch1 signaling. Cancer Res. 76:6555–6567. 2016. View Article : Google Scholar : PubMed/NCBI | |
Samani K, Raj Sharma U, Raj Sharma A, Pm M and V S: Role of BRD4 in cancer-A review. J Diagnostic Pathol Oncolo. 5:128–134. 2020. View Article : Google Scholar | |
Shorstova T, Foulkes WD and Witcher M: Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer. 124:1478–1490. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Wang L, Du Y, Liu X, Chen Z, Weng X, Guo J, Chen H, Wang M and Wang X: Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression. Int J Oncol. 53:2503–2517. 2018. | |
Wang J, Quan Y, Lv J, Gong S and Dong D: BRD4 promotes glioma cell stemness via enhancing miR-142-5p-mediated activation of Wnt/β-catenin signaling. Environ Toxicol. 35:368–376. 2020. View Article : Google Scholar | |
Nantajit D, Presta L, Sauter T and Tavassoli M: EGFR-induced suppression of HPV E6/E7 is mediated by microRNA-9-5p silencing of BRD4 protein in HPV-positive head and neck squamous cell carcinoma. Cell Death Dis. 13:9212022. View Article : Google Scholar : PubMed/NCBI | |
Schmitt A, Grimm M, Kreienkamp N, Junge H, Labisch J, Schuhknecht L, Schonfeld C, Gorsch ES, Tibello A, Menck K, et al: BRD4 inhibition sensitizes diffuse large B-cell lymphoma cells to ferroptosis. Blood. 142:1143–1155. 2023. View Article : Google Scholar : PubMed/NCBI | |
Stathis A, Zucca E, Bekradda M, Gomez-Roca C, Delord JP, de La Motte Rouge T, Uro-Coste E, de Braud F, Pelosi G and French CA: Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6:492–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Guo X, Zhuo R, Tao Y, Liang W, Yang R, Chen Y, Cao H, Jia S, Yu J, et al: BRD4 inhibitor MZ1 exerts anti-cancer effects by targeting MYCN and MAPK signaling in neuroblastoma. Biochem Biophys Res Commun. 604:63–69. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zong D, Gu J, Cavalcante GC, Yao W, Zhang G, Wang S, Owonikoko TK, He X and Sun SY: BRD4 levels determine the response of human lung cancer cells to BET degraders that potently induce apoptosis through suppression of Mcl-1. Cancer Res. 80:2380–2393. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bauer K, Berghoff AS, Preusser M, Heller G, Zielinski CC, Valent P and Grunt TW: Degradation of BRD4-a promising treatment approach not only for hematologic but also for solid cancer. Am J Cancer Res. 11:530–545. 2021.PubMed/NCBI | |
Sun Y, Han J, Wang Z, Li X, Sun Y and Hu Z: Safety and efficacy of bromodomain and Extra-Terminal inhibitors for the treatment of hematological malignancies and solid tumors: A systematic study of clinical trials. Front Pharmacol. 11:6210932020. View Article : Google Scholar | |
Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, Bryson BD, Rameseder J, Lee MJ, Blake EJ, et al: The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature. 498:246–250. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ni M, Li J, Zhao H, Xu F, Cheng J, Yu M, Ke G and Wu X: BRD4 inhibition sensitizes cervical cancer to radiotherapy by attenuating DNA repair. Oncogene. 40:2711–2724. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lam FC, Kong YW, Huang Q, Vu Han TL, Maffa AD, Kasper EM and Yaffe MB: BRD4 prevents the accumulation of R-loops and protects against transcription-replication collision events and DNA damage. Nat Commun. 11:40832020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Baek G, Ramanand SG, Sharp A, Gao Y, Yuan W, Welti J, Rodrigues DN, Dolling D, Figueiredo I, et al: BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer. Cell Rep. 22:796–808. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Yin J, Fang Y, Chen J, Jeong KJ, Chen X, Vellano CP, Ju Z, Zhao W, Zhang D, et al: BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency. Cancer Cell. 33:401–416.e8. 2018. View Article : Google Scholar | |
Barrows JK, Lin B, Quaas CE, Fullbright G, Wallace EN and Long DT: BRD4 promotes resection and homology-directed repair of DNA double-strand breaks. Nat Commun. 13:30162022. View Article : Google Scholar : PubMed/NCBI | |
Takashima Y, Kikuchi E, Kikuchi J, Suzuki M, Kikuchi H, Maeda M, Shoji T, Furuta M, Kinoshita I, Dosaka-Akita H, et al: Bromodomain and extraterminal domain inhibition synergizes with WEE1-inhibitor AZD1775 effect by impairing nonhomologous end joining and enhancing DNA damage in nonsmall cell lung cancer. Int J Cancer. 146:1114–1124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tan YF, Wang M, Chen ZY, Wang L and Liu XH: Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis. 11:2392020. View Article : Google Scholar : PubMed/NCBI | |
Miller AL, Fehling SC, Garcia PL, Gamblin TL, Council LN, van Waardenburg R, Yang ES, Bradner JE and Yoon KJ: The BET inhibitor JQ1 attenuates double-strand break repair and sensitizes models of pancreatic ductal adenocarcinoma to PARP inhibitors. EBioMedicine. 44:419–430. 2019. View Article : Google Scholar : PubMed/NCBI | |
He DD, Shang XY, Wang N, Wang GX, He KY, Wang L and Han ZG: BRD4 inhibition induces synthetic lethality in ARID2-deficient hepatocellular carcinoma by increasing DNA damage. Oncogene. 41:1397–1409. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li L, Gao L, Zhou H, Shi C, Zhang X, Zhang D and Liu H: High expression level of BRD4 is associated with a poor prognosis and immune infiltration in esophageal squamous cell carcinoma. Dig Dis Sci. 68:2997–3008. 2023. View Article : Google Scholar | |
Liao YF, Wu YB, Long X, Zhu SQ, Jin C, Xu JJ and Ding JY: High level of BRD4 promotes non-small cell lung cancer progression. Oncotarget. 7:9491–9500. 2016. View Article : Google Scholar | |
Burcher KM, Faucheux AT, Lantz JW, Wilson HL, Abreu A, Salafian K, Patel MJ, Song AH, Petro RM, Lycan T Jr, et al: Prevalence of DNA repair gene mutations in blood and tumor tissue and impact on prognosis and treatment in HNSCC. Cancers (Basel). 13:31182021. View Article : Google Scholar : PubMed/NCBI | |
Moeller BJ, Yordy JS, Williams MD, Giri U, Raju U, Molkentine DP, Byers LA, Heymach JV, Story MD, Lee JJ, et al: DNA repair biomarker profiling of head and neck cancer: Ku80 expression predicts locoregional failure and death following radiotherapy. Clin Cancer Res. 17:2035–2043. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mahjabeen I, Ali K, Zhou X and Kayani MA: Deregulation of base excision repair gene expression and enhanced proliferation in head and neck squamous cell carcinoma. Tumour Biol. 35:5971–5983. 2014. View Article : Google Scholar | |
Bold IT, Specht AK, Droste CF, Zielinski A, Meyer F, Clauditz TS, Munscher A, Werner S, Rothkamm K, Petersen C, et al: DNA damage response during replication correlates with CIN70 score and determines survival in HNSCC patients. Cancers (Basel). 13:11942021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Lai Y, Pan J, Saeed M, Li S, Zhou H, Jiang X, Gao J, Zhu Y, Yu H, et al: PROTAC Prodrug-Integrated nanosensitizer for potentiating radiation therapy of cancer. Adv Mater. e23141322024.doi: 10.1002/adma.202314132 (Epub ahead of print). View Article : Google Scholar | |
Wang J, Wang Y, Mei H, Yin Z, Geng Y, Zhang T, Wu G and Lin Z: The BET bromodomain inhibitor JQ1 radiosensitizes non-small cell lung cancer cells by upregulating p21. Cancer Lett. 391:141–151. 2017. View Article : Google Scholar | |
Garcia PL, Miller AL, Zeng L, van Waardenburg R, Yang ES and Yoon KJ: The BET inhibitor JQ1 potentiates the anticlonogenic effect of radiation in pancreatic cancer Cells. Front Oncol. 12:9257182022. View Article : Google Scholar | |
Kim S, Jeon SH, Han MG, Kang MH and Kim IA: BRD4 inhibition enhances the antitumor effects of radiation therapy in a murine breast cancer model. Int J Mol Sci. 24:130622023. View Article : Google Scholar | |
Santos-de-Frutos K, Segrelles C and Lorz C: Hippo pathway and YAP signaling alterations in squamous cancer of the head and neck. J Clin Med. 8:21312019. View Article : Google Scholar : PubMed/NCBI | |
Choi SK, Hong SH, Kim HS, Shin CY, Nam SW, Choi WS, Han JW and You JS: JQ1, an inhibitor of the epigenetic reader BRD4, suppresses the bidirectional MYC-AP4 axis via multiple mechanisms. Oncol Rep. 35:1186–1194. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hong SH, Eun JW, Choi SK, Shen Q, Choi WS, Han JW, Nam SW and You JS: Epigenetic reader BRD4 inhibition as a therapeutic strategy to suppress E2F2-cell cycle regulation circuit in liver cancer. Oncotarget. 7:32628–32640. 2016. View Article : Google Scholar | |
Zheng B, Gold S, Iwanaszko M, Howard BC, Wang L and Shilatifard A: Distinct layers of BRD4-PTEFb reveal bromodomain-independent function in transcriptional regulation. Mol Cell. 83:2896–2910.e4. 2023. View Article : Google Scholar | |
Itzen F, Greifenberg AK, Bosken CA and Geyer M: Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res. 42:7577–7590. 2014. View Article : Google Scholar : PubMed/NCBI | |
He Y, Ju Y, Hu Y, Wang B, Che S, Jian Y, Zhuo W, Fu X, Cheng Y, Zheng S, et al: Brd4 proteolysis-targeting chimera nanoparticles sensitized colorectal cancer chemotherapy. J Control Release. 354:155–166. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhang Z, Wang C, Huang H and Li Y: BRD4 promotes the migration and invasion of bladder cancer cells through the Sonic hedgehog signaling pathway and enhances cisplatin resistance. Biochem Cell Biol. 100:179–187. 2022. View Article : Google Scholar | |
Lu L, Chen Z, Lin X, Tian L, Su Q, An P, Li W, Wu Y, Du J, Shan H, et al: Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail. Cell Death Differ. 27:255–268. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shafran JS, Jafari N, Casey AN, Gyorffy B and Denis GV: BRD4 regulates key transcription factors that drive epithelial-mesenchymal transition in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 24:268–277. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Cao J and Zhou BP: Twist-BRD4 complex: Potential drug target for basal-like breast cancer. Curr Pharm Des. 21:1256–1261. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Dong Z, Cai J, Zhang C, Shen Z, Ke A, Gao D, Fan J and Shi G: BRD4 promotes tumor growth and epithelial-mesenchymal transition in hepatocellular carcinoma. Int J Immunopathol Pharmacol. 28:36–44. 2015. View Article : Google Scholar | |
Andrieu GP and Denis GV: BET proteins exhibit transcriptional and functional opposition in the Epithelial-to-Mesenchymal transition. Mol Cancer Res. 16:580–586. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tian B, Zhao Y, Sun H, Zhang Y, Yang J and Brasier AR: BRD4 mediates NF-κB-dependent epithelial-mesenchymal transition and pulmonary fibrosis via transcriptional elongation. Am J Physiol Lung Cell Mol Physiol. 311:L1183–L1201. 2016. View Article : Google Scholar | |
Cho HY, Lee SW, Jeon YH, Lee DH, Kim GW, Yoo J, Kim SY and Kwon SH: Combination of ACY-241 and JQ1 synergistically suppresses metastasis of HNSCC via regulation of MMP-2 and MMP-9. Int J Mol Sci. 21:68732020. View Article : Google Scholar | |
Hu Y, Zhou J, Ye F, Xiong H, Peng L, Zheng Z, Xu F, Cui M, Wei C, Wang X, et al: BRD4 inhibitor inhibits colorectal cancer growth and metastasis. Int J Mol Sci. 16:1928–1948. 2015. View Article : Google Scholar | |
Wang L, Wu X, Wang R, Yang C, Li Z, Wang C, Zhang F and Yang P: BRD4 inhibition suppresses cell growth, migration and invasion of salivary adenoid cystic carcinoma. Biol Res. 50:192017. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto T, Hirosue A, Nakamoto M, Yoshida R, Sakata J, Matsuoka Y, Kawahara K, Nagao Y, Nagata M, Takahashi N, et al: BRD4 promotes metastatic potential in oral squamous cell carcinoma through the epigenetic regulation of the MMP2 gene. Br J Cancer. 123:580–590. 2020. View Article : Google Scholar : PubMed/NCBI | |
Griso AB, Acero-Riaguas L, Castelo B, Cebrian-Carretero JL and Sastre-Perona A: Mechanisms of cisplatin resistance in HPV negative head and neck squamous cell carcinomas. Cells. 11:5612022. View Article : Google Scholar : PubMed/NCBI | |
Bonomi M, Patsias A, Posner M and Sikora A: The role of inflammation in head and neck cancer. Adv Exp Med Biol. 816:107–127. 2014. View Article : Google Scholar | |
Gong Z, Liu G, Liu W, Zou H, Song R, Zhao H, Yuan Y, Gu J, Bian J, Zhu J, et al: The epigenetic regulator BRD4 is involved in cadmium-triggered inflammatory response in rat kidney. Ecotoxicol Environ Saf. 224:1126202021. View Article : Google Scholar : PubMed/NCBI | |
Bao Y, Wu X, Chen J, Hu X, Zeng F, Cheng J, Jin H, Lin X and Chen LF: Brd4 modulates the innate immune response through Mnk2-eIF4E pathway-dependent translational control of IκBα. Proc Natl Acad Sci USA. 114:E3993–E4001. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu Y and Vakoc CR: Brd4 is on the move during inflammation. Trends Cell Biol. 24:615–616. 2014. View Article : Google Scholar | |
Jarausch J, Neuenroth L, Andag R, Leha A, Fischer A, Asif AR, Lenz C and Eidizadeh A: Influence of shear stress, inflammation and BRD4 inhibition on human endothelial cells: A holistic proteomic approach. Cells. 11:30862022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhong X, Cao W, Mao M, Li W, Yang H, Li M, Shi M, Zhang Y, Deng Y, et al: JQ1 as a BRD4 inhibitor blocks inflammatory pyroptosis-related acute colon injury induced by LPS. Front Immunol. 12:6093192021. View Article : Google Scholar | |
Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, et al: Suppression of inflammation by a synthetic histone mimic. Nature. 468:1119–1123. 2010. View Article : Google Scholar : PubMed/NCBI | |
Khan YM, Kirkham P, Barnes PJ and Adcock IM: Brd4 is essential for IL-1β-induced inflammation in human airway epithelial cells. PLoS One. 9:e950512014. View Article : Google Scholar : PubMed/NCBI | |
Jing SL, Afshari K and Guo ZC: Inflammatory response-related genes predict prognosis in patients with HNSCC. Immunol Lett. 259:46–60. 2023. View Article : Google Scholar | |
Rassouli A, Saliba J, Castano R, Hier M and Zeitouni AG: Systemic inflammatory markers as independent prognosticators of head and neck squamous cell carcinoma. Head Neck. 37:103–110. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Yuan H, Wang J, Hu X, Liu F, Zhang Y, Jiang B and Zhang W: Prognostic value of systemic inflammatory marker in patients with head and neck squamous cell carcinoma undergoing surgical resection. Future Oncol. 16:559–571. 2020. View Article : Google Scholar | |
Charles KA, Harris BD, Haddad CR, Clarke SJ, Guminski A, Stevens M, Dodds T, Gill AJ, Back M, Veivers D, et al: Systemic inflammation is an independent predictive marker of clinical outcomes in mucosal squamous cell carcinoma of the head and neck in oropharyngeal and non-oropharyngeal patients. BMC Cancer. 16:1242016. View Article : Google Scholar : PubMed/NCBI | |
Roman BR and Aragones A: Epidemiology and incidence of HPV-related cancers of the head and neck. J Surg Oncol. 124:920–922. 2021. View Article : Google Scholar | |
Serrano B, Brotons M, Bosch FX and Bruni L: Epidemiology and burden of HPV-related disease. Best Pract Res Clin Obstet Gynaecol. 47:14–26. 2018. View Article : Google Scholar | |
Betiol J, Villa LL and Sichero L: Impact of HPV infection on the development of head and neck cancer. Braz J Med Biol Res. 46:217–226. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Martel C, Georges D, Bray F, Ferlay J and Clifford GM: Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob Health. 8:e180–e190. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kajitani N, Satsuka A, Kawate A and Sakai H: Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front Microbiol. 3:1522012. View Article : Google Scholar | |
Cricca M, Venturoli S, Leo E, Costa S, Musiani M and Zerbini M: Disruption of HPV 16 E1 and E2 genes in precancerous cervical lesions. J Virol Methods. 158:180–183. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pal A and Kundu R: Human Papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front Microbiol. 10:31162019. View Article : Google Scholar | |
Yu L, Majerciak V and Zheng ZM: HPV16 and HPV18 genome structure, expression, and Post-Transcriptional regulation. Int J Mol Sci. 23:49432022. View Article : Google Scholar | |
Helfer CM, Yan J and You J: The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation. Viruses. 6:3228–3249. 2014. View Article : Google Scholar : PubMed/NCBI | |
McBride AA, McPhillips MG and Oliveira JG: Brd4: Tethering, segregation and beyond. Trends Microbiol. 12:527–529. 2004. View Article : Google Scholar | |
Jang MK, Shen K and McBride AA: Papillomavirus genomes associate with BRD4 to replicate at fragile sites in the host genome. PLoS Pathog. 10:e10041172014. View Article : Google Scholar : PubMed/NCBI | |
McBride AA and Jang MK: Current understanding of the role of the Brd4 protein in the papillomavirus lifecycle. Viruses. 5:1374–1394. 2013. View Article : Google Scholar : PubMed/NCBI | |
McKinney CC, Kim MJ, Chen D and McBride AA: Brd4 activates early viral transcription upon human papillomavirus 18 infection of primary keratinocytes. mBio. 7:e01644–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iftner T, Haedicke-Jarboui J, Wu SY and Chiang CM: Involvement of Brd4 in different steps of the papillomavirus life cycle. Virus Res. 231:76–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Morse MA, Balogh KK, Brendle SA, Campbell CA, Chen MX, Furze RC, Harada IL, Holyer ID, Kumar U, Lee K, et al: BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo. Antiviral Res. 154:158–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li GL, Ming SL, Wang CF, Shi LJ, Su BQ, Wu HT, Zeng L, Han YQ, Liu ZH, et al: BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog. 16:e10084292020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Wang Z, Phuc T, Xu Z, Yang D, Chen Z, Lin Z, Kendrick S, Dai L, Li HY, et al: Oncolytic strategy using new bifunctional HDACs/BRD4 inhibitors against virus-associated lymphomas. PLoS Pathog. 19:e10110892023. View Article : Google Scholar : PubMed/NCBI | |
Cohen EEW, Bell RB, Bifulco CB, Burtness B, Gillison ML, Harrington KJ, Le QT, Lee NY, Leidner R, Lewis RL, et al: The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer. 7:1842019. View Article : Google Scholar : PubMed/NCBI | |
Oosting SF and Haddad RI: Best practice in systemic therapy for head and neck squamous cell carcinoma. Front Oncol. 9:8152019. View Article : Google Scholar | |
Rosenberg AJ and Vokes EE: Optimizing treatment De-Escalation in head and neck cancer: Current and future perspectives. Oncologist. 26:40–48. 2021. View Article : Google Scholar | |
Swain M, Kannan S, Srinivasan S, Agarwal JP and Gupta T: Concurrent Cetuximab-based bioradiotherapy versus Cisplatin-based Chemoradiotherapy in the Definitive Management of Favourable Biology Human Papillomavirus-associated Oropharyngeal Squamous Cell Carcinoma: Systematic Review and Meta-analysis. Clin Oncol (R Coll Radiol). 34:786–795. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lv XX, Zheng XY, Yu JJ, Ma HR, Hua C and Gao RT: EGFR enhances the stemness and progression of oral cancer through inhibiting autophagic degradation of SOX2. Cancer Med. 9:1131–1140. 2020. View Article : Google Scholar : PubMed/NCBI | |
Beck TN, Georgopoulos R, Shagisultanova EI, Sarcu D, Handorf EA, Dubyk C, Lango MN, Ridge JA, Astsaturov I, Serebriiskii IG, et al: EGFR and RB1 as dual biomarkers in HPV-Negative head and neck cancer. Mol Cancer Ther. 15:2486–2497. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alsahafi EN, Thavaraj S, Sarvestani N, Novoplansky O, Elkabets M, Ayaz B, Tavassoli M and Legends MF: EGFR overexpression increases radiotherapy response in HPV-positive head and neck cancer through inhibition of DNA damage repair and HPV E6 downregulation. Cancer Lett. 498:80–97. 2021. View Article : Google Scholar | |
Rieckmann T and Kriegs M: The failure of cetuximab-based de-intensified regimes for HPV-positive OPSCC: A radiobiologists perspective. Clin Transl Radiat Oncol. 17:47–50. 2019. | |
Krishnamurthy S, Ahmed I, Bhise R, Mohanti BK, Sharma A, Rieckmann T, Paterson C and Bonomo P: The dogma of Cetuximab and Radiotherapy in head and neck cancer-A dawn to dusk journey. Clin Transl Radiat Oncol. 34:75–81. 2022. | |
Xu K, Chen D, Qian D, Zhang S, Zhang Y, Guo S, Ma Z and Wang S: AZD5153, a novel BRD4 inhibitor, suppresses human thyroid carcinoma cell growth in vitro and in vivo. Biochem Biophys Res Commun. 499:531–537. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cortiguera MG, Batlle-López A, Albajar M, Delgado MD and León J: MYC as therapeutic target in leukemia and lymphoma. Blood and Lymphatic Cancer: Targets and Therapy. 5:75–91. 2015. | |
Wang C, Zhang Y, Zhou D, Cao G and Wu Y: miR-204 enhances p27 mRNA stability by targeting Brd4 in head and neck squamous cell carcinoma. Oncol Lett. 16:4179–4184. 2018. | |
Zhang W, Ge H, Jiang Y, Huang R, Wu Y, Wang D, Guo S, Li S, Wang Y, Jiang H, et al: Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Lett. 469:510–523. 2020. View Article : Google Scholar | |
Webber LP, Yujra VQ, Vargas PA, Martins MD, Squarize CH and Castilho RM: Interference with the bromodomain epigenome readers drives p21 expression and tumor senescence. Cancer Lett. 461:10–20. 2019. View Article : Google Scholar | |
Dong J, Li J, Li Y, Ma Z, Yu Y and Wang CY: Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma. Nat Commun. 12:39742021. View Article : Google Scholar : PubMed/NCBI | |
Jing C, Liu D, Lai Q, Li L, Zhou M, Ye B, Wu Y, Li H, Yue K, Wu Y, et al: JOSD1 promotes proliferation and chemoresistance of head and neck squamous cell carcinoma under the epigenetic regulation of BRD4. Cancer Cell Int. 21:3752021. View Article : Google Scholar | |
Chen N, Golczer G, Ghose S, Lin B, Langenbucher A, Webb J, Bhanot H, Abt NB, Lin D, Varvares M, et al: YAP1 maintains active chromatin state in head and neck squamous cell carcinomas that promotes tumorigenesis through cooperation with BRD4. Cell Rep. 39:1109702022. View Article : Google Scholar : PubMed/NCBI | |
Leonard B, Brand TM, O'Keefe RA, Lee ED, Zeng Y, Kemmer JD, Li H, Grandis JR and Bhola NE: BET Inhibition overcomes receptor tyrosine Kinase-Mediated cetuximab resistance in HNSCC. Cancer Res. 78:4331–4343. 2018. View Article : Google Scholar : PubMed/NCBI | |
Araujo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR and Vecchi L: Annexin A1 as a regulator of immune response in cancer. Cells. 10:22452021. View Article : Google Scholar : PubMed/NCBI | |
Zhong L, Yang Z, Lei D, Li L, Song S, Cao D and Liu Y: Bromodomain 4 is a potent prognostic marker associated with immune cell infiltration in breast cancer. Basic Clin Pharmacol Toxicol. 128:169–182. 2021. View Article : Google Scholar | |
Chen YR, Ouyang SS, Chen YL, Li P, Xu HW and Zhu SL: BRD4/8/9 are prognostic biomarkers and associated with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY). 12:17541–17567. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee M, Tayyari F, Pinnaduwage D, Bayani J, Bartlett JMS, Mulligan AM, Bull SB and Andrulis IL: Tumoral BRD4 expression in lymph node-negative breast cancer: association with T-bet+ tumor-infiltrating lymphocytes and disease-free survival. BMC Cancer. 18:7502018. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Li P, Zhao L, Wang M, Tong D, Meng Z, Zhang Q, Li Q and Zhang F: Expression and clinical value of PD-L1 which is regulated by BRD4 in tongue squamous cell carcinoma. J Cell Biochem. 121:1855–1869. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jing X, Shao S, Zhang Y, Luo A, Zhao L, Zhang L, Gu S and Zhao X: BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer. Exp Cell Res. 392:1120342020. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Zhong W, Qian J, Zhang J, Xu T, Han R, Han J, Wang C, Song L, Zeng X, et al: Comprehensive analysis of the prognosis and immune infiltrates for the BET protein family reveals the significance of BRD4 in glioblastoma multiforme. Front Cell Dev Biol. 11:10424902023. View Article : Google Scholar | |
Bhola NE, Njatcha C, Hu L, Lee ED, Shiah JV, Kim MO, Johnson DE and Grandis JR: PD-L1 is upregulated via BRD2 in head and neck squamous cell carcinoma models of acquired cetuximab resistance. Head Neck. 43:3364–3373. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang G, Ma Z, Xiong G, Wang W, Huang Z, Wan Y, Xu X, Hoyle RG, Yi C, et al: BET inhibition triggers antitumor immunity by enhancing MHC class I expression in head and neck squamous cell carcinoma. Mol Ther. 30:3394–3413. 2022. View Article : Google Scholar : PubMed/NCBI | |
Suarez-Alvarez B, Morgado-Pascual JL, Rayego-Mateos S, Rodriguez RM, Rodrigues-Diez R, Cannata-Ortiz P, Sanz AB, Egido J, Tharaux PL, Ortiz A, et al: Inhibition of bromodomain and extraterminal domain family proteins ameliorates experimental renal damage. J Am Soc Nephrol. 28:504–519. 2017. View Article : Google Scholar | |
Xia L, Liu JY, Zheng ZZ, Chen YJ, Ding JC, Hu YH, Hu GS, Xia NS and Liu W: BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor T cells in glioblastoma. Mol Ther. 29:3011–3026. 2021. View Article : Google Scholar : PubMed/NCBI | |
Joshi S, Singh AR, Liu KX, Pham TV, Zulcic M, Skola D, Chun HB, Glass CK, Morales GA, Garlich JR, et al: SF2523: Dual PI3K/BRD4 inhibitor blocks tumor immunosuppression and promotes adaptive immune responses in cancer. Mol Cancer Ther. 18:1036–1044. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Fu Y, Yang B, Guo E, Wu Y, Huang J, Zhang X, Xiao R, Li K, Wang B, et al: BRD4 Inhibition by AZD5153 promotes antitumor immunity via depolarizing M2 macrophages. Front Immunol. 11:892020. View Article : Google Scholar | |
Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D, Stanley K, Sinha D, Yeh P, Morison J, et al: BET inhibitor resistance emerges from leukaemia stem cells. Nature. 525:538–542. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M, Deswal S, Cerny-Reiterer S, Peter B, Jude J, et al: Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 525:543–547. 2015. View Article : Google Scholar : PubMed/NCBI | |
Calder J, Nagelberg A, Luu J, Lu D and Lockwood WW: Resistance to BET inhibitors in lung adenocarcinoma is mediated by casein kinase phosphorylation of BRD4. Oncogenesis. 10:272021. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Yan Y, Wang D, Ding D, Ma T, Ye Z, Jimenez R, Wang L, Wu H and Huang H: DUB3 promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4. Mol Cell. 71:592–605. e5942018. View Article : Google Scholar | |
Tai F, Gong K, Song K, He Y and Shi J: Enhanced JunD/RSK3 signalling due to loss of BRD4/FOXD3/miR-548d-3p axis determines BET inhibition resistance. Nat Commun. 11:2582020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wei X, Cao Y and Xing P: ZNF33A promotes tumor progression and BET inhibitor resistance in Triple-Negative breast cancer. Am J Pathol. 192:1458–1469. 2022. View Article : Google Scholar | |
Shu S, Wu HJ, Ge JY, Zeid R, Harris IS, Jovanovic B, Murphy K, Wang B, Qiu X, Endress JE, et al: Synthetic lethal and resistance interactions with BET bromodomain inhibitors in Triple-Negative breast cancer. Mol Cell. 78:1096–1113.e8. 2020. View Article : Google Scholar | |
Luan W, Pang Y, Li R, Wei X, Jiao X, Shi J, Yu J, Mao H and Liu P: Akt/mTOR-Mediated autophagy confers resistance to BET inhibitor JQ1 in ovarian cancer. Onco Targets Ther. 12:8063–8074. 2019. View Article : Google Scholar : PubMed/NCBI | |
Andrikopoulou A, Liontos M, Koutsoukos K, Dimopoulos MA and Zagouri F: Clinical perspectives of BET inhibition in ovarian cancer. Cell Oncol (Dordr). 44:237–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Fan P, Zhao J and Wu H, Jin X and Wu H: FBP1 loss contributes to BET inhibitors resistance by undermining c-Myc expression in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 37:2242018. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, Wang S, Pan CW, Zhu Y, Yan Y, et al: Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 23:1055–1062. 2017. View Article : Google Scholar : PubMed/NCBI | |
Piha-Paul SA, Sachdev JC, Barve M, LoRusso P, Szmulewitz R, Patel SP, Lara PN Jr, Chen X, Hu B, Freise KJ, et al: First-in-Human study of mivebresib (ABBV-075), an Oral Pan-Inhibitor of bromodomain and extra terminal proteins, in patients with Relapsed/Refractory solid tumors. Clin Cancer Res. 25:6309–6319. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal RR, Schweizer MT, Nanus DM, Pantuck AJ, Heath EI, Campeau E, Attwell S, Norek K, Snyder M, Bauman L, et al: A Phase Ib/IIa Study of the Pan-BET Inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic Castration-Resistant prostate cancer. Clin Cancer Res. 26:5338–5347. 2020. View Article : Google Scholar : PubMed/NCBI | |
Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, Zhang L, Bui MH, Sheppard GS, Wang L, et al: Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature. 578:306–310. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ferreira D, Moreira JN and Rodrigues LR: New advances in exosome-based targeted drug delivery systems. Crit Rev Oncol Hematol. 172:1036282022. View Article : Google Scholar | |
Bhome R, Del Vecchio F, Lee GH, Bullock MD, Primrose JN, Sayan AE and Mirnezami AH: Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Lett. 420:228–235. 2018. View Article : Google Scholar | |
Alcitepe I, Salcin H, Karatekin I and Kaymaz BT: HDAC inhibitor Vorinostat and BET inhibitor Plx51107 epigenetic agents' combined treatments exert a therapeutic approach upon acute myeloid leukemia cell model. Med Oncol. 39:2572022. View Article : Google Scholar | |
Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, Dong P and Gong W: BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci. 110:2493–2506. 2019. View Article : Google Scholar | |
Patel MR, Garcia-Manero G, Paquette R, Dinner S, Donnellan WB, Grunwald MR, Ribadeneira MD, Schroeder P, Brevard J, Wilson L, et al: Phase 1 Dose escalation and expansion study to determine safety, tolerability, pharmacokinetics, and pharmacodynamics of the BET inhibitor FT-1101 as a single agent in patients with relapsed or refractory hematologic malignancies. Blood. 134:3907. 2019. View Article : Google Scholar | |
Piha-Paul SA, Hann CL, French CA, Cousin S, Brana I, Cassier PA, Moreno V, de Bono JS, Harward SD, Ferron-Brady G, et al: Phase 1 study of molibresib (GSK525762), a bromodomain and Extra-Terminal domain protein inhibitor, in NUT carcinoma and other solid tumors. JNCI Cancer Spectr. 4:pkz0932020. View Article : Google Scholar : PubMed/NCBI | |
Dawson M, Stein EM, Huntly BJP, Karadimitris A, Kamdar M, Fernandez de Larrea C, Dickinson MJ, Yeh PS-H, Daver N, Chaidos A, et al: A Phase I study of GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) Inhibitor: Results from Part 1 of Phase I/II open label single agent study in patients with acute myeloid leukemia (AML). Blood. 130:13772017. View Article : Google Scholar : PubMed/NCBI | |
Falchook G, Rosen S, LoRusso P, Watts J, Gupta S, Coombs CC, Talpaz M, Kurzrock R, Mita M, Cassaday R, et al: Development of 2 bromodomain and extraterminal inhibitors with distinct pharmacokinetic and pharmacodynamic profiles for the treatment of advanced malignancies. Clin Cancer Res. 26:1247–1257. 2020. View Article : Google Scholar : PubMed/NCBI | |
Watts JM, Hunter AM, Iurlo A, Xicoy B, Palandri F, Reeves B, Vannucchi A, Bose P, Ayala Diaz R, Halpern AB, et al: Bromodomain and extra-terminal (BET) inhibitor INCB057643 (LIMBER-103) in patients (pts) with relapsed or refractory myelofibrosis (R/R MF) and other advanced myeloid neoplasms: A phase 1 study. HemaSphere. 7:e17929062023. View Article : Google Scholar | |
Ameratunga M, Brana I, Bono P, Postel-Vinay S, Plummer R, Aspegren J, Korjamo T, Snapir A and de Bono JS: First-in-human Phase 1 open label study of the BET inhibitor ODM-207 in patients with selected solid tumours. Br J Cancer. 123:1730–1736. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dombret H, Preudhomme C, Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Ethell M, Yee K, Bourdel F, et al: A Phase 1 Study of the BET-Bromodomain inhibitor OTX015 in patients with advanced acute leukemia. Blood. 124:1172014. View Article : Google Scholar | |
Doroshow DB, Eder JP and LoRusso PM: BET inhibitors: A novel epigenetic approach. Ann Oncol. 28:1776–1787. 2017. View Article : Google Scholar | |
Lewin J, Soria JC, Stathis A, Delord JP, Peters S, Awada A, Aftimos PG, Bekradda M, Rezai K, Zeng Z, et al: Phase Ib Trial With Birabresib, a Small-Molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J Clin Oncol. 36:3007–3014. 2018. View Article : Google Scholar | |
Moreno V, Sepulveda JM, Vieito M, Hernandez-Guerrero T, Doger B, Saavedra O, Ferrero O, Sarmiento R, Arias M, De Alvaro J, et al: Phase I study of CC-90010, a reversible, oral BET inhibitor in patients with advanced solid tumors and relapsed/refractory non-Hodgkin's lymphoma. Ann Oncol. 31:780–788. 2020. View Article : Google Scholar | |
Bhattacharya S, Piya S and Borthakur G: Bromodomain inhibitors: What does the future hold? Clin Adv Hematol Oncol. 16:504–515. 2018. | |
Mascarenhas J, Kremyanskaya M, Hoffman R, Bose P, Talpaz M, Harrison CN, Gupta V, Leber B, Sirhan S, Kabir S, et al: MANIFEST, a Phase 2 Study of CPI-0610, a bromodomain and extraterminal domain inhibitor (BETi), as monotherapy or ‘Add-on’ to ruxolitinib, in patients with refractory or intolerant advanced myelofibrosis. Blood. 134:6702019. View Article : Google Scholar | |
Senapati J, Fiskus WC, Daver N, Wilson NR, Ravandi F, Garcia-Manero G, Kadia T, DiNardo CD, Jabbour E, Burger J, et al: Phase I results of bromodomain and Extra-terminal inhibitor PLX51107 in combination with azacitidine in patients with Relapsed/Refractory myeloid malignancies. Clin Cancer Res. 29:4352–4360. 2023. View Article : Google Scholar : PubMed/NCBI | |
Patnaik A, Carvajal RD, Komatsubara KM, Britten CD, Wesolowski R, Michelson G, Alcantar O, Zhang C, Powell B, Severson P, et al: Phase ib/2a study of PLX51107, a small molecule BET inhibitor, in subjects with advanced hematological malignancies and solid tumors. J Clin Oncol. 36:2550. 2018. View Article : Google Scholar | |
Roboz GJ, Desai P, Lee S, Ritchie EK, Winer ES, DeMario M, Brennan B, Nuesch E, Chesne E, Brennan L, et al: A dose escalation study of RO6870810/TEN-10 in patients with acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma. 62:1740–1748. 2021. View Article : Google Scholar | |
Shapiro GI, LoRusso P, Dowlati A, T Do K, Jacobson CA, Vaishampayan U, Weise A, Caimi PF, Eder JP, French CA, et al: A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. Br J Cancer. 124:744–753. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang JSZ, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, Moorthy G, Edlund H, Fabbri G, Sachsenmeier KF, et al: First-in-human study of AZD5153, a small molecule inhibitor of bromodomain protein 4 (BRD4), in patients (pts) with relapsed/refractory (RR) malignant solid tumor and lymphoma: Preliminary data. J Clin Oncol. 37:3085. 2019. View Article : Google Scholar | |
Hilton J, Cristea M, Postel-Vinay S, Baldini C, Voskoboynik M, Edenfield W, Shapiro GI, Cheng ML, Vuky J, Corr B, et al: BMS-986158, a small molecule inhibitor of the bromodomain and extraterminal domain proteins, in patients with selected advanced solid tumors: Results from a Phase 1/2a trial. Cancers (Basel). 14:40792022. View Article : Google Scholar : PubMed/NCBI | |
Brown JA, Bal J, Simeoni M, Williams P, Mander PK, Soden PE, Daga S, Fahy WA, Wong GK, Bloomer JC, et al: A randomized study of the safety and pharmacokinetics of GSK3358699, a mononuclear myeloid-targeted bromodomain and extra-terminal domain inhibitor. Br J Clin Pharmacol. 88:2140–2155. 2022. View Article : Google Scholar | |
Li Y, Xiang J, Zhang J, Lin J, Wu Y and Wang X: Inhibition of Brd4 by JQ1 promotes functional recovery from spinal cord injury by activating autophagy. Front Cell Neurosci. 14:5555912020. View Article : Google Scholar | |
Lee DU, Katavolos P, Palanisamy G, Katewa A, Sioson C, Corpuz J, Pang J, DeMent K, Choo E, Ghilardi N, et al: Nonselective inhibition of the epigenetic transcriptional regulator BET induces marked lymphoid and hematopoietic toxicity in mice. Toxicol Appl Pharmacol. 300:47–54. 2016. View Article : Google Scholar | |
Bakshi S, McKee C, Walker K, Brown C and Chaudhry GR: Toxicity of JQ1 in neuronal derivatives of human umbilical cord mesenchymal stem cells. Oncotarget. 9:33853–33864. 2018. View Article : Google Scholar | |
Leal AS, Williams CR, Royce DB, Pioli PA, Sporn MB and Liby KT: Bromodomain inhibitors, JQ1 and I-BET 762, as potential therapies for pancreatic cancer. Cancer Lett. 394:76–87. 2017. View Article : Google Scholar | |
Piquereau J, Boet A, Pechoux C, Antigny F, Lambert M, Gressette M, Ranchoux B, Gambaryan N, Domergue V, Mumby S, et al: The BET bromodomain inhibitor I-BET-151 induces structural and functional alterations of the heart mitochondria in healthy male mice and rats. Int J Mol Sci. 20:15272019. View Article : Google Scholar | |
Liu CS, Rioja I, Bakr A, Veldwijk MR, Sperk E, Herskind C, Weichenhan D, Prinjha RK, Plass C, Schmezer P, et al: Selective inhibitors of bromodomain BD1 and BD2 of BET proteins modulate radiation-induced profibrotic fibroblast responses. Int J Cancer. 151:275–286. 2022. View Article : Google Scholar : PubMed/NCBI |