Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review)
- Authors:
- Ruobing Li
- Dechun Wang
- Hong Yang
- Leilei Pu
- Xiaohong Li
- Fumei Yang
- Rong Zhu
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: April 15, 2024 https://doi.org/10.3892/or.2024.8736
- Article Number: 77
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ono T, Losada A, Hirano M, Myers MP, Neuwald AF and Hirano T: Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell. 115:109–121. 2003. View Article : Google Scholar | |
Hara K, Kinoshita K, Migita T, Murakami K, Shimizu K, Takeuchi K, Hirano T and Hashimoto H: Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex. EMBO Rep. 20:e471832019. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita K, Kobayashi TJ and Hirano T: Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. Dev Cell. 33:94–106. 2015. View Article : Google Scholar | |
Xiao C, Gong J, Jie Y, Cao J, Chen Z, Li R, Chong Y, Hu B and Zhang Q: NCAPG is a promising therapeutic target across different tumor types. Front Pharmacol. 11:3872020. View Article : Google Scholar | |
Eberlein A, Takasuga A, Setoguchi K, Pfuhl R, Flisikowski K, Fries R, Klopp N, Fürbass R, Weikard R and Kühn C: Dissection of genetic factors modulating fetal growth in cattle indicates a substantial role of the non-SMC condensin I complex, subunit G (NCAPG) gene. Genetics. 183:951–964. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dej KJ, Ahn C and Orr-Weaver TL: Mutations in the Drosophila condensin subunit dCAP-G: Defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics. 168:895–906. 2004. View Article : Google Scholar : PubMed/NCBI | |
Murphy LA and Sarge KD: Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis. Biochem Biophys Res Commun. 377:1007–1011. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Zhang H, Yan Y, Li Y, Che G, Zhou C, Nicot C and Ma H: Correction: NCAPG promotes the oncogenesis and progression of non-small cell lung cancer cells through upregulating LGALS1 expression. Mol Cancer. 21:2212022. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Jiang X, Tang L, Wang J, Zhang D, Cho WC and Duan L: FOXM1/lncRNA TYMSOS/miR-214-3p-mediated high expression of NCAPG correlates with poor prognosis and cell proliferation in non-small cell lung carcinoma. Front Mol Biosci. 8:7857672022. View Article : Google Scholar | |
Fu Q, Yang F, Zhao J, Yang X, Xiang T, Huai G, Zhang J, Wei L, Deng S and Yang H: Bioinformatical identification of key pathways and genes in human hepatocellular carcinoma after CSN5 depletion. Cell Signal. 49:79–86. 2018. View Article : Google Scholar | |
Liu W, Liang B, Liu H, Huang Y, Yin X, Zhou F, Yu X, Feng Q, Li E, Zou Z and Wu L: Overexpression of non-SMC condensin I complex subunit G serves as a promising prognostic marker and therapeutic target for hepatocellular carcinoma. Int J Mol Med. 40:731–738. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Ge C, Fang D, Wei W, Li L, Wei Q and Yu H: NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int. 22:1192022. View Article : Google Scholar | |
Wu C, Huang ZH, Meng ZQ, Fan XT, Lu S, Tan YY, You LM, Huang JQ, Stalin A, Ye PZ, et al: A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation. Chin Med. 16:1212021. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Cui F, Peng L, Wang M, Yang X, Xia C, Li K, Yin H, Zhang Y, Yu Q, et al: Establishing and validating an ADCP-related prognostic signature in pancreatic ductal adenocarcinoma. Aging (Albany NY). 14:6299–6315. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hitti E, Bakheet T, Al-Souhibani N, Moghrabi W, Al-Yahya S, Al-Ghamdi M, Al-Saif M, Shoukri MM, Lánczky A, Grépin R, et al: Systematic analysis of AU-rich element expression in cancer reveals common functional clusters regulated by key RNA-binding proteins. Cancer Res. 76:4068–4080. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Dong M, Wang Z, Li H and Li X: Elevated mRNA expression levels of NCAPG are associated with poor prognosis in ovarian cancer. Cancer Manag Res. 12:5773–5786. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Gao L, Wang C, Wang S, Sun D, Li X, Liu M, Qi Y, Liu J and Lin B: Combining bioinformatics and experiments to identify and verify key genes with prognostic values in endometrial carcinoma. J Cancer. 11:716–732. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Cui Y, Cai Y, Jiang Y and Peng Y: Comprehensive bioinformatics analysis of mRNA expression profiles and identification of a miRNA-mRNA network associated with the pathogenesis of low-grade gliomas. Cancer Manag Res. 13:5135–5147. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Sun C, Chen H, Zhang C, Li W, Wu L, Zhu J, Sun F, Huang J, Wang J, et al: Bioinformatics analysis and validation identify CDK1 and MAD2L1 as prognostic markers of rhabdomyosarcoma. Cancer Manag Res. 12:12123–12136. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ryu B, Kim DS, Deluca AM and Alani RM: Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One. 2:e5942007. View Article : Google Scholar : PubMed/NCBI | |
Xie D, Chen X, Wu H, Ning D, Cao X and Wan C: Prediction of diagnostic gene biomarkers associated with immune infiltration for basal cell carcinoma. Clin Cosmet Investig Dermatol. 15:2657–2673. 2022. View Article : Google Scholar | |
Cohen Y, Gutwein O, Garach-Jehoshua O, Bar-Haim A and Kornberg A: The proliferation arrest of primary tumor cells out-of-niche is associated with widespread downregulation of mitotic and transcriptional genes. Hematology. 19:286–292. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Lin Y, Pan J, Tu X, Xu Y, Li H and Chen Y: NCAPG promotes the progression of lung adenocarcinoma via the TGF-β signaling pathway. Cancer Cell Int. 21:4432021. View Article : Google Scholar | |
Guo ZY and Zhu ZT: NCAPG is a prognostic biomarker associated with vascular invasion in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 25:7238–7251. 2021. | |
Sun DP, Wu CC, Chou CL, Cheng LC, Wang WC, Lin SS, Hung ST, Tian YF, Fang CL and Lin KY: NCAPG deregulation indicates poor patient survival and contributes to colorectal carcinogenesis. Pathol Res Pract. 241:1542382023. View Article : Google Scholar | |
Hou J, Huang P, Xu M, Wang H, Shao Y, Weng X, Liu Y, Chang H, Zhang L and Cui H: NCAPG promotes the progression of glioblastoma by facilitating PARP1-mediated E2F1 transactivation. Neuro Oncol. 25:2023. View Article : Google Scholar | |
Zhang X, Wang H, Han Y, Zhu M, Song Z, Zhan D and Jia J: NCAPG induces cell proliferation in cardia adenocarcinoma via PI3K/AKT signaling pathway. Onco Targets Ther. 13:11315–11326. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Li X, Li J and Li B: Identification of the prognostic biomarkers and their correlations with immune infiltration in colorectal cancer through bioinformatics analysis and in vitro experiments. Heliyon. 9:e171012023. View Article : Google Scholar : PubMed/NCBI | |
Farzaneh M, Ghasemian M, Ghaedrahmati F, Poodineh J, Najafi S, Masoodi T, Kurniawan D, Uddin S and Azizidoost S: Functional roles of lncRNA-TUG1 in hepatocellular carcinoma. Life Sci. 308:1209742022. View Article : Google Scholar | |
Li L, Liu S, Peng L, Zhang Y, Zhang Y, Zeng H, Li G and Zhang C: The identification and preliminary study of lncRNA TUG1 and its related genes in hepatocellular carcinoma. Arch Med Sci. 18:1582–1595. 2019. | |
Liu K, Li Y, Yu B, Wang F, Mi T and Zhao Y: Silencing non-SMC chromosome-associated polypeptide G inhibits proliferation and induces apoptosis in hepatocellular carcinoma cells. Can J Physiol Pharmacol. 96:1246–1254. 2018. View Article : Google Scholar | |
Wang Y, Gao B, Tan PY, Handoko YA, Sekar K, Deivasigamani A, Seshachalam VP, OuYang HY, Shi M, Xie C, et al: Genome-wide CRISPR knockout screens identify NCAPG as an essential oncogene for hepatocellular carcinoma tumor growth. FASEB J. 33:8759–8770. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ai J, Gong C, Wu J, Gao J, Liu W, Liao W and Wu L: MicroRNA-181c suppresses growth and metastasis of hepatocellular carcinoma by modulating NCAPG. Cancer Manag Res. 11:3455–3467. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Shi H, Zhao Z and Xu M: Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC). BMC Urol. 22:1622022. View Article : Google Scholar | |
Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, Kato M, Yamazaki K, Ishida Y, Naya Y, et al: Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer. 117:409–420. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arai T, Okato A, Yamada Y, Sugawara S, Kurozumi A, Kojima S, Yamazaki K, Naya Y, Ichikawa T and Seki N: Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC. Cancer Med. 7:1988–2002. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Zou D, Ni N, Zhang S, Zhang Q and Yang L: Overexpression of NCAPG in ovarian cancer is associated with ovarian cancer proliferation and apoptosis via p38 MAPK signaling pathway. J Ovarian Res. 15:982022. View Article : Google Scholar : PubMed/NCBI | |
Song B, Du J, Song DF, Ren JC and Feng Y: Dysregulation of NCAPG, KNL1, miR-148a-3p, miR-193b-3p, and miR-1179 may contribute to the progression of gastric cancer. Biol Res. 51:442018. View Article : Google Scholar : PubMed/NCBI | |
Sun DP, Lin CC, Hung ST, Kuang YY, Hseu YC, Fang CL and Lin KY: Aberrant expression of NCAPG is associated with prognosis and progression of gastric cancer. Cancer Manag Res. 12:7837–7846. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wolf MM, Kimryn Rathmell W and Beckermann KE: Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene. 39:3413–3426. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Xiao Y, Li H, Zhang AL, Meng LB, Feng L, Zhao ZH, Ni XC, Fan B, Zhang XY, et al: Identification and verification of biomarker in clear cell renal cell carcinoma via bioinformatics and neural network model. Biomed Res Int. 2020:69547932020. | |
Li H, Zheng P, Li Z, Han Q, Zhou B, Wang X and Wang K: NCAPG promotes the proliferation of renal clear cell carcinoma via mediating with CDK1. Dis Markers. 2022:67585952022.PubMed/NCBI | |
Li S, Xuan Y, Gao B, Sun X, Miao S, Lu T, Wang Y and Jiao W: Identification of an eight-gene prognostic signature for lung adenocarcinoma. Cancer Manag Res. 10:3383–3392. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Tian X, Sui X, Li X, Zhao X, Han K, Sun L and Dong Y: Increased expression of NCAPG (Non-SMC condensing I complex subunit G) is associated with progression and poor prognosis of lung adenocarcinoma. Bioengineered. 13:6113–6125. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yang HM, Zhou HC, Peng RR, Niu ZX and Kang CY: PRR11 and SKA2 promote the proliferation, migration and invasion of esophageal carcinoma cells. Oncol Lett. 20:639–646. 2020. View Article : Google Scholar | |
Sun Y, Xu D, Zhang C, Wang Y, Zhang L, Qiao D, Bu Y and Zhang Y: HEDGEHOG/GLI modulates the PRR11-SKA2 bidirectional transcription unit in lung squamous cell carcinomas. Genes (Basel). 12:1202021. View Article : Google Scholar : PubMed/NCBI | |
Moura-Castro LH, Peña-Martínez P, Castor A, Galeev R, Larsson J, Järås M, Yang M and Paulsson K: Sister chromatid cohesion defects are associated with chromosomal copy number heterogeneity in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 60:410–417. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. 2007. View Article : Google Scholar : PubMed/NCBI | |
González F, Boué S and Izpisúa Belmonte JC: Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nat Rev Genet. 12:231–242. 2011. View Article : Google Scholar | |
van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, et al: Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 14:1099–1104. 2012. View Article : Google Scholar | |
Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, et al: Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA. 108:7950–7955. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Zhan Y, Chen X, Wu B and Liu B: Identification of biomarkers for controlling cancer stem cell characteristics in bladder cancer by network analysis of transcriptome data stemness indices. Front Oncol. 9:6132019. View Article : Google Scholar | |
Li J, Zhou M, Huang D, Lin R, Cui X, Chen S, Yao Y, Xian S, Wang S, Fu Q, et al: The recurrent-specific regulation network of prognostic stemness-related signatures in low-grade glioma. Dis Markers. 2023:22439282023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Jiang Y, Hu J, Xu J, Chen L, Zhang G, Zhao J, Zong S, Guo Z, Li X, et al: The U2AF65/circNCAPG/RREB1 feedback loop promotes malignant phenotypes of glioma stem cells through activating the TGF-β pathway. Cell Death Dis. 14:232023. View Article : Google Scholar : PubMed/NCBI | |
Xiang Z, Cha G, Wang Y, Gao J and Jia J: Characterizing the crosstalk of NCAPG with tumor microenvironment and tumor stemness in stomach adenocarcinoma. Stem Cells Int. 2022:18883582022. View Article : Google Scholar | |
Xia X and Li Y: Comprehensive analysis of transcriptome data stemness indices identifies key genes for controlling cancer stem cell characteristics in gastric cancer. Transl Cancer Res. 9:6050–6061. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo SH, Ma L and Chen J: Identification of prognostic markers and potential therapeutic targets in gastric adenocarcinoma by machine learning based on mRNAsi index. J Oncol. 2022:89261272022. View Article : Google Scholar | |
Zhang Z, Qi D, Liu X and Kang P: NCAPG stimulates lung adenocarcinoma cell stemness through aerobic glycolysis. Clin Respir J. 17:884–892. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar : PubMed/NCBI | |
Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jin MZ and Jin WL: The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 5:1662020. View Article : Google Scholar : PubMed/NCBI | |
Wu T and Dai Y: Tumor microenvironment and therapeutic response. Cancer Lett. 387:61–68. 2017. View Article : Google Scholar | |
Xu N, Dong RN, Lin TT, Lin T, Lin YZ, Chen SH, Zhu JM, Ke ZB, Huang F, Chen YH and Xue XY: Development and validation of novel biomarkers related to M2 macrophages infiltration by weighted gene co-expression network analysis in prostate cancer. Front Oncol. 11:6340752021. View Article : Google Scholar | |
Aleshin A and Finn RS: SRC: A century of science brought to the clinic. Neoplasia. 12:599–607. 2010. View Article : Google Scholar | |
Roskoski R Jr: Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun. 324:1155–1164. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Ren L, Chen H, Pan J, Zhang Z, Kuang X, Chen X, Bao W, Lin C, Zhou Z, et al: NCAPG confers trastuzumab resistance via activating SRC/STAT3 signaling pathway in HER2-positive breast cancer. Cell Death Dis. 11:5472020. View Article : Google Scholar : PubMed/NCBI | |
Singh D, Assaraf YG and Gacche RN: Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat. 63:1008512022. View Article : Google Scholar | |
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y and Yang M: Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol Cancer. 19:622020. View Article : Google Scholar : PubMed/NCBI | |
Entezari M, Ghanbarirad M, Taheriazam A, Sadrkhanloo M, Zabolian A, Goharrizi MASB, Hushmandi K, Aref AR, Ashrafizadeh M, Zarrabi A, et al: Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother. 150:1129632022. View Article : Google Scholar : PubMed/NCBI | |
Bao J, Wu Y, Zhang K and Qi H: AC099850.3/NCAPG axis predicts poor prognosis and is associated with resistance to EGFR tyrosine-kinase inhibitors in lung Adenocarcinoma. Int J Gen Med. 15:6917–6930. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Austine-Orimoloye O, Azov AG, Barnes I, Bennett R, et al: Ensembl 2022. Nucleic Acids Res. 50(D1): D988–D995. 2022. View Article : Google Scholar : PubMed/NCBI | |
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW and Li B: Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 6:4252021. View Article : Google Scholar : PubMed/NCBI | |
Gong C, Ai J, Fan Y, Gao J, Liu W, Feng Q, Liao W and Wu L: NCAPG promotes the proliferation of hepatocellular carcinoma through PI3K/AKT signaling. Onco Targets Ther. 12:8537–8552. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grossi I, Salvi A, Baiocchi G, Portolani N and De Petro G: Functional role of microRNA-23b-3p in cancer biology. Microrna. 7:156–166. 2018. View Article : Google Scholar | |
Kou CH, Zhou T, Han XL, Zhuang HJ and Qian HX: Downregulation of mir-23b in plasma is associated with poor prognosis in patients with colorectal cancer. Oncol Lett. 12:4838–4844. 2016. View Article : Google Scholar | |
Li P, Wen J, Ren X, Zhou Y, Xue Y, Yan Z, Li S, Tian H, Tang XG and Zhang GJ: MicroRNA-23b-3p targets non-SMC condensing I complex subunit G to promote proliferation and inhibit apoptosis of colorectal cancer cells via regulation of the PI3K/AKT signaling pathway. Oncol Lett. 22:8122021. View Article : Google Scholar | |
Worby CA and Dixon JE: PTEN. Annu Rev Biochem. 83:641–669. 2014. View Article : Google Scholar : PubMed/NCBI | |
Álvarez-Garcia V, Tawil Y, Wise HM and Leslie NR: Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol. 59:66–79. 2019. View Article : Google Scholar | |
Oh NS, Yoon SH, Lee WK, Choi JY, Min do S and Bae YS: Phosphorylation of CKBBP2/CRIF1 by protein kinase CKII promotes cell proliferation. Gene. 386:147–153. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Ai J, Wang J, Sun C, Lu H, He A, Li M, Liao Y, Lei J, Zhou F, et al: NCAPG promotes the proliferation of hepatocellular carcinoma through the CKII-dependent regulation of PTEN. J Transl Med. 20:3252022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Xu J, Luo H, Meng X, Chen M and Zhu D: Wnt signaling pathway in cancer immunotherapy. Cancer Lett. 525:84–96. 2022. View Article : Google Scholar | |
Rim EY, Clevers H and Nusse R: The Wnt pathway: From signaling mechanisms to synthetic modulators. Annu Rev Biochem. 91:571–598. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Yan Y, Di F, Li W, Yin X and Dong L: Inhibition of NCAPG expression inactivates the Wnt/β-catenin signal to suppresses endometrial cancer cell growth in vitro. Environ Toxicol. 36:2512–2520. 2021. View Article : Google Scholar | |
Zhang X, Zhu M, Wang H, Song Z, Zhan D, Cao W, Han Y and Jia J: Overexpression of NCAPG inhibits cardia adenocarcinoma apoptosis and promotes epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway. Gene. 766:1451632021. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Pu L, Li R and Zhu R: NCAPG is transcriptionally regulated by CBX3 and activates the Wnt/β-catenin signaling pathway to promote proliferation and the cell cycle and inhibit apoptosis in colorectal cancer. J Gastrointest Oncol. 14:900–912. 2023. View Article : Google Scholar | |
Li J, Sun S, Li J, Zhao X, Li Z, Sha T and Cui Z: NCAPG, mediated by miR-378a-3p, regulates cell proliferation, cell cycle progression, and apoptosis of oral squamous cell carcinoma through the GSK-3β/β-catenin signaling. Neoplasma. 68:1201–1211. 2021. View Article : Google Scholar | |
Du W and Searle JS: The rb pathway and cancer therapeutics. Curr Drug Targets. 10:581–589. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin SC, Skapek SX and Lee EY: Genes in the RB pathway and their knockout in mice. Semin Cancer Biol. 7:279–289. 1996. View Article : Google Scholar | |
Nevins JR: The Rb/E2F pathway and cancer. Hum Mol Genet. 10:699–703. 2001. View Article : Google Scholar | |
Schaal C, Pillai S and Chellappan SP: The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res. 121:147–182. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang C, Wang J, Hu W and Feng Z: The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci. 21:83872020. View Article : Google Scholar | |
Huang J: Current developments of targeting the p53 signaling pathway for cancer treatment. Pharmacol Ther. 220:1077202021. View Article : Google Scholar : PubMed/NCBI | |
Dong M, Xu T, Cui X, Li H, Li X and Xia W: NCAPG upregulation mediated by four microRNAs combined with activation of the p53 signaling pathway is a predictor of poor prognosis in patients with breast cancer. Oncol Lett. 21:3232021. View Article : Google Scholar | |
DiDonato JA, Mercurio F and Karin M: NF-κB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oeckinghaus A, Hayden M S and Ghosh S: Crosstalk in NF-κB signaling pathways. Nat Immunol. 12:695–708. 2011. View Article : Google Scholar | |
Swindell WR, Bojanowski K and Chaudhuri RK: A novel fumarate, isosorbide di-(methyl fumarate) (IDMF), replicates astrocyte transcriptome responses to dimethyl fumarate (DMF) but specifically down-regulates genes linked to a reactive phenotype. Biochem Biophys Res Commun. 532:475–481. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang F, Yu H, Wang X, Shi J, Chen Z, Wang H, Wan Z, Fu Q, Hu X, Zuhaer Y, et al: NCAPG promotes tumorigenesis of bladder cancer through NF-κB signaling pathway. Biochem Biophys Res Commun. 622:101–107. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Lee H, Herrmann A, Buettner R and Jove R: Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zou S, Tong Q, Liu B, Huang W, Tian Y and Fu X: Targeting STAT3 in cancer immunotherapy. Mol Cancer. 19:1452020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zheng J, Lin B, Sun H, Lu S, Wang D and Huo H: Knockdown of NCAPG promotes the apoptosis and inhibits the invasion and migration of triple-negative breast cancer MDA-MB-231 cells via regulation of EGFR/JAK/STAT3 signaling. Exp Ther Med. 25:1192023. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar : PubMed/NCBI | |
Derynck R, Turley SJ and Akhurst RJ: TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 18:9–34. 2021. View Article : Google Scholar |