The role of ferroptosis in radiotherapy and combination therapy for head and neck squamous cell carcinoma (Review)
- Authors:
- Yu Feng
- Xiulei Li
- Bingwu Yang
- Maocai Li
- Yongya Du
- Jing Wang
- Siyu Liu
- Lili Gong
- Lianqing Li
- Lei Gao
-
Affiliations: Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, Dongchangfu, Liaocheng, Shandong 252000, P.R. China, Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China, Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China, Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng Dongchangfu People's Hospital, Liaocheng, Shandong 252024, P.R. China, Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Dongchangfu, Liaocheng, Shandong 252000, P.R. China - Published online on: April 18, 2024 https://doi.org/10.3892/or.2024.8738
- Article Number: 79
-
Copyright: © Feng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vousden KH and Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol. 8:275–283. 2007. View Article : Google Scholar | |
Gleber-Netto FO, Zhao M, Trivedi S, Wang J, Jasser S, McDowell C, Kadara H, Zhang J, Wang J, William WN Jr, et al: Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer. 124:84–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI | |
Berkers CR, Maddocks OD, Cheung EC, Mor I and Vousden KH: Metabolic regulation by p53 family members. Cell Metab. 18:617–633. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goldstein I and Rotter V: Regulation of lipid metabolism by p53-fighting two villains with one sword. Trends Endocrinol Metab. 23:567–575. 2012. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI | |
Saraniti C, Speciale R, Santangelo M, Massaro N, Maniaci A, Gallina S, Serra A and Cocuzza S: Functional outcomes after supracricoid modified partial laryngectomy. J Biol Regul Homeost Agents. 33:1903–1907. 2019.PubMed/NCBI | |
Nissi L, Suilamo S, Kytö E, Vaittinen S, Irjala H and Minn H: Recurrence of head and neck squamous cell carcinoma in relation to high-risk treatment volume. Clin Transl Radiat Oncol. 27:139–146. 2021. | |
Ma L, Men Y, Feng L, Kang J, Sun X, Yuan M, Jiang W and Hui Z: A current review of dose-escalated radiotherapy in locally advanced non-small cell lung cancer. Radiol Oncol. 53:6–14. 2019. View Article : Google Scholar | |
Chen X, Comish PB, Tang D and Kang R: Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 9:6371622021. View Article : Google Scholar | |
Gorrini C, Harris IS and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Niu X, Chen R, He W, Chen D, Kang R and Tang D: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 64:488–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, Dai X, Li Z and Wu G: Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res Treat. 50:445–460. 2018. View Article : Google Scholar | |
Shi Y, Wei W, Li L, Wei Q, Jiang F, Xia G and Yu H: The global status of research in breast cancer liver metastasis: A bibliometric and visualized analysis. Bioengineered. 12:12246–12262. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schaue D and McBride WH: Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 12:527–540. 2015. View Article : Google Scholar | |
Sierko E, Hempel D, Zuzda K and Wojtukiewicz MZ: Personalized radiation therapy in cancer pain management. Cancers (Basel). 11:3902019. View Article : Google Scholar | |
Stevens S, Moloney S, Blackmore A, Hart C, Rixham P, Bangiri A, Pooler A and Doolan P: IPEM topical report: Guidance for the clinical implementation of online treatment monitoring solutions for IMRT/VMAT. Phys Med Biol. 68:10.1088/1361–6560/acecd0. 2023. View Article : Google Scholar | |
Gao S, Xu Q, Lan Y and He L: Recurrent trichilemmal carcinoma of the periorbital region treated with IMRT radiotherapy: A case report and a review of literature. Medicine (Baltimore). 102:e340382023. View Article : Google Scholar : PubMed/NCBI | |
Machiels JP, René Leemans C, Golusinski W, Grau C, Licitra L and Gregoire V; EHNS Executive Board: ESMO Guidelines Committee, : ESTRO Executive Board: Reprint of ‘Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up’. Oral Oncol. 113:1050422021. View Article : Google Scholar | |
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, et al: Classification of cell death: Recommendations of the Nomenclature committee on cell death 2009. Cell Death Differ. 16:3–11. 2009. View Article : Google Scholar : PubMed/NCBI | |
Povirk LF: Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst). 5:1199–1212. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mladenov E, Magin S, Soni A and Iliakis G: DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 3:1132013. View Article : Google Scholar | |
Vermorken JB, Remenar E, van Herpen C, Gorlia T, Mesia R, Degardin M, Stewart JS, Jelic S, Betka J, Preiss JH, et al: Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med. 357:1695–1704. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brizel DM and Esclamado R: Concurrent chemoradiotherapy for locally advanced, nonmetastatic, squamous carcinoma of the head and neck: Consensus, controversy, and conundrum. J Clin Oncol. 24:2612–2617. 2006. View Article : Google Scholar | |
Ghosh C, Luong G and Sun Y: A snapshot of the PD-1/PD-L1 pathway. J Cancer. 12:2735–2746. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ferris RL and Licitra L: PD-1 immunotherapy for recurrent or metastatic HNSCC. Lancet. 394:1882–1884. 2019. View Article : Google Scholar | |
Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, et al: Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 17:956–965. 2016. View Article : Google Scholar | |
Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, Soria A, Machiels JP, Mach N, Mehra R, et al: Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3 study. Lancet. 393:156–167. 2019. View Article : Google Scholar | |
Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane P, Bratland Å, et al: Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet. 394:1915–1928. 2019. View Article : Google Scholar | |
Haddad RI, Harrington K, Tahara M, Ferris RL, Gillison M, Fayette J, Daste A, Koralewski P, Zurawski B, Taberna M, et al: Nivolumab plus ipilimumab versus EXTREME Regimen as First-Line treatment for Recurrent/Metastatic squamous cell carcinoma of the head and neck: The final results of CheckMate 651. J Clin Oncol. 41:2166–2180. 2023. View Article : Google Scholar | |
Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington KJ, Kasper S, Vokes EE, Even C, et al: Nivolumab vs investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 81:45–51. 2018. View Article : Google Scholar | |
Wise-Draper TM, Gulati S, Palackdharry S, Hinrichs BH, Worden FP, Old MO, Dunlap NE, Kaczmar JM, Patil Y, Riaz MK, et al: Phase II clinical trial of neoadjuvant and adjuvant pembrolizumab in resectable local-regionally advanced head and neck squamous cell carcinoma. Clin Cancer Res. 28:1345–1352. 2022. View Article : Google Scholar : PubMed/NCBI | |
Druker BJ: David A. Karnofsky Award lecture. Imatinib as a paradigm of targeted therapies. J Clin Oncol. 21 (23 Suppl):239S–245S. 2003. View Article : Google Scholar | |
Xu MJ, Johnson DE and Grandis JR: EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev. 36:463–473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Parmar K, Mohamed A, Vaish E, Thawani R, Cetnar J and Thein KZ: Immunotherapy in head and neck squamous cell carcinoma: An updated review. Cancer Treat Res Commun. 33:1006492022. View Article : Google Scholar : PubMed/NCBI | |
Dougan M and Dranoff G: Immune therapy for cancer. Annu Rev Immunol. 27:83–117. 2009. View Article : Google Scholar | |
Correale P, Botta C, Cusi MG, Del Vecchio MT, De Santi MM, Gori Savellini G, Bestoso E, Apollinari S, Mannucci S, Marra M, et al: Cetuximab ± chemotherapy enhances dendritic cell-mediated phagocytosis of colon cancer cells and ignites a highly efficient colon cancer antigen-specific cytotoxic T-cell response in vitro. Int J Cancer. 130:1577–1589. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maréchal R, De Schutter J, Nagy N, Demetter P, Lemmers A, Devière J, Salmon I, Tejpar S and Van Laethem JL: Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients. BMC Cancer. 10:3402010. View Article : Google Scholar | |
Dechant M, Weisner W, Berger S, Peipp M, Beyer T, Schneider-Merck T, Lammerts van Bueren JJ, Bleeker WK, Parren PW, van de Winkel JG and Valerius T: Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res. 68:4998–5003. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hsu YF, Ajona D, Corrales L, Lopez-Picazo JM, Gurpide A, Montuenga LM and Pio R: Complement activation mediates cetuximab inhibition of non-small cell lung cancer tumor growth in vivo. Mol Cancer. 9:1392010. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar | |
Wang Y, Wang Y, Pan J, Gan L and Xue J: Ferroptosis, necroptosis, and pyroptosis in cancer: Crucial cell death types in radiotherapy and post-radiotherapy immune activation. Radiother Oncol. 184:1096892023. View Article : Google Scholar | |
Stockwell BR, Jiang X and Gu W: Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30:478–490. 2020. View Article : Google Scholar | |
Liang W and Ferrara N: Iron metabolism in the tumor microenvironment: Contributions of innate immune cells. Front Immunol. 11:6268122021. View Article : Google Scholar | |
Galaris D, Barbouti A and Pantopoulos K: Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res. 1866:1185352019. View Article : Google Scholar : PubMed/NCBI | |
He YJ, Liu XY, Xing L, Wan X, Chang X and Jiang HL: Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 241:1199112020. View Article : Google Scholar : PubMed/NCBI | |
Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roh JL, Kim EH, Jang HJ, Park JY and Shin D: Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett. 381:96–103. 2016. View Article : Google Scholar | |
Roh JL, Kim EH, Jang H and Shin D: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11:254–262. 2017. View Article : Google Scholar | |
Kim EH, Shin D, Lee J, Jung AR and Roh JL: CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett. 432:180–190. 2018. View Article : Google Scholar | |
Lin R, Zhang Z, Chen L, Zhou Y, Zou P, Feng C, Wang L and Liang G: Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 381:165–175. 2016. View Article : Google Scholar | |
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar | |
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI | |
Sato H, Tamba M, Ishii T and Bannai S: Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 274:11455–11458. 1999. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar | |
Shi JF, Liu Y, Wang Y, Gao R, Wang Y and Liu J: Targeting ferroptosis, a novel programmed cell death, for the potential of alcohol-related liver disease therapy. Front Pharmacol. 14:11943432023. View Article : Google Scholar | |
Seibt TM, Proneth B and Conrad M: Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 133:144–152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maiorino M, Conrad M and Ursini F: GPx4, Lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 29:61–74. 2018. View Article : Google Scholar | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Xu LG, Li X, Zhai Z and Shu HB: AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem. 277:25617–25623. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marshall KR, Gong M, Wodke L, Lamb JH, Jones DJ, Farmer PB, Scrutton NS and Munro AW: The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity. J Biol Chem. 280:30735–30740. 2005. View Article : Google Scholar : PubMed/NCBI | |
Elguindy MM and Nakamaru-Ogiso E: Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH:Ubiquinone oxidoreductases (NDH-2). J Biol Chem. 290:20815–20826. 2015. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and Stockwell BR: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503. 2016. View Article : Google Scholar | |
Xu J, Wu Y, Song P, Zhang M, Wang S and Zou MH: Proteasome-dependent degradation of guanosine 5′-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation. 116:944–953. 2007. View Article : Google Scholar : PubMed/NCBI | |
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA and Birsoy K: Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 16:1351–1360. 2020. View Article : Google Scholar | |
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP Cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar | |
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ward JF: DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 35:95–125. 1988. View Article : Google Scholar | |
Santivasi WL and Xia F: Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 21:251–259. 2014. View Article : Google Scholar | |
Azzam EI, Jay-Gerin JP and Pain D: Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327:48–60. 2012. View Article : Google Scholar | |
Reisz JA, Bansal N, Qian J, Zhao W and Furdui CM: Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 21:260–292. 2014. View Article : Google Scholar | |
Adjemian S, Oltean T, Martens S, Wiernicki B, Goossens V, Van den Berghe T, Cappe B, Ladik M, Riquet FB, Heyndrickx L, et al: Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis. 11:10032020. View Article : Google Scholar : PubMed/NCBI | |
Srinivas US, Tan BWQ, Vellayappan BA and Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox Biol. 25:1010842019. View Article : Google Scholar | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Mao C, Yan Y, Zhuang L and Gan B: Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 12:836–857. 2021. View Article : Google Scholar | |
Herrera FG, Irving M, Kandalaft LE and Coukos G: Rational combinations of immunotherapy with radiotherapy in ovarian cancer. Lancet Oncol. 20:e417–e433. 2019. View Article : Google Scholar | |
Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9:1673–1685. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar | |
Wang H, An P, Xie E, Wu Q, Fang X, Gao H, Zhang Z, Li Y, Wang X, Zhang J, et al: Characterization of ferroptosis in murine models of hemochromatosis. Hepatology. 66:449–465. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Qiang Z, Chai D, Peng J, Xia Y, Hu R and Jiang H: Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY). 12:12943–12959. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, et al: Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci. 17:2703–2717. 2021. View Article : Google Scholar | |
Bump EA and Brown JM: Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther. 47:117–136. 1990. View Article : Google Scholar | |
Zou Y and Schreiber SL: Progress in understanding ferroptosis and challenges in its targeting for therapeutic benefit. Cell Chem Biol. 27:463–471. 2020. View Article : Google Scholar | |
Feng L, Zhao K, Sun L, Yin X, Zhang J, Liu C and Li B: SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med. 19:3672021. View Article : Google Scholar : PubMed/NCBI | |
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H and Skvortsova II: Therapy resistance mediated by exosomes. Mol Cancer. 18:582019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Sun Y, Bai L, Zhi L, Yang Y, Zhao Q, Chen C, Qi Y, Gao W, He W, et al: RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest. 131:e1520672021. View Article : Google Scholar | |
Yang M, Wu X, Hu J, Wang Y, Wang Y, Zhang L, Huang W, Wang X, Li N, Liao L, et al: COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol. 76:1138–1150. 2022. View Article : Google Scholar | |
Zheng Z, Su J, Bao X, Wang H, Bian C, Zhao Q and Jiang X: Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front Immunol. 14:12472682023. View Article : Google Scholar | |
Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, et al: A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun. 13:22062022. View Article : Google Scholar : PubMed/NCBI | |
Olcina MM, Grand RJ and Hammond EM: ATM activation in hypoxia-causes and consequences. Mol Cell Oncol. 1:e299032014. View Article : Google Scholar | |
Fallone F, Britton S, Nieto L, Salles B and Muller C: ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene. 32:4387–4396. 2013. View Article : Google Scholar : PubMed/NCBI | |
Olcina M, Lecane PS and Hammond EM: Targeting hypoxic cells through the DNA damage response. Clin Cancer Res. 16:5624–5629. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hammond EM, Asselin MC, Forster D, O'Connor JP, Senra JM and Williams KJ: The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol). 26:277–288. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Song X, Yu J, Guo W, Wei L, Liu Y and Wang X: Solute carrier protein family may involve in radiation-induced radioresistance of non-small cell lung cancer. J Cancer Res Clin Oncol. 137:1739–1747. 2011. View Article : Google Scholar | |
Pan X, Lin Z, Jiang D, Yu Y, Yang D, Zhou H, Zhan D, Liu S, Peng G, Chen Z and Yu Z: Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol Lett. 17:3001–3008. 2019. | |
Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L, Song Y, Zhou Y, Zhao X, Zhang Y, et al: SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ. 30:137–151. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ivanov SD, Semenov AL, Kovan'ko EG and Yamshanov VA: Effects of iron ions and iron chelation on the efficiency of experimental radiotherapy of animals with gliomas. Bull Exp Biol Med. 158:800–803. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Lu M, Chen C, Tong X, Li Y, Yang K, Lv H, Xu J and Qin L: Holo-lactoferrin: The link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics. 11:3167–3182. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shibata Y, Yasui H, Higashikawa K, Miyamoto N and Kuge Y: Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLoS One. 14:e02259312019. View Article : Google Scholar : PubMed/NCBI | |
Ye LF, Chaudhary KR, Zandkarimi F, Harken AD, Kinslow CJ, Upadhyayula PS, Dovas A, Higgins DM, Tan H, Zhang Y, et al: Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 15L:469–484. 2020. View Article : Google Scholar | |
Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jhunjhunwala S, Hammer C and Delamarre L: Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 21:298–312. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu L and Fan W: Efficacy of sorafenib combined with radiofrequency ablation in renal cancer and its effects on immunity and inflammation in patients. J BUON. 25:514–519. 2020.PubMed/NCBI | |
Li S, Liu Y, Li J, Zhao X and Yu D: Mechanisms of Ferroptosis and application to head and neck squamous cell carcinoma treatments. DNA Cell Biol. 40:720–732. 2021. View Article : Google Scholar | |
Ma P, Xiao H, Yu C, Liu J, Cheng Z, Song H, Zhang X, Li C, Wang J, Gu Z and Lin J: Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 17:928–937. 2017. View Article : Google Scholar | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar | |
Gout PW, Buckley AR, Simms CR and Bruchovsky N: Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)-cystine transporter: A new action for an old drug. Leukemia. 15:1633–1640. 2001. View Article : Google Scholar | |
Liang F, Wang R, Du Q and Zhu S: An Epithelial-mesenchymal transition hallmark gene-based risk score system in head and neck squamous-cell carcinoma. Int J Gen Med. 14:4219–4227. 2021. View Article : Google Scholar : PubMed/NCBI |