Role of N6‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review)
- Authors:
- Junjie Pan
- Fei Tong
- Ning Ren
- Lanqi Ren
- Yibei Yang
- Feng Gao
- Qiaoping Xu
-
Affiliations: Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China, Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China, Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China, Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China - Published online on: May 13, 2024 https://doi.org/10.3892/or.2024.8747
- Article Number: 88
-
Copyright: © Pan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wasim S, Lee SY and Kim J: Complexities of prostate cancer. Int J Mol Sci. 23:142572022. View Article : Google Scholar : PubMed/NCBI | |
Khan MM, Sharma V and Serajuddin M: Emerging role of miRNA in prostate cancer: A future era of diagnostic and therapeutics. Gene. 888:1477612023. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Wang Z, Chen M, Ma Q, He Y, Wang Y, Li X, Qiu M, Shi L, Zhu S, et al: Real-world effectiveness and safety of goserelin 10.8-mg depot in Chinese patients with localized or locally advanced prostate cancer. Cancer Biol Med. 20:1047–1059. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mamello S, Keamogetswe R, Paballo M, Lemohang G, Ayodeji A and Samson M: Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules. 27:57302022. View Article : Google Scholar | |
Corti M, Lorenzetti S, Ubaldi A, Zilli R and Marcoccia D: Endocrine disruptors and prostate cancer. Int J Mol Sci. 23:12162022. View Article : Google Scholar : PubMed/NCBI | |
Giri VN, Morgan TM, Morris DS, Berchuck JE, Hyatt C and Taplin ME: Genetic testing in prostate cancer management: Considerations informing primary care. CA Cancer J Clin. 72:360–371. 2022. View Article : Google Scholar : PubMed/NCBI | |
Piombino C, Oltrecolli M, Tonni E, Pirola M, Matranga R, Baldessari C, Pipitone S, Dominici M, Sabbatini R and Vitale MG: De novo metastatic prostate cancer: Are we moving toward a personalized treatment? Cancers (Basel). 15:49452023. View Article : Google Scholar : PubMed/NCBI | |
McKay RR, Agarwal N, Matsubara N, Piulats Rodriguez JM, Smith MR, Todenhöfer T, Zhang T, Balar AV, Schaverien C, Sherwood S, et al: 1423TiP CYCLONE 3: A phase III, randomized, double-blind, placebo-controlled study of abemaciclib in combination with abiraterone plus prednisone in men with high-risk metastatic hormone-sensitive prostate cancer (mHSPC). Ann Oncol. 33:S1195–S1196. 2022. View Article : Google Scholar | |
Rathi N, McFarland TR, Nussenzveig R, Agarwal N and Swami U: Evolving role of immunotherapy in metastatic castration refractory prostate cancer. Drugs. 81:191–206. 2021. View Article : Google Scholar : PubMed/NCBI | |
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleo-sides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Han H and Lin S: N6-methyladenosine (m6A) RNA modification in tumor immunity. Cancer Biol Med. 19:385–397. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu ZX, Li LM, Sun HL and Liu SM: Link between m6A modification and cancers. Front Bioeng Biotechnol. 6:892018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Yang J, Tian Z, Zeng J and Shen W: Research progress concerning m6A methylation and cancer. Oncol Lett. 22:7752021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Miao L, Lin H, Zhuo Z and He J: The role of m6A modification in pediatric cancer. Biochim Biophys Acta Rev Cancer. 1877:1886912022. View Article : Google Scholar : PubMed/NCBI | |
Quan C, Belaydi O, Hu J, Li H, Yu A, Liu P, Yi Z, Qiu D, Ren W, Ma H, et al: N6-Methyladenosine in cancer immunotherapy: An undervalued therapeutic target. Front Immunol. 12:6970262021. View Article : Google Scholar : PubMed/NCBI | |
De Silva F and Alcorn J: A tale of two cancers: A current concise overview of breast and prostate cancer. Cancers (Basel). 14:29542022. View Article : Google Scholar : PubMed/NCBI | |
Schatten H: Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv Exp Med Biol. 1095:1–14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, et al: WHO Classification of Tumours Fifth edition: Evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology. 81:447–458. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lotan TL, Toubaji A, Albadine R, Latour M, Herawi M, Meeker AK, DeMarzo AM, Platz EA, Epstein JI, Netto GJ, et al: TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas. Mod Pathol. 22:359–365. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gillard M, Lack J, Pontier A, Gandla D, Hatcher D, Sowalsky AG, Rodriguez-Nieves J, Vander Griend D, Paner G and VanderWeele D: Integrative genomic analysis of coincident cancer foci implicates CTNNB1 and PTEN alterations in ductal prostate cancer. Eur Urol Focus. 5:433–442. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schweizer MT, Antonarakis ES, Bismar TA, Guedes LB, Cheng HH, Tretiakova MS, Vakar-Lopez F, Klemfuss N, Konnick EQ, Mostaghel EA, et al: Genomic characterization of prostatic ductal adenocarcinoma identifies a high prevalence of DNA repair gene mutations. JCO Precis Oncol. 3:PO.18.00327. 2019.PubMed/NCBI | |
Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR and Humphrey PA; Grading Committee, : The 2014 International Society of Urological Pathology (ISUP) consensus Confer-ence on Gleason grading of prostatic carcinoma: Definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 40:244–252. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cimadamore A, Scarpelli M, Raspollini MR, Doria A, Galosi AB, Massari F, Di Nunno V, Cheng L, Lopez-Beltran A and Montironi R: Prostate cancer pathology: What has changed in the last 5 years. Urologia. 87:3–10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vlajnic T and Bubendorf L: Molecular pathology of prostate cancer: A practical approach. Pathology. 53:36–43. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues DN, Butler LM, Estelles DL and de Bono JS: Molecular pathology and prostate cancer therapeutics: From biology to bedside. J Pathol. 232:178–184. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nevo A, Navaratnam A and Andrews P: Prostate cancer and the role of biomarkers. Abdom Radiol (NY). 45:2120–2132. 2019. View Article : Google Scholar : PubMed/NCBI | |
Penghui Y, Le L, Xintao G, Sun T, Miao J, Yuan X, Liu J, Wang Z and Liu B: Identification of RNA-binding protein SNRPA1 for prognosis in prostate cancer. Aging (Albany NY). 13:2895–2911. 2021. | |
Johnson IR, Parkinson-Lawrence EJ, Keegan H, Spillane CD, Barry-O'Crowley J, Watson WR, Selemidis S, Butler LM, O'Leary JJ and Brooks DA: Endosomal gene expression: A new indicator for prostate cancer patient prognosis? Oncotarget. 6:37919–37929. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holt SK, Kolb S, Fu R, Horst R, Feng Z and Stanford JL: Circulating levels of 25-hydroxyvitamin D and prostate cancer prognosis. Cancer Epidemiol. 37:666–670. 2013. View Article : Google Scholar : PubMed/NCBI | |
Izumi K, Shigehara K, Nohara T, Narimoto K, Kadono Y and Mizokami A: Both high and low serum total testosterone levels indicate poor prognosis in patients with prostate cancer. Anticancer Res. 37:5559–5564. 2017.PubMed/NCBI | |
De Nunzio C, Presicce F, Lombardo R, Cancrini F, Petta S, Trucchi A, Gacci M, Cindolo L and Tubaro A: Physical activity as a risk factor for prostate cancer diagnosis: A prospective biopsy cohort analysis. BJU Int. 117:E29–E35. 2016. View Article : Google Scholar : PubMed/NCBI | |
Goris Gbenou MC, Peltier A, Schulman CC and Velthoven R: Increased body mass index as a risk factor in localized prostate cancer treated by radical prostatectomy. Urol Oncol. 34:254.e1–e6. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan WP, Lin C, Chen M and Deane LA: Periprostatic fat: A risk factor for prostate cancer? Urology. 98:107–112. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi JB, Myong JP, Lee Y, Kim I, Kim JH, Hong SH and Ha US: Does increased body mass index lead to elevated prostate cancer risk? It depends on waist circumference. BMC Cancer. 20:5892020. View Article : Google Scholar : PubMed/NCBI | |
Tangen CM, Schenk J, Till C, Goodman PJ, Barrington W, Lucia MS and Thompson IM: Variations in prostate biopsy recommendation and acceptance confound evaluation of risk factors for prostate cancer: Examining race and BMI. Cancer Epidemiol. 63:1016192019. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang Y, Xue T, Yang Z, Kan S, Hao M, Gao Y, Wang D and Liu W: Roles of m6A modification in oral cancer (Review). Int J Oncol. 62:52023. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F and Li F: Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol. 11:452022. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Jia X, Wang Y, Song Z, Wang N, Yang Y and Shi X: M6A classification combined with tumor microenvironment immune characteristics analysis of bladder cancer. Front Oncol. 11:7142672021. View Article : Google Scholar : PubMed/NCBI | |
Zeng J, Zhang H, Tan Y, Wang Z, Li Y and Yang X: Genetic alterations and functional networks of m6A RNA methylation regulators in pancreatic cancer based on data mining. J Transl Med. 19:3232021. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Wu R and Ming L: The role of m6A RNA methylation in cancer. Biomed Pharmacother. 112:1086132019. View Article : Google Scholar : PubMed/NCBI | |
An Y and Duan H: The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Sun Z and Zhang N: Reshaping the role of m6A modification in cancer transcriptome: A review. Cancer Cell Int. 20:3532020. View Article : Google Scholar : PubMed/NCBI | |
Gu Z, Du Y, Zhao X and Wang C: Diagnostic, therapeutic, and prognostic value of the m6A writer complex in hepatocellular carcinoma. Front Cell Dev Biol. 10:8220112022. View Article : Google Scholar : PubMed/NCBI | |
Su S, Li S, Deng T, Gao M, Yin Y, Wu B, Peng C, Liu J, Ma J and Zhang K: Cryo-EM structures of human m6A writer complexes. Cell Res. 32:982–994. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Zhan Y, Zhuo L, Zhang Q, Li G, Li Q, Qi S, Zhu J, Lv Q, Shen Y, et al: Biological functions of m6A methyltransferases. Cell Biosci. 11:152021. View Article : Google Scholar : PubMed/NCBI | |
Huang J and Yin P: Structural Insights into N6-methyladenosine (m6A) modification in the transcriptome. Genomics Proteomics Bioinformatics. 16:85–98. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Mo J, Liao Z, Chen X and Zhang B: The RNA m6A writer WTAP in diseases: Structure, roles, and mechanisms. Cell Death Dis. 13:8522022. View Article : Google Scholar : PubMed/NCBI | |
Balacco DL and Matthias S: The m6A Writer: Rise of a machine for growing tasks. Biochemistry. 58:2019. View Article : Google Scholar : PubMed/NCBI | |
Mathoux J, Henshall DC and Brennan GP: Regulatory mechanisms of the RNA modification m6A and significance in brain function in health and disease. Front Cell Neurosci. 15:6719322021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Qian Y and Jia G: The detection and functions of RNA modification m6A based on m6A writers and erasers. J Biol Chem. 297:100973. 2021. View Article : Google Scholar | |
Li S and Cao L: Demethyltransferase FTO alpha-ketoglutarate dependent dioxygenase (FTO) regulates the proliferation, migration, invasion and tumor growth of prostate cancer by modulating the expression of melanocortin 4 receptor (MC4R). Bioengineered. 13:5598–5612. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu K, Li Y and Xu Y: The FTO m6A demethylase inhibits the invasion and migration of prostate cancer cells by regulating total m6A levels. Life Sci. 271:1191802021. View Article : Google Scholar : PubMed/NCBI | |
Zou L, Chen W, Zhou X, Yang T, Luo J, Long Z, Wu J, Lv D, Mao X and Cen S: N6-methyladenosine demethylase FTO suppressed prostate cancer progression by maintaining CLIC4 mRNA stability. Cell Death Discov. 8:1842022. View Article : Google Scholar : PubMed/NCBI | |
Ding D, Liu G, Gao J and Cao M: Unveiling the m6A methylation regulator links between prostate cancer and periodontitis by transcriptomic analysis. Dis Markers. 2022:40300462022. View Article : Google Scholar : PubMed/NCBI | |
Ji G, Huang C, He S, Gong Y, Song G, Li X and Zhou L: Comprehensive analysis of m6A regulators prognostic value in prostate cancer. Aging (Albany NY). 12:14863–14884. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Xie X, Huang Y, Meng S, Li Y, Wang H and Hu Y: N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer. J Cancer. 12:682–692. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dai XY, Shi L, Li Z, Yang HY, Wei JF and Ding Q: Main N6-methyladenosine readers: YTH family proteins in cancers. Front Oncol. 11:6353292021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chen K, Dong X, Xu Y, Sun Q, Wang H, Chen Z, Liu C, Liu R, Yang Z, et al: YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 55:e131572022. View Article : Google Scholar : PubMed/NCBI | |
Zuyao C, Xiaolin Z, Min X and Jing Z: The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 26:1270–1279. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhou X and Wang X: m6A binding protein YTHDF2 in cancer. Exp Hematol Oncol. 11:212022. View Article : Google Scholar : PubMed/NCBI | |
Zaccara S and Jaffrey SR: A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell. 181:1582–1595.e18. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI | |
Widagdo J, Anggono V and Wong JJL: The multifaceted effects of YTHDC1-mediated nuclear m6A recognition. Trends Genet. 38:325–332. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Zhang L, Cui X, Zheng S and Li R: Roles and mechanisms of the m6A reader YTHDC1 in biological processes and diseases. Cell Death Discov. 8:2372022. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Liao S and Zhu Z: Crystal structure of human YTHDC2 YTH domain. Biochem Biophys Res Commun. 518:678–684. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C and Bohnsack MT: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA. 24:1339–1350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Liu G, Jin H, Chen X, He J, Xiao J, Qin Y, Mao Y and Zhao L: The comprehensive expression and functional analysis of m6A modification ‘readers’ in hepatocellular carcinoma. Aging (Albany NY). 14:6269–6298. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mo L, Meng L, Huang Z, Yi L, Yang N and Li G: An analysis of the role of HnRNP C dysregulation in cancers. Biomark Res. 10:192022. View Article : Google Scholar : PubMed/NCBI | |
Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek Ż, Pan JN, He C, Parisien M and Pan T: Regulation of Co-transcriptional Pre-mRNA Splicing by m6A through the Low-Complexity Protein hnRNPG. Mol Cell. 76:70–81.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Su S, Patil DP, Liu H, Gan J, Jaffrey SR and Ma J: Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 9:4202018. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ramesh-Kumar D and Guil S: The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol. 86:18–31. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song H, Liu D, Wang L, Liu K, Chen C, Wang L, Ren Y, Ju B, Zhong F, Jiang X, et al: Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 21:432022. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Liu Z, She Y, Deng J, Zhong Y, Zhao M, Li S, Xie D, Sun X, Hu X and Chen C: A novel protein encoded by circASK1 ameliorates gefitinib resistance in lung adenocarcinoma by competitively activating ASK1-dependent apoptosis. Cancer Letters. 520:321–331. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Zhang H, Yang D, Min Q, Wang Y, Zhang W and Zhan Q: The m6A-induced lncRNA CASC8 promotes proliferation and chemoresistance via upregulation of hnRNPL in esophageal squamous cell carcinoma. Int J Biol Sci. 18:4824–4836. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang CS, Zhu YQ, Xu QC, Chen S, Huang Y, Zhao G, Ni X, Liu B, Zhao W and Yin XY: YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation. Clin Transl Med. 12:e8482022. View Article : Google Scholar : PubMed/NCBI | |
Cucciniello L, Gerratana L, Del Mastro L and Puglisi F: Tailoring adjuvant endocrine therapy in early breast cancer: When, how, and how long? Cancer Treat Rev. 110:1024452022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Gonzalez G, Dai X, Miao W, Yuan J, Huang M, Bade D, Li L, Sun Y and Wang Y: Adenylate Kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m6A-Based epitranscriptomic mechanism. Mol Ther. 28:2593–2604. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li F, Chen S, Yu J, Gao Z, Sun Z, Yi Y, Long T, Zhang C, Li Y, Pan Y, et al: Interplay of m6 A and histone modifications contributes to temozolomide resistance in glioblastoma. Clin Transl Med. 11:e5532021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Ye K, Li X, Liu X, Peng M, Chen F, Xiong W, Wang Y and Zhu L: YTHDC1 is downregulated by the YY1/HDAC2 complex and controls the sensitivity of ccRCC to sunitinib by targeting the ANXA1-MAPK pathway. J Exp Clin Cancer Res. 41:2502022. View Article : Google Scholar : PubMed/NCBI | |
Cotter KA, Gallon J, Uebersax N, Rubin P, Meyer KD, Piscuoglio S, Jaffrey SR and Rubin MA: Mapping of m6A and its regulatory targets in prostate cancer reveals a METTL3-Low induction of therapy resistance. Mol Cancer Res. 19:1398–1411. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang SY and Zeng Y: Research progress of m6A methylation in prostate cancer. Asian J Androl. 25:166–170. 2023. View Article : Google Scholar : PubMed/NCBI | |
Haigh DB, Woodcock CL, Lothion-Roy J, Harris AE, Metzler VM, Persson JL, Robinson BD, Khani F, Alsaleem M, Ntekim A, et al: The METTL3 RNA Methyltransferase regulates transcriptional networks in prostate cancer. Cancers (Basel). 14:51482022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Pan C, Wang X, Xu D, Ma Y, Hu J, Chen P, Xiang Z, Rao Q and Han X: Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics. 11:7640–7657. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Yang F, Zhan H, Situ J, Li W, Mao Y and Luo Y: RNA m6A Methyltransferase METTL3 promotes the growth of prostate cancer by regulating hedgehog pathway. Onco Targets Ther. 12:9143–9152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma XX, Cao ZG and Zhao SL: m6A methyltransferase METTL3 promotes the progression of prostate cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci. 24:3565–3571. 2020.PubMed/NCBI | |
Wang D, Wang X, Huang B, Zhao Y, Tu W, Jin X, Shao Y, Zhu Y and Lu G: METTL3 promotes prostate cancer progression by regulating miR-182 maturation in m6A-dependent manner. Andrologia. 54:1581–1591. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Li W, Weng Y, Hua B, Gu X, Lu C, Xu B, Xu H and Wang Z: METTL3-Mediated m6A Modification of lncRNA MALAT1 facilitates prostate cancer growth by activation of PI3K/AKT signaling. Cell Transplant. 31:96368972211229972022. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Du Y, Wang L and Liu X: The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer. 11:3588–3595. 2020. View Article : Google Scholar : PubMed/NCBI | |
Honggui M, Facai Z, Quliang Z and Jianquan H: METTL3-mediated m6A modification of KIF3C-mRNA promotes prostate cancer progression and is negatively regulated by miR-320d. Aging (Albany NY). 13:22332–22344. 2021.PubMed/NCBI | |
Jia G, Wang X, Wu W, Zhang Y, Chen S, Zhao J, Zhao W, Li W, Sun X and Han B: LXA4 enhances prostate cancer progression by facilitating M2 macrophage polarization via inhibition of METTL3. Int Immunopharmacol. 107:1085862022. View Article : Google Scholar : PubMed/NCBI | |
Wu LS, Qian JY, Wang M and Yang H: Identifying the role of Wilms tumor 1 associated protein in cancer prediction using integrative genomic analyses. Mol Med Rep. 14:2823–2831. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kong Z, Lu Y, Wan X, Luo J, Li D, Huang Y, Wang C, Li Y and Xu Y: Comprehensive characterization of Androgen-responsive circRNAs in prostate cancer. Life (Basel). 11:10962021.PubMed/NCBI | |
Su H, Wang Y and Li H: RNA m6A methylation regulators Multi-Omics analysis in prostate cancer. Front Genet. 12:7680412021. View Article : Google Scholar : PubMed/NCBI | |
Salgado-Montilla JL, Rodriguez-Caban JL, Sanchez-Garcia J, Sanchez-Ortiz R and Irizarry-Ramirez M: Impact of FTO SNPs rs9930506 and rs9939609 in prostate cancer severity in a cohort of Puerto Rican men. Arch Cancer Res. 5:1482017. View Article : Google Scholar : PubMed/NCBI | |
Lewis SJ, Murad A, Chen L, Davey Smith G, Donovan J, Palmer T, Hamdy F, Neal D, Lane JA, Davis M, et al: Associations between an obesity related genetic variant (FTO rs9939609) and prostate cancer risk. PLoS One. 5:e134852010. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Huang X, Yang M, Li M and Zheng J: Association between the FTOrs8050136 polymorphism and cancer risk: A meta-analysis. Fam Cancer. 15:145–153. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Geybels MS, Leonardson A, Rubicz R, Kolb S, Yan Q, Klotzle B, Bibikova M, Hurtado-Coll A, Troyer D, et al: Epigenome-wide tumor DNA methylation profiling identifies novel prognostic biomarkers of metastatic-lethal progression in men diagnosed with clinically localized prostate cancer. Clin Cancer Res. 23:311–319. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xie H, Ying Y, Chen H, Yan H, He L, Xu M, Xu X, Liang Z, Liu B, et al: YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 19:1522020. View Article : Google Scholar : PubMed/NCBI | |
Du C, Lv C, Feng Y and Yu S: Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. J Exp Clin Cancer Res. 39:2232020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Meng S, Xu M, Wang S, He L, Xu X, Wang X and Xie L: Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels. Oncotarget. 9:3752–3764. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen J, Gao WQ and Yang R: METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism. Cell Death Discov. 8:1432022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zhong J, Zeng J, Duan X, Lu J, Sun X, Liu Q, Liang Y, Lin Z, Zhong W, et al: Characterization of the m6A-Associated tumor immune microenvironment in prostate cancer to aid immunotherapy. Front Immunol. 12:7351702021. View Article : Google Scholar : PubMed/NCBI | |
Barros-Silva D, Lobo J, Guimarães-Teixeira C, Carneiro I, Oliveira J, Martens-Uzunova ES, Henrique R and Jerónimo C: VIRMA-Dependent N6-Methyladenosine modifications regulate the expression of long Non-coding RNAs CCAT1 and CCAT2 in prostate cancer. Cancers (Basel). 12:7712020. View Article : Google Scholar : PubMed/NCBI | |
Li P, Shi Y, Gao D, Xu H, Zou Y, Wang Z and Li W: ELK1-mediated YTHDF1 drives prostate cancer progression by facilitating the translation of Polo-like kinase 1 in an m6A dependent manner. Int J Biol Sci. 18:6145–6162. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Lu Y, Duan D, Wang H, Man G, Kang C, Abulimiti K and Li Y: Systematic investigation of mRNA N6-Methyladenosine machinery in primary prostate cancer. Disease Markers. 2020:88334382020. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Jiang HY, Yuan T, Luo J, Zhou WD, Jiang QQ and Wu D: Enzalutamide-Induced Upregulation of PCAT6 promotes prostate cancer neuroendocrine differentiation by regulating miR-326/HNRNPA2B1 axis. Front Onco. 11:6500542021. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Qi F, Li L, Yu B, Cheng Y, Ge M, Qin C and Li X: LncNAP1L6 activates MMP pathway by stabilizing the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther. 30:209–218. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y and Peng X: m6A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 11:e4262021. View Article : Google Scholar : PubMed/NCBI | |
Yu YZ, Lv DJ, Wang C, Song XL, Xie T, Wang T, Li ZM, Guo JD, Fu DJ, Li KJ, et al: Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p. Mol Cancer. 21:122022. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Yi X, Li J, Zhang T, Liao D, You J and Ai J: RNA m6A modification in prostate cancer: A new weapon for its diagnosis and therapy. Biochim Biophys Acta Rev Cancer. 1878:1889612023. View Article : Google Scholar : PubMed/NCBI | |
Altschuler J, Stockert JA and Kyprianou N: Non-Coding RNAs set a new phenotypic frontier in prostate cancer metastasis and resistance. Int J Mol Sci. 22:21002021. View Article : Google Scholar : PubMed/NCBI | |
Alahdal M, Perera RA, Moschovas MC, Patel V and Perera RJ: Current advances of liquid biopsies in prostate cancer: Molecular biomarkers. Mol Ther Oncolytics. 30:27–38. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ruiz C, Alborelli I, Manzo M, Calgua B, Keller EB, Vuaroqueaux V, Quagliata L, Rentsch CA, Spagnoli GC, Diener PA, et al: Critical evaluation of transcripts and long noncoding RNA expression levels in prostate cancer following radical prostatectomy. Pathobiology. 90:400–408. 2023. View Article : Google Scholar : PubMed/NCBI | |
Heyn GS, Corrêa LH and Magalhães KG: The impact of adipose Tissue-derived miRNAs in metabolic syndrome, obesity, and cancer. Front Endocrinol (Lausanne). 11:5638162020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liu B, Wang S, Li J and Ge X: MiR-141-3p promotes malignant progression in prostate cancer through AlkB homolog 5-mediated m6A modification of protein arginine methyltransferase 6. Chin J Physiol. 66:43–51. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Shen Y, Jia G, Deng Z, Shi F, Jing Y and Xia S: Activation of the HNRNPA2B1/miR-93-5p/FRMD6 axis facilitates prostate cancer progression in an m6A-dependent manner. J Cancer. 14:1242–1256. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wen S, Wei Y, Zen C, Xiong W, Niu Y and Zhao Y: Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer. 19:1712020. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Luo Y, Zhang F and Ma L: Exosome-derived lncRNA A1BG-AS1 attenuates the progression of prostate cancer depending on ZC3H13-mediated m6A modification. Cell Division. 19:1712024. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Wang R, Zheng Q, Shen D, Wang H, Lu Z, Luo W, Xie H, Ren L, Jiang M, et al: circPDE5A regulates prostate cancer metastasis via controlling WTAP-dependent N6-methyladenisine methylation of EIF3C mRNA. J Exp Clin Cancer Res. 41:1872022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J and Sun Z: The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs. Mol Cancer. 19:1052020. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Li P, Xie Q, Wu Y, Qin F, Liao D, Zeng K and Wang K: n6-methyladenosine-modified circular RNA family with sequence similarity 126, member A affects cholesterol synthesis and malignant progression of prostate cancer cells by targeting microRNA-505-3p to mediate calnexin. J Cancer. 15:966–980. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kong Z, Lu Y, Yang Y, Chang K, Lin Y, Huang Y, Wang C, Zhang L, Xu W, Zhao S and Li Y: m6A-Mediated biogenesis of circDDIT4 inhibits prostate cancer progression by sequestrating ELAVL1/HuR. Mol Cancer Res. 21:1342–1355. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Long Z, Yang T, Wang S, Zhong W, Hu F, Teoh JY, Lu J and Mao X: M6A-modified circRBM33 promotes prostate cancer progression via PDHA1-mediated mitochondrial respiration regulation and presents a potential target for ARSI therapy. Int J Biol Sci. 19:1543–1563. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zhu H, Luo C, Yan Z, Zheng G, Zou X, Zou J and Zhang G: The role of RNA modification in urological cancers: Mechanisms and clinical potential. Discov Oncol. 14:2352023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Hu X, Yu H, Sun H, Zhang L and Shao C: The FTO mediated N6-methyladenosine modification of DDIT4 regulation with tumorigenesis and metastasis in prostate cancer. Research (Wash D C). 7:03132024.PubMed/NCBI | |
Zhang S, Lv C, Niu Y, Li C, Li X, Shang Y, Zhang Y, Zhang Y, Zhang Y and Zeng Y: RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 14:912023. View Article : Google Scholar : PubMed/NCBI | |
Bhattarai DP and Aguilo F: m6A RNA immunoprecipitation followed by High-Throughput sequencing to map N6-Methyladenosine. Methods Mol Biol. 2404:355–362. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Chen J, Lin Z, Liu Q, Zhong C, Cai Z, Jia Z, Zhong W, Liang Y and Cai C: A prognostic signature consisting of N6-methyladenosine modified mRNAs demonstrates clinical potential in prediction of biochemical recurrence and guidance on precision therapy in prostate cancer. Transl Oncol. 33:1016702023. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Yin W, Cai Z, Luo H, Liu Q, Zhong C, Chen J, Lin Z, Huang Y, Liang Z, et al: N6-methyladenosine modified lncRNAs signature for stratification of biochemical recurrence in prostate cancer. Hum Genet. Sep 27–2023.doi: 10.1007/s00439-023-02603-8 (Epub ahead of print). View Article : Google Scholar | |
Azhati B, Reheman A, Dilixiati D and Rexiati M: FTO-stabilized miR-139-5p targets ZNF217 to suppress prostate cancer cell malignancies by inactivating the PI3K/Akt/mTOR signal pathway. Arch Biochem Biophys. 741:1096042023. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Chai K, Zhu H, Luo C, Zou X, Zou J and Zhang G: The role of the methyltransferase METTL3 in prostate cancer: A potential therapeutic target. BMC Cancer. 24:82024. View Article : Google Scholar : PubMed/NCBI | |
Ye X, Wang R, Yu X, Wang Z, Hu H and Zhang H: m6A/m1A/m5C/m7G-related methylation modification patterns and immune characterization in prostate cancer. Front Pharmacol. 13:10307662022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Sun H, Zheng J and Shao C: Analysis of RNA m6A methylation regulators and tumour immune cell infiltration characterization in prostate cancer. Artif Cells Nanomed Biotechnol. 49:407–435. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wen S, Li H, Pan CW, Wei Y, Huang T, Li Z, Yang Y, Fan S and Zhang Y: Enhancer RNA promotes resistance to radiotherapy in bone-metastatic prostate cancer by m6A modification. Theranostics. 13:596–610. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lan Q, Liu PY, Bell JL, Wang JY, Hüttelmaier S, Zhang XD, Zhang L and Liu T: The emerging roles of RNA m6A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance. Cancer Res. 81:3431–3440. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Zhao R, Guan X and Wang X: The emerging roles and mechanism of N6-methyladenosine (m6A) modifications in urologic tumours progression. Front Pharmacol. 14:11924952023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wu R, Chen W, Liu Y, Liao X, Zeng B, Guo G, Lou F, Xiang Y, Wang Y and Wang X: Curcumin prevents obesity by targeting TRAF4-induced ubiquitylation in m6A-dependent manner. EMBO Rep. 22:e521462021. View Article : Google Scholar : PubMed/NCBI | |
Choi YH, Han DH, Kim SW, Kim MJ, Sung HH, Jeon HG, Jeong BC, Seo SI, Jeon SS, Lee HM and Choi HY: A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate. 79:614–621. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, He SH, Li LY, Xi S, Weng H, Zhang JH, Wang DQ, Guo MM, Zhang H, Wang SY, et al: A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m6A reader YTHDC1. Cell Death Dis. 14:72023. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Liu Z, Wang J, Li L, Wang F, Zhu Z and Wang X: Nanomedicine for combination urologic cancer immunotherapy. Pharmaceutics. 15:5462023. View Article : Google Scholar : PubMed/NCBI | |
Barbezan AB, Rosero WAA, Vieira DP, Rigo MEZ, da Silva GD, Rodrigues AA, de Almeida LF, da Silva FFA, Rivera AG, da Silva NG, et al: Radioactive gold nanoparticles coated with BSA: A promising approach for prostate cancer treatment. Nanotheranostics. 8:112–126. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li S, Ma Y, Ma C, Shi L, Li F and Chang L: NIR–triggerable self-assembly multifunctional nanocarriers to enhance the tumor penetration and photothermal therapy efficiency for castration-resistant prostate cancer. Discover Nano. 18:462023. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Wu Y, Xu X, Fan X, Sun C, Chen X, Xia J, Bai S, Qu L, Lu H, et al: Microwave triggered multifunctional nanoplatform for targeted photothermal-chemotherapy in castration-resistant prostate cancer. Nano Res. 16:9688–9700. 2023. View Article : Google Scholar | |
Swami U, McFarland TR, Nussenzveig R and Agarwal N: Advanced prostate cancer: Treatment advances and future directions. Trends Cancer. 6:702–715. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nie Q, Wu X, Huang Y, Guo T, Kuang J and Du C: RNA N6-methyladenosine-modified-binding protein YTHDF1 promotes prostate cancer progression by regulating androgen function-related gene TRIM68. Eur J Med Res. 28:5522023. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Ye M, Liu B, Wei M, Ma D and Dong K: m6A Modification: A Double-Edged sword in tumor development. Front Oncol. 11:6793672021. View Article : Google Scholar : PubMed/NCBI | |
Xu P and Ge R: Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J Med Chem. 230:1141182022. View Article : Google Scholar : PubMed/NCBI |