Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review)
- Authors:
- Yi-Fan Dong
- Jiaheng Zhang
- Jin-Hong Zhou
- Yi-Li Xiao
- Wan-Juan Pei
- Hui-Ping Liu
-
Affiliations: College of Integrative Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China - Published online on: July 3, 2024 https://doi.org/10.3892/or.2024.8771
- Article Number: 112
This article is mentioned in:
Abstract
Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet. 39:359–407. 2005. View Article : Google Scholar : PubMed/NCBI | |
Copeland DE and Dalton AJ: An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol. 5:393–396. 1959. View Article : Google Scholar : PubMed/NCBI | |
Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 280:1763–1766. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Carvalho P and Voeltz GK: Here, there, and everywhere: The importance of ER membrane contact sites. Science. 361:eaan58352018. View Article : Google Scholar : PubMed/NCBI | |
Lev S: Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 4:a0133002012. View Article : Google Scholar : PubMed/NCBI | |
Hoppins S and Nunnari J: Cell biology. Mitochondrial dynamics and apoptosis-the ER connection. Science. 337:1052–1054. 2012. View Article : Google Scholar : PubMed/NCBI | |
Belosludtsev KN, Dubinin MV, Belosludtseva NV and Mironova GD: Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry (Mosc). 84:593–607. 2019. View Article : Google Scholar : PubMed/NCBI | |
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto R: Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006. View Article : Google Scholar : PubMed/NCBI | |
Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T and Pizzo P: On the role of mitofusin 2 in endoplasmic reticulum-mitochondria tethering. Proc Natl Acad Sci USA. 114:E2266–E2267. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gibellini F and Smith TK: The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 62:414–428. 2010. View Article : Google Scholar : PubMed/NCBI | |
Puglielli L, Konopka G, Pack-Chung E, Ingano LA, Berezovska O, Hyman BT, Chang TY, Tanzi RE and Kovacs DM: Acyl-coenzyme A: Cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol. 3:905–912. 2001. View Article : Google Scholar : PubMed/NCBI | |
El Alwani M, Wu BX, Obeid LM and Hannun YA: Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol Ther. 112:171–183. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nikolova-Karakashian M, Karakashian A and Rutkute K: Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem. 49:469–486. 2008. View Article : Google Scholar : PubMed/NCBI | |
Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J and Voeltz GK: ER tubules mark sites of mitochondrial division. Science. 334:358–362. 2011. View Article : Google Scholar : PubMed/NCBI | |
Murley A, Sarsam RD, Toulmay A, Yamada J, Prinz WA and Nunnari J: Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J Cell Biol. 209:539–548. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ishihara N, Eura Y and Mihara K: Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 117:6535–6546. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ainbinder A, Boncompagni S, Protasi F and Dirksen RT: Role of mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle. Cell Calcium. 57:14–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Basso V, Marchesan E, Peggion C, Chakraborty J, von Stockum S, Giacomello M, Ottolini D, Debattisti V, Caicci F, Tasca E, et al: Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res. 138:43–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
Okamoto K and Shaw JM: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 39:503–536. 2005. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Kepp O, Trojel-Hansen C and Kroemer G: Mitochondrial control of cellular life, stress, and death. Circ Res. 111:1198–1207. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar : PubMed/NCBI | |
Area-Gomez E and Schon EA: On the pathogenesis of Alzheimer's disease: The MAM hypothesis. FASEB J. 31:864–867. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Nguyen M, Chang NC and Shore GC: Fis1, Bap31 and the kiss of death between mitochondria and endoplasmic reticulum. EMBO J. 30:451–452. 2011. View Article : Google Scholar : PubMed/NCBI | |
MacAskill AF and Kittler JT: Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20:102–112. 2010. View Article : Google Scholar : PubMed/NCBI | |
Upton JP, Austgen K, Nishino M, Coakley KM, Hagen A, Han D, Papa FR and Oakes SA: Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol. 28:3943–3951. 2008. View Article : Google Scholar : PubMed/NCBI | |
Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, et al: ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 129:1337–1349. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li J, Lee B and Lee AS: Endoplasmic reticulum stress-induced apoptosis: Multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem. 281:7260–7270. 2006. View Article : Google Scholar : PubMed/NCBI | |
Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar : PubMed/NCBI | |
Area-Gomez E and Schon EA: On the pathogenesis of Alzheimer's disease: The MAM hypothesis. FASEB J. 31:864–867. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Nguyen M, Chang NC and Shore GC: Fis1, Bap31 and the kiss of death between mitochondria and endoplasmic reticulum. EMBO J. 30:451–452. 2011. View Article : Google Scholar : PubMed/NCBI | |
Siskind LJ, Kolesnick RN and Colombini M: Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 277:26796–26803. 2002. View Article : Google Scholar : PubMed/NCBI | |
Coleman RA, Lewin TM, Van Horn CG and Gonzalez-Baró MR: Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr. 132:2123–2126. 2002. View Article : Google Scholar : PubMed/NCBI | |
Larsen BD and Sørensen CS: The caspase-activated DNase: Apoptosis and beyond. FEBS J. 284:1160–1170. 2017. View Article : Google Scholar : PubMed/NCBI | |
de Brito OM and Scorrano L: Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456:605–610. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mazure NM: VDAC in cancer. Biochim Biophys Acta Bioenerg. 1858:665–673. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vinay Kumar C, Kumar KM, Swetha R, Ramaiah S and Anbarasu A: Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis. J Theor Biol. 354:72–80. 2014. View Article : Google Scholar : PubMed/NCBI | |
Formosa LE and Ryan MT: Mitochondrial fusion: Reaching the end of mitofusin's tether. J Cell Biol. 215:597–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Di Mattia T, Wilhelm LP, Ikhlef S, Wendling C, Spehner D, Nominé Y, Giordano F, Mathelin C, Drin G, Tomasetto C and Alpy F: Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Rep. 19:e454532018. View Article : Google Scholar : PubMed/NCBI | |
Lim Y, Cho IT, Schoel LJ, Cho G and Golden JA: Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann Neurol. 78:679–696. 2015. View Article : Google Scholar : PubMed/NCBI | |
Calì T, Ottolini D, Negro A and Brini M: α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem. 287:17914–17929. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ma X, Fujioka H, Liu J, Chen S and Zhu X: DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proc Natl Acad Sci USA. 116:25322–25328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stoica R, Paillusson S, Gomez-Suaga P, Mitchell JC, Lau DH, Gray EH, Sancho RM, Vizcay-Barrena G, De Vos KJ, Shaw CE, et al: ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep. 17:1326–1342. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
D'Eletto M, Rossin F, Occhigrossi L, Farrace MG, Faccenda D, Desai R, Marchi S, Refolo G, Falasca L, Antonioli M, et al: Transglutaminase type 2 regulates ER-mitochondria contact sites by interacting with GRP75. Cell Rep. 25:3573–3581.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X, Huang K, Xie Z and Zou MH: Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation. 136:2248–2266. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Siraj S, Zhang R and Chen Q: Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy. 13:1080–1081. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen Q and Xia B: Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy. 12:2363–2373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L and Chen Q: Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 12:689–702. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Li W, Chen H, Jiang L, Zhu R and Feng D: FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy. 12:1675–1676. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP, Chen NH, Wang ZZ and Zhang Y: Mitophagy, a form of selective autophagy, plays an essential role in mitochondrial dynamics of Parkinson's disease. Cell Mol Neurobiol. 42:1321–1339. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Luo Y, Liu S, Ma J, Liu F, Fang Y, Cao F, Wang L, Pei Z and Ren J: Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity. Biochim Biophys Acta Mol Basis Dis. 1868:1664022022. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J and Chen Y: NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α. Basic Res Cardiol. 113:232018. View Article : Google Scholar : PubMed/NCBI | |
Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM and Thomas G: PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24:717–729. 2005. View Article : Google Scholar : PubMed/NCBI | |
Werneburg NW, Bronk SF, Guicciardi ME, Thomas L, Dikeakos JD, Thomas G and Gores GJ: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein-induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein-2 (PACS-2). J Biol Chem. 287:24427–24437. 2012. View Article : Google Scholar : PubMed/NCBI | |
Köttgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Höpker K, et al: Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 24:705–716. 2005. View Article : Google Scholar : PubMed/NCBI | |
Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G and Simmen T: The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell. 19:2777–2788. 2008. View Article : Google Scholar : PubMed/NCBI | |
Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres S, Fujioka H and Zhu X: The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo. J Cel Sci. 134:jcs2534432021. View Article : Google Scholar | |
Leal NS, Schreiner B, Pinho CM, Filadi R, Wiehager B, Karlström H, Pizzo P and Ankarcrona M: Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production. J Cel Mol Med. 20:1686–1695. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Qi F, Su H, Zhang C, Zhang Q, Chen Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI | |
Barroso-González J, Auclair S, Luan S, Thomas L, Atkins KM, Aslan JE, Thomas LL, Zhao J, Zhao Y and Thomas G: PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 23:1448–1457. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Zhu P, Wang J, Toan S and Ren J: DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther. 4:562019. View Article : Google Scholar : PubMed/NCBI | |
Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T and Pizzo P: Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA. 112:E2174–E2181. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Qi F, Su H, Zhang C, Zhang Q, Chen Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Dorn GW II: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 340:471–475. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Chen Z, Hu J, Feng J, Zhu Z, Fan Y, Lin Q and Ding G: Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway. Front Cell Dev Biol. 9:7692132021. View Article : Google Scholar : PubMed/NCBI | |
Modi S, López-Doménech G, Halff EF, Covill-Cooke C, Ivankovic D, Melandri D, Arancibia-Cárcamo IL, Burden JJ, Lowe AR and Kittler JT: Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun. 10:43992019. View Article : Google Scholar : PubMed/NCBI | |
Hernández-Alvarez MI, Sebastián D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, Plana N, Veiga SR, Hernández V, Vasconcelos N, et al: Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease. Cell. 177:881–895. e172019. View Article : Google Scholar : PubMed/NCBI | |
Baker N, Patel J and Khacho M: Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion. 49:259–268. 2019. View Article : Google Scholar : PubMed/NCBI | |
Glancy B, Kim Y, Katti P and Willingham TB: The functional impact of mitochondrial structure across subcellular scales. Front Physiol. 11:5410402020. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez T and Simmen T: Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium. 70:64–75. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rouzier C, Bannwarth S, Chaussenot A, Chevrollier A, Verschueren A, Bonello-Palot N, Fragaki K, Cano A, Pouget J, Pellissier JF, et al: The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain. 135:23–34. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vielhaber S, Debska-Vielhaber G, Peeva V, Schoeler S, Kudin AP, Minin I, Schreiber S, Dengler R, Kollewe K, Zuschratter W, et al: Mitofusin 2 mutations affect mitochondrial function by mitochondrial DNA depletion. Acta Neuropathol. 125:245–256. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kawalec M, Boratyńska-Jasińska A, Beręsewicz M, Dymkowska D, Zabłocki K and Zabłocka B: Mitofusin 2 deficiency affects energy metabolism and mitochondrial biogenesis in MEF cells. PLoS One. 10:e01341622015. View Article : Google Scholar : PubMed/NCBI | |
Parys JB and Vervliet T: New insights in the IP3 receptor and its regulation. Adv Exp Med Biol. 1131:243–270. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mazure NM: VDAC in cancer. Biochim Biophys Acta Bioenerg. 1858:665–673. 2017. View Article : Google Scholar : PubMed/NCBI | |
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto R: Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE and Rizzuto R: Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol. 159:613–624. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin MA, Ji-Cao J, Zoulim F, Bartosch B, Ovize M, et al: Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes. 63:3279–3294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C and Dolga AM: Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3:170762017. View Article : Google Scholar : PubMed/NCBI | |
Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vinay Kumar C, Kumar KM, Swetha R, Ramaiah S and Anbarasu A: Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis. J Theor Biol. 354:72–80. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kanekura K, Nishimoto I, Aiso S and Matsuoka M: Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J Biol Chem. 281:30223–30233. 2006. View Article : Google Scholar : PubMed/NCBI | |
De Vos KJ, Mórotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, Warley A, Shaw CE and Miller CC: VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet. 21:1299–1311. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, Vizcay-Barrena G, Lin WL, Xu YF, Lewis J, et al: ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun. 5:39962014. View Article : Google Scholar : PubMed/NCBI | |
Qiao X, Jia S, Ye J, Fang X, Zhang C, Cao Y, Xu C, Zhao L, Zhu Y, Wang L and Zheng M: PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction. Sci Rep. 7:453792017. View Article : Google Scholar : PubMed/NCBI | |
Di Mattia T, Wilhelm LP, Ikhlef S, Wendling C, Spehner D, Nominé Y, Giordano F, Mathelin C, Drin G, Tomasetto C and Alpy F: Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Rep. 19:e454532018. View Article : Google Scholar : PubMed/NCBI | |
Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Söderberg O, et al: Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci USA. 105:2427–2432. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prevarskaya N, Ouadid-Ahidouch H, Skryma R and Shuba Y: Remodelling of Ca2+ transport in cancer: How it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci. 369:201300972014. View Article : Google Scholar : PubMed/NCBI | |
Monteith GR, Prevarskaya N and Roberts-Thomson SJ: The calcium-cancer signalling nexus. Nat Rev Cancer. 17:367–380. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Qi F, Su H, Zhang C, Zhang Q, Chen Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lim Y, Cho IT, Schoel LJ, Cho G and Golden JA: Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann Neurol. 78:679–696. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zampieri LX, Grasso D, Bouzin C, Brusa D, Rossignol R and Sonveaux P: Mitochondria participate in chemoresistance to cisplatin in human ovarian cancer cells. Mol Cancer Res. 18:1379–1391. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chang CM, Lan KL, Huang WS, Lee YJ, Lee TW, Chang CH and Chuang CM: 188Re-liposome can induce mitochondrial autophagy and reverse drug resistance for ovarian cancer: From bench evidence to preliminary clinical proof-of-concept. Int J Mol Sci. 18:9032017. View Article : Google Scholar : PubMed/NCBI | |
Vianello C, Cocetta V, Catanzaro D, Dorn GW II, De Milito A, Rizzolio F, Canzonieri V, Cecchin E, Roncato R, Toffoli G, et al: Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. Cell Death Dis. 13:3982022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Du LQ, Huang XM, Zhu LG, Wei QC, Qin QP and Bian H: Novel glycosylation zinc(II)-cryptolepine complexes perturb mitophagy pathways and trigger cancer cell apoptosis and autophagy in SK-OV-3/DDP cells. Eur J Med Chem. 243:1147432022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Xu L, Qi L, Wang C, Xu N, Liu S, Li S, Tian H, Liu W, Xu Y and Li Z: ABT737 induces mitochondrial pathway apoptosis and mitophagy by regulating DRP1-dependent mitochondrial fission in human ovarian cancer cells. Biomed Pharmacother. 96:22–29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YP, Shih PC, Feng CW, Wu CC, Tsui KH, Lin YH, Kuo HM and Wen ZH: Pardaxin activates excessive mitophagy and mitochondria-mediated apoptosis in human ovarian cancer by inducing reactive oxygen species. Antioxidants (Basel). 10:18832021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xu Z, Hu X, Yang Y, Su J, Liu Y, Zhou L, Qin J, Zhang D and Yu H: Epoxycytochalasin H: An endophytic phomopsis compound induces apoptosis in A2780 cells through mitochondrial damage and endoplasmic reticulum stress. Onco Targets Ther. 13:4987–4997. 2020. View Article : Google Scholar : PubMed/NCBI | |
Katreddy RR, Bollu LR, Su F, Xian N, Srivastava S, Thomas R, Dai Y, Wu B, Xu Y, Rea MA, et al: Targeted reduction of the EGFR protein, but not inhibition of its kinase activity, induces mitophagy and death of cancer cells through activation of mTORC2 and Akt. Oncogenesis. 7:52018. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Qiu L, Zeng X, Hu X, Zhang Y, Wan X, Mao X, Wu J, Xu Y, Xiong Q, et al: Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy. Signal Transduct Target Ther. 7:3882022. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Chen K, Zheng F, Xu S, Li Y, Wang Y, Ni H, Wang F, Cui Z, Qin Y, et al: Low-dose BPA and its substitute BPS promote ovarian cancer cell stemness via a non-canonical PINK1/p53 mitophagic signaling. J Hazard Mater. 452:1312882023. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Outschoorn UE, Balliet RM, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F and Lisanti MP: Hereditary ovarian cancer and two-compartment tumor metabolism: Epithelial loss of BRCA1 induces hydrogen peroxide production, driving oxidative stress and NFκB activation in the tumor stroma. Cell Cycle. 11:4152–4166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Gao J, Qi Y, Hao Y, Li X, Liu Q, Liu J, Liu D, Zhu L and Lin B: TGF-β1 fucosylation enhances the autophagy and mitophagy via PI3K/Akt and Ras-Raf-MEK-ERK in ovarian carcinoma. Biochem Biophys Res Commun. 524:970–976. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bae H, Park S, Yang C, Song G and Lim W: Disruption of endoplasmic reticulum and ROS production in human ovarian cancer by campesterol. Antioxidants (Basel). 10:3792021. View Article : Google Scholar : PubMed/NCBI | |
Borgese N, Francolini M and Snapp E: Endoplasmic reticulum architecture: Structures in flux. Curr Opin Cell Biol. 18:358–364. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shibata Y, Voeltz GK and Rapoport TA: Rough sheets and smooth tubules. Cell. 126:435–439. 2006. View Article : Google Scholar : PubMed/NCBI | |
Green DR and Reed JC: Mitochondria and apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lossi L: The concept of intrinsic versus extrinsic apoptosis. Biochem J. 479:357–384. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hayashi T, Rizzuto R, Hajnoczky G and Su TP: MAM: More than just a housekeeper. Trends Cell Biol. 19:81–88. 2009. View Article : Google Scholar : PubMed/NCBI | |
Toulmay A and Prinz WA: Lipid transfer and signaling at organelle contact sites: The tip of the iceberg. Curr Opin Cell Biol. 23:458–463. 2011. View Article : Google Scholar : PubMed/NCBI | |
Henne WM, Zhu L, Balogi Z, Stefan C, Pleiss JA and Emr SD: Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J Cell Biol. 210:541–551. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T and Yamamoto A: Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy. 6:301–303. 2010. View Article : Google Scholar : PubMed/NCBI | |
Uemura T, Yamamoto M, Kametaka A, Sou YS, Yabashi A, Yamada A, Annoh H, Kametaka S, Komatsu M and Waguri S: A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol Cell Biol. 34:1695–1706. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Yu H, Kong Q, Wang B, Shen L, Dong D and Sun L: The mitochondrial PHB2/OMA1/DELE1 pathway cooperates with endoplasmic reticulum stress to facilitate the response to chemotherapeutics in ovarian cancer. Int J Mol Sci. 23:13202022. View Article : Google Scholar : PubMed/NCBI | |
Jung E, Koh D, Lim Y, Shin SY and Lee YH: Overcoming multidrug resistance by activating unfolded protein response of the endoplasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells. BMB Rep. 53:88–93. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Bi G, Luo Q, Liu Y, Liu T, Li L, Zeng Q, Wang Q, Wang Y, Yu J and Yi P: PHLDA1 modulates the endoplasmic reticulum stress response and is required for resistance to oxidative stress-induced cell death in human ovarian cancer cells. J Cancer. 12:5486–5493. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim TW and Lee HG: 6-Shogaol overcomes gefitinib resistance via ER stress in ovarian cancer cells. Int J Mol Sci. 24:26392023. View Article : Google Scholar : PubMed/NCBI | |
Bahar E, Kim JY, Kim DC, Kim HS and Yoon H: Combination of niraparib, cisplatin and twist knockdown in cisplatin-resistant ovarian cancer cells potentially enhances synthetic lethality through ER-stress mediated mitochondrial apoptosis pathway. Int J Mol Sci. 22:39162021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang Y, Zhao G, Orsulic S and Matei D: Metabolic dependencies and targets in ovarian cancer. Pharmacol Ther. 245:1084132023. View Article : Google Scholar : PubMed/NCBI | |
Rezghi Barez S, Movahedian Attar A and Aghaei M: MicroRNA-30c-2-3p regulates ER stress and induces apoptosis in ovarian cancer cells underlying ER stress. EXCLI J. 20:922–934. 2021.PubMed/NCBI | |
Kong Q, Wei D, Xie P, Wang B, Yu K, Kang X and Wang Y: Photothermal therapy via NIR II light irradiation enhances DNA damage and endoplasmic reticulum stress for efficient chemotherapy. Front Pharmacol. 12:6702072021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xu Z, Hu X, Yang Y, Su J, Liu Y, Zhou L, Qin J, Zhang D and Yu H: Epoxycytochalasin H: An endophytic phomopsis compound induces apoptosis in A2780 cells through mitochondrial damage and endoplasmic reticulum stress. Onco Targets Ther. 13:4987–4997. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang YY, Lee KT, Lim MC and Choi JH: TRPV1 antagonist DWP05195 induces ER stress-dependent apoptosis through the ROS-p38-CHOP pathway in human ovarian cancer cells. Cancers (Basel). 12:17022020. View Article : Google Scholar : PubMed/NCBI | |
Yart L, Bastida-Ruiz D, Allard M, Dietrich PY, Petignat P and Cohen M: Linking unfolded protein response to ovarian cancer cell fusion. BMC Cancer. 22:6222022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zha Z, Wang Y and Chen Y, Pang M, Huang L and Chen Y: Knockdown of ENTPD5 inhibits tumor metastasis and growth via regulating the GRP78/p-eIF-2α/CHOP pathway in serous ovarian cancer. J Ovarian Res. 15:692022. View Article : Google Scholar : PubMed/NCBI | |
Barez SR, Atar AM and Aghaei M: Mechanism of inositol-requiring enzyme 1-alpha inhibition in endoplasmic reticulum stress and apoptosis in ovarian cancer cells. J Cell Commun Signal. 14:403–415. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zundell JA, Fukumoto T, Lin J, Fatkhudinov N, Nacarelli T, Kossenkov AV, Liu Q, Cassel J, Hu CA, Wu S and Zhang R: Targeting the IRE1α/XBP1 endoplasmic reticulum stress response pathway in ARID1A-mutant ovarian cancers. Cancer Res. 81:5325–5335. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Wei J, Wan J, Wang W, Wang L, Yuan Y, Yang Z, Liu X and Ming L: Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. J Exp Clin Cancer Res. 38:772019. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang CA, Wu S, Zhou W, Guo D, Karakashev S, et al: Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 12:53212021. View Article : Google Scholar : PubMed/NCBI | |
Xiao R, You L, Zhang L, Guo X, Guo E, Zhao F, Yang B, Li X, Fu Y, Lu F, et al: Inhibiting the IRE1α axis of the unfolded protein response enhances the antitumor effect of AZD1775 in TP53 mutant ovarian cancer. Adv Sci (Weinh). 9:e21054692022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Yu S, Lam MMT, Poon TCW, Sun L, Jiao Y, Wong AST and Lee LTO: Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res. 38:1162019. View Article : Google Scholar : PubMed/NCBI | |
Singla RK, Sharma P, Kumar D, Gautam RK, Goyal R, Tsagkaris C, Dubey AK, Bansal H, Sharma R and Shen B: The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Front Pharmacol. 13:9870882022. View Article : Google Scholar : PubMed/NCBI | |
Hong T, Ham J, Song G and Lim W: Alpinumisoflavone disrupts endoplasmic reticulum and mitochondria leading to apoptosis in human ovarian cancer. Pharmaceutics. 14:5642022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Chen H, Li R, Xin J, Wu S, Lan J, Xue K, Li X, Zuo C, Jiang W and Zhu L: Cucurbitacin I induces cancer cell death through the endoplasmic reticulum stress pathway. J Cell Biochem. 120:2391–2403. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bae H, Lee JY, Song G and Lim W: Fucosterol suppresses the progression of human ovarian cancer by inducing mitochondrial dysfunction and endoplasmic reticulum stress. Mar Drugs. 18:2612020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Lin S, Zou X, Chen X, Liu Y, Yang X, Gao J and Zhu H: Mechanisms of autophagy and endoplasmic reticulum stress in the reversal of platinum resistance of epithelial ovarian cancer cells by naringin. Mol Biol Rep. 50:6457–6468. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Peng C, Zheng C, He XH, Huang W and Han B: Recent advances in characterizing natural products that regulate autophagy. Anticancer Agents Med Chem. 19:2177–2196. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bae H, Lee JY, Yang C, Song G and Lim W: Fucoidan derived from fucus vesiculosus inhibits the development of human ovarian cancer via the disturbance of calcium homeostasis, endoplasmic reticulum stress, and angiogenesis. Mar Drugs. 18:452020. View Article : Google Scholar : PubMed/NCBI | |
Kim T and Ko SG: JI017, a complex herbal medication, induces apoptosis via the Nox4-PERK-CHOP axis in ovarian cancer cells. Int J Mol Sci. 22:122642021. View Article : Google Scholar : PubMed/NCBI | |
Abdullah TM, Whatmore J, Bremer E, Slibinskas R, Michalak M and Eggleton P: Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunol Immunother. 71:1655–1669. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kielbik M, Szulc-Kielbik I and Klink M: Calreticulin-multifunctional chaperone in immunogenic cell death: Potential significance as a prognostic biomarker in ovarian cancer patients. Cells. 10:1302021. View Article : Google Scholar : PubMed/NCBI | |
Bi F, Jiang Z, Park W, Hartwich TMP, Ge Z, Chong KY, Yang K, Morrison MJ, Kim D, Kim J, et al: A Benzenesulfonamide-based mitochondrial uncoupler induces endoplasmic reticulum stress and immunogenic cell death in epithelial ovarian cancer. Mol Cancer Ther. 20:2398–2409. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, Cheung TH, McNeish IA and Kwong J: Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res. 8:1099–1111. 2020. View Article : Google Scholar : PubMed/NCBI | |
Le HV, Babak MV, Ehsan MA, Altaf M, Reichert L, Gushchin AL, Ang WH and Isab AA: Highly cytotoxic gold(i)-phosphane dithiocarbamate complexes trigger an ER stress-dependent immune response in ovarian cancer cells. Dalton Trans. 49:7355–7363. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song M, Sandoval TA, Chae CS, Chopra S, Tan C, Rutkowski MR, Raundhal M, Chaurio RA, Payne KK, Konrad C, et al: IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 562:423–428. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Trillo-Tinoco J, Sierra RA, Anadon C, Dai W, Mohamed E, Cen L, Costich TL, Magliocco A, Marchion D, et al: ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 10:12802019. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Yan X, Tian R, Xu L, Zhao Y, Sun L and Su J: An experimentally induced mutation in the UBA domain of p62 changes the sensitivity of cisplatin by up-regulating HK2 localisation on the mitochondria and increasing mitophagy in A2780 ovarian cancer cells. Int J Mol Sci. 22:39832021. View Article : Google Scholar : PubMed/NCBI |