Emerging role of sirtuins in non‑small cell lung cancer (Review)
- Authors:
- Min Zhou
- Lin Wei
- Renfu Lu
-
Affiliations: Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China - Published online on: July 30, 2024 https://doi.org/10.3892/or.2024.8786
- Article Number: 127
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
North BJ and Verdin E: Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5:2242004. View Article : Google Scholar : PubMed/NCBI | |
Michan S and Sinclair D: Sirtuins in mammals: Insights into their biological function. Biochem J. 404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rajabi N, Galleano I, Madsen AS and Olsen CA: Targeting sirtuins: Substrate specificity and inhibitor design. Prog Mol Biol Transl Sci. 154:25–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
North BJ, Marshall BL, Borra MT, Denu JM and Verdin E: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 11:437–444. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family in health and disease. Signal Transduct Target Ther. 7:4022022. View Article : Google Scholar : PubMed/NCBI | |
Abe T, Ohga Y, Tabayashi N, Kobayashi S, Sakata S, Misawa H, Tsuji T, Kohzuki H, Suga H, Taniguchi S and Takaki M: Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am J Physiol Heart Circ Physiol. 282:H138–H148. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhou D, Feng Y, Li B, Cui Y, Chen G and Li N: Association of sirtuins (SIRT1-7) with lung and intestinal diseases. Mol Cell Biochem. 477:2539–2552. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Wang H, Lou W, Wang G, Tao H, Wen H, Liu Y and Xie Q: Associations of sirtuins with clinicopathological parameters and prognosis in non-small cell lung cancer. Cancer Manag Res. 10:3341–3356. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Hokka D, Maniwa Y, Ohbayashi C, Itoh T and Hayashi Y: Sirt1 is a tumor promoter in lung adenocarcinoma. Oncol Lett. 8:387–393. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Yang W, Dong F, Guo Y, Tan J, Ruan S and Huang T: The prognostic role of Sirt1 expression in solid malignancies: A meta-analysis. Oncotarget. 8:66343–66351. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li G and Zhong S: MicroRNA-217 inhibits the proliferation and invasion, and promotes apoptosis of non-small cell lung cancer cells by targeting sirtuin 1. Oncol Lett. 21:3862021. View Article : Google Scholar : PubMed/NCBI | |
Ahmad SMS, Al-Mansoob M and Ouhtit A: SIRT1, a novel transcriptional downstream target of CD44, linking its deacetylase activity to tumor cell invasion/metastasis. Front Oncol. 12:10381212022. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Liu M and He CS: Sirt1 regulates endothelial Notch signaling in lung cancer. PLoS One. 7:e453312012. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Li G, Liu Y, Ma M, Song K, Li H, Zhu D, Tang X, Kong J and Yuan X: Targeting histone deacetylase SIRT1 selectively eradicates EGFR TKI-resistant cancer stem cells via regulation of mitochondrial oxidative phosphorylation in lung adenocarcinoma. Neoplasia. 22:33–46. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han L, Liang XH, Chen LX, Bao SM and Yan ZQ: SIRT1 is highly expressed in brain metastasis tissues of non-small cell lung cancer (NSCLC) and in positive regulation of NSCLC cell migration. Int J Clin Exp Pathol. 11:2357–2365. 2013.PubMed/NCBI | |
Yang F: The expression and mechanism of Sirt1 and Ampk in nonsmall cell lung cancer. J BUON. 23:106–110. 2018.PubMed/NCBI | |
Hosseninia S, Ameli A, Aslani MR, Pourfarzi F and Ghobadi H: Serum levels of sirtuin-1 in patients with lung cancer and its association with karnofsky performance status. Acta Biomed. 92:e20210122021.PubMed/NCBI | |
Costa-Machado LF, Martín-Hernández R, Sanchez-Luengo MÁ, Hess K, Vales-Villamarin C, Barradas M, Lynch C, de la Nava D, Diaz-Ruiz A, de Cabo R, et al: Sirt1 protects from K-Ras-driven lung carcinogenesis. EMBO Rep. 19:e438792018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Jiang Z, Li X and Zhang X: SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing Nf-kb signaling. Onco Targets Ther. 11:1157–1171. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Zhang H, Zhang F, Ji Y, Peng Y, Wang F and Zhao L: Circular RNA sirtuin-1 restrains the malignant phenotype of non-small cell lung cancer cells via the microRNA-510-5p/Smad family member 7 axis. Acta Biochim Pol. 70:855–863. 2023.PubMed/NCBI | |
Grbesa I, Pajares MJ, Martínez-Terroba E, Agorreta J, Mikecin AM, Larráyoz M, Idoate MA, Gall-Troselj K, Pio R and Montuenga LM: Expression of sirtuin 1 and 2 is associated with poor prognosis in non-small cell lung cancer patients. PLoS One. 10:e01246702015. View Article : Google Scholar : PubMed/NCBI | |
Song X, Kong F, Zong Z, Ren M, Meng Q, Li Y and Sun Z: miR-124 and miR-142 enhance cisplatin sensitivity of non-small cell lung cancer cells through repressing autophagy via directly targeting SIRT1. RSC Adv. 9:5234–5243. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Yu F, Huang G, Ni Y, Zhang T, Zou Z and Meng M: Exosomal miR-133a-3p promotes the growth and metastasis of lung cancer cells following incomplete microwave ablation. Int J Hyperthermia. 40:21900652023. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Pais G, Becker V, Körbel C, Ampofo E, Ebert E, Hohneck J, Ludwig N, Meese E, Bohle RM, et al: Suppression of endothelial miR-22 mediates non-small cell lung cancer cell-induced angiogenesis. Mol Ther Nucleic Acids. 26:849–864. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Meng G, Wu J, Wang Y, Zhang Q, Dong T, Bao J, Wang C and Zhang J: MicroRNA-326 impairs chemotherapy resistance in non small cell lung cancer by suppressing histone deacetylase SIRT1-mediated HIF1α and elevating VEGFA. Bioengineered. 13:5685–5699. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Nong L, Chen ML, Gu XL, Zhao WW, Liu MH and Cheng WW: Long noncoding RNA SNHG10 sponges miR-543 to upregulate tumor suppressive SIRT1 in nonsmall cell lung cancer. Cancer Biother Radiopharm. 35:771–775. 2020.PubMed/NCBI | |
Yao Y, Hua Q, Zhou Y and Shen H: CircRNA has_circ_0001946 promotes cell growth in lung adenocarcinoma by regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 111:1367–1375. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Hou L, Wei J, Du Y, Zhao Y, Deng X and Lin X: Hsa-miR-217 inhibits the proliferation, migration, and invasion in non-small cell lung cancer cells via targeting SIRT1 and P53/KAI1 signaling. Balkan Med J. 37:208–214. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cheng D, Zhao L, Xu Y, Ou R, Li G, Yang H and Li W: K-Ras promotes the non-small lung cancer cells survival by cooperating with sirtuin 1 and p27 under ROS stimulation. Tumour Biol. 36:7221–7232. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G, Liu X and Su L: Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis. 24:798–811. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Kim YM and Cho M: Cytoplasm-localized SIRT1 downregulation attenuates apoptosis and cell cycle arrest in cisplatin-resistant lung cancer A549 cells. J Cancer. 11:4495–4509. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Luo X, Ye X, Li H, Liu H, Du Q and Zhai Q: SIRT1/PGC-1α/PPAR-γ correlate with hypoxia-induced chemoresistance in non-small cell lung cancer. Front Oncol. 11:6827622021. View Article : Google Scholar : PubMed/NCBI | |
Zheng M, Hu C, Wu M and Chin YE: Emerging role of SIRT2 in non-small cell lung cancer. Oncol Lett. 22:7312021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Xie QR, Chen Z, Lu S and Xia W: Regulation of SIRT2 levels for human non-small cell lung cancer therapy. Lung Cancer. 82:9–15. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang J, Yuan H, Chen Z, Luo Q and Lu S: SIRT2 inhibits non-small cell lung cancer cell growth through impairing Skp2-mediated p27 degradation. Oncotarget. 7:18927–18939. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Jiang K, Shen M, Qian Y and Peng Y: SIRT2 suppresses non-small cell lung cancer growth by targeting JMJD2A. Biol Chem. 396:929–936. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao CX, Chen B, Xie HK, Han CN and Luo J: Immunohistochemistry and clinical value of sirtuin 2 in non-metastasized non-small cell lung cancer. J Thorac Dis. 11:3973–3979. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann G, Breitenbücher F, Schuler M and Ehrenhofer-Murray AE: A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem. 289:5208–5216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li F, Lv L, Li T, Zhou X, Deng CX, Guan KL, Lei QY and Xiong Y: Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res. 74:3630–3642. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang HX, Wang MY, Xiao W and Wen JW: SIRT2-reverses drug-resistance of HL-60/A through autophagy mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 27:409–414. 2019.(In Chinese). PubMed/NCBI | |
Liu L, Yu L, Zeng C, Long H, Duan G, Yin G, Dai X and Lin Z: E3 ubiquitin ligase HRD1 promotes lung tumorigenesis by promoting sirtuin 2 ubiquitination and degradation. Mol Cell Biol. 40:e00257–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L and Zhu WG: Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 12:665–675. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Hu Y, Zeng C, Chang L, Ge F, Wang W, Yan F, Zhao Q, Cao J, Ying M, et al: The SIRT2-mediated deacetylation of AKR1C1 is required for suppressing its pro-metastasis function in non-small cell lung cancer. Theranostics. 10:2188–2200. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y and Lei QY: Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 51:506–518. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang K, Shen M, Chen Y and Xu W: miR-150 promotes the proliferation and migration of non-small cell lung cancer cells by regulating the SIRT2/JMJD2A signaling pathway. Oncol Rep. 40:943–951. 2018.PubMed/NCBI | |
Luo J, Bao YC, Ji XX, Chen B, Deng QF and Zhou SW: SPOP promotes SIRT2 degradation and suppresses non-small cell lung cancer cell growth. Biochem Biophys Res Commun. 483:880–884. 2017. View Article : Google Scholar : PubMed/NCBI | |
Head PE, Zhang H, Bastien AJ, Koyen AE, Withers AE, Daddacha WB, Cheng X and Yu DS: Sirtuin 2 mutations in human cancers impair its function in genome maintenance. J Biol Chem. 292:9919–9931. 2017. View Article : Google Scholar : PubMed/NCBI | |
Inoue K, Mallakin A and Frazier DP: Dmp1 and tumor suppression. Oncogene. 26:4329–4335. 2007. View Article : Google Scholar : PubMed/NCBI | |
Das C, Lucia MS, Hansen KC and Tyler JK: CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 459:113–117. 2009. View Article : Google Scholar : PubMed/NCBI | |
Serrano L, Martínez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM, et al: The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27:639–653. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY, Yeo CY and Lee KY: Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun. 368:690–695. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, Xu YH, Dong B, Xiong Y, Lei QY and Guan KL: Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 23:464–476. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hamaidi I, Zhang L, Kim N, Wang MH, Iclozan C, Fang B, Liu M, Koomen JM, Berglund AE, Yoder SJ, et al: Sirt2 inhibition enhances metabolic fitness and effector functions of tumor-reactive T cells. Cell Metab. 32:420–436.e12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jing H, Hu J, He B, Negrón Abril YL, Stupinski J, Weiser K, Carbonaro M, Chiang YL, Southard T, Giannakakou P, et al: A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell. 29:6072016. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Cheng S, Chen S and Zhao Y: Prognostic and clinicopathological value of SIRT3 expression in various cancers: A systematic review and meta-analysis. Onco Targets Ther. 11:2157–2167. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang GC, Fu BC, Zhang DY, Sun L, Chen W, Bai L, Gao T, Lu HG, Wang ZY, Kong QQ, et al: The expression and related clinical significance of SIRT3 in non-small-cell lung cancer. Dis Markers. 2017:82419532017. View Article : Google Scholar : PubMed/NCBI | |
Ahmed MA, O'Callaghan C, Chang ED, Jiang H and Vassilopoulos A: Context-dependent roles for SIRT2 and SIRT3 in tumor development upon calorie restriction or high fat diet. Front Oncol. 9:14622020. View Article : Google Scholar : PubMed/NCBI | |
Cao K, Chen Y, Zhao S, Huang Y, Liu T, Liu H, Li B, Cui J, Cai J, Bai C, et al: Sirt3 promoted DNA damage repair and radioresistance through ATM-Chk2 in non-small cell lung cancer cells. J Cancer. 12:5464–5472. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tao F, Gu C, Li N, Ying Y, Feng Y, Ni D, Zhang Q and Xiao Q: SIRT3 acts as a novel biomarker for the diagnosis of lung cancer: A retrospective study. Medicine (Baltimore). 100:e265802021. View Article : Google Scholar : PubMed/NCBI | |
Xiao K, Jiang J, Wang W, Cao S, Zhu L, Zeng H, Ouyang R, Zhou R and Chen P: Sirt3 is a tumor suppressor in lung adenocarcinoma cells. Oncol Rep. 30:1323–1328. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Li P, Wang H, Li L and Li Q: SIRT3 promotion reduces resistance to cisplatin in lung cancer by modulating the FOXO3/CDT1 axis. Cancer Med. 10:1394–1404. 2021. View Article : Google Scholar : PubMed/NCBI | |
Geoghegan F, Buckland RJ, Rogers ET, Khalifa K, O'Connor EB, Rooney MF, Behnam-Motlagh P, Nilsson TK, Grankvist K and Porter RK: Bioenergetics of acquired cisplatin resistant H1299 non-small cell lung cancer and P31 mesothelioma cells. Oncotarget. 8:94711–94725. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Han L, Yu J, Li H and Li Q: miR-224 aggravates cancer-associated fibroblast-induced progression of non-small cell lung cancer by modulating a positive loop of the SIRT3/AMPK/mTOR/HIF-1α axis. Aging (Albany NY). 13:10431–10449. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Liu B, Liu XY, Xia ZK, Lu M, Hu CH and Liu P: circ_rac GTPase-activating protein 1 facilitates stemness and metastasis of non-small cell lung cancer via polypyrimidine tract-binding protein 1 recruitment to promote sirtuin-3-mediated replication timing regulatory factor 1 deacetylation. Lab Invest. 103:1000102023. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Wang L, Wang S, Wang M, Zhao J, Zhang Z, Li X, Jia L and Han Y: SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer. J Cancer Res Clin Oncol. 144:189–198. 2018. View Article : Google Scholar : PubMed/NCBI | |
Petronek MS, Bayanbold K, Amegble K, Tomanek-Chalkley AM, Allen BG, Spitz DR and Bailey CK: Evaluating the iron chelator function of sirtinol in non-small cell lung cancer. Front Oncol. 13:11857152023. View Article : Google Scholar : PubMed/NCBI | |
Lagunas-Rangel FA: Role of SIRT5 in cancer. Friend or Foe? Biochimie. 209:131–141. 2023.PubMed/NCBI | |
Xiangyun Y, Xiaomin N, Linping G, Yunhua X, Ziming L, Yongfeng Y, Zhiwei C and Shun L: Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget. 8:6984–6993. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Tu Q, Hu G and Xing M: Knockdown of circLRWD1 weakens DDP resistance via reduction of SIRT5 expression through releasing miR-507 in non-small cell lung cancer. Anticancer Drugs. 33:861–870. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Zuo Y, Feng Y and Zhang M: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol. 35:10699–10705. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yu DP, Wang N, Tao T, Luo W and Chen H: SIRT5 promotes non-small cell lung cancer progression by reducing FABP4 acetylation level. Neoplasma. 69:909–917. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Zheng C, Wang Y, Yang Z, Li C, Fang W, Jin Y, Hou K, Cheng Y, Qi J, et al: Correction: LncRNA APCDD1L-AS1 induces icotinib resistance by inhibition of EGFR autophagic degradation via the miR-1322/miR-1972/miR-324-3p-SIRT5 axis in lung adenocarcinoma. Biomark Res. 11:512023. View Article : Google Scholar : PubMed/NCBI | |
Azuma Y, Yokobori T, Mogi A, Altan B, Yajima T, Kosaka T, Onozato R, Yamaki E, Asao T, Nishiyama M and Kuwano H: SIRT6 expression is associated with poor prognosis and chemosensitivity in patients with non-small cell lung cancer. J Surg Oncol. 112:231–237. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bai L, Lin G, Sun L, Liu Y, Huang X, Cao C, Guo Y and Xie C: Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. Oncotarget. 7:40377–40386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Subramani P, Nagarajan N, Mariaraj S and Vilwanathan R: Knockdown of sirtuin6 positively regulates acetylation of DNMT1 to inhibit NOTCH signaling pathway in non-small cell lung cancer cell lines. Cell Signal. 105:1106292023. View Article : Google Scholar : PubMed/NCBI | |
Krishnamoorthy V and Vilwanathan R: Silencing Sirtuin 6 induces cell cycle arrest and apoptosis in non-small cell lung cancer cell lines. Genomics. 112:3703–3712. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim EJ and Juhnn YS: Cyclic AMP signaling reduces sirtuin 6 expression in non-small cell lung cancer cells by promoting ubiquitin-proteasomal degradation via inhibition of the Raf-Mek-Erk (Raf/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase) pathway. J Biol Chem. 290:9604–9613. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu B, Yan Y, Shao B, Tian L and Zhou W: Downregulation of SIRT6 is associated with poor prognosis in patients with non-small cell lung cancer. J Int Med Res. 46:1517–1527. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Cai Y and Sheng Z: Experimental studies on the protective effects of the overexpression of lentivirus-mediated sirtuin 6 on radiation-induced lung injury. Adv Clin Exp Med. 29:873–877. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Sheng Z and Cai Y: SIRT6 overexpression inhibits HIF1α expression and its impact on tumor angiogenesis in lung cancer. Int J Clin Exp Pathol. 11:2940–2947. 2018.PubMed/NCBI | |
Fu L, Dong Q, He J, Wang X, Xing J, Wang E, Qiu X and Li Q: SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene. 36:2724–2736. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Han Z, Wang Y and Hao W: Depletion of SIRT7 sensitizes human non-small cell lung cancer cells to gemcitabine therapy by inhibiting autophagy. Biochem Biophys Res Commun. 506:266–271. 2018. View Article : Google Scholar : PubMed/NCBI | |
Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S, et al: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell. 51:454–468. 2013. View Article : Google Scholar : PubMed/NCBI | |
McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, et al: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY). 1:109–121. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gonfloni S, Iannizzotto V, Maiani E, Bellusci G, Ciccone S and Diederich M: P53 and Sirt1: Routes of metabolism and genome stability. Biochem Pharmacol. 92:149–156. 2014. View Article : Google Scholar : PubMed/NCBI | |
van Leeuwen I and Lain S: Sirtuins and p53. Adv Cancer Res. 102:171–195. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Yang Y, Huang S, Deng C, Zhou S, Yang J, Cao Y, Xu L, Yuan Y, Yang J, et al: SIRT1 inhibits gastric cancer proliferation and metastasis via STAT3/MMP-13 signaling. J Cell Physiol. 234:15395–15406. 2019. View Article : Google Scholar : PubMed/NCBI | |
Leng S, Huang W, Chen Y, Yang Y, Feng D, Liu W, Gao T, Ren Y, Huo M, Zhang J, et al: SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis. Cell Death Differ. 28:3329–3343. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liarte S, Alonso-Romero JL and Nicolás FJ: SIRT1 and estrogen signaling cooperation for breast cancer onset and progression. Front Endocrinol (Lausanne). 9:5522018. View Article : Google Scholar : PubMed/NCBI | |
Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, Fessel JP, Gamboa JL, Harrison DG and Dikalov SI: Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res. 121:564–574. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dikalov SI and Dikalova AE: Crosstalk between mitochondrial hyperacetylation and oxidative stress in vascular dysfunction and hypertension. Antioxid Redox Signal. 31:710–721. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Liu L, Liu Y and Li S: Sirtuin SIRT6 suppresses cell proliferation through inhibition of Twist1 expression in non-small cell lung cancer. Int J Clin Exp Pathol. 7:4774–4781. 2014.PubMed/NCBI | |
Xiong X, Tao R, DePinho RA and Dong XC: Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis. PLoS One. 8:e743402013. View Article : Google Scholar : PubMed/NCBI | |
Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, et al: Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature. 423:545–550. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Tu B, Wang H, Cao Z, Tang M, Zhang C, Gu B, Li Z, Wang L, Yang Y, et al: Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc Natl Acad Sci USA. 111:10684–10689. 2014. View Article : Google Scholar : PubMed/NCBI | |
Song MY, Wang J, Ka SO, Bae EJ and Park BH: Insulin secretion impairment in Sirt6 knockout pancreatic β cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway. Sci Rep. 6:303212016. View Article : Google Scholar : PubMed/NCBI | |
Bajpe PK, Prahallad A, Horlings H, Nagtegaal I, Beijersbergen R and Bernards R: A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity. Oncogene. 34:531–536. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Li Y, Chen L, Wang Q, Zhang H, Lin Y, Li Q and Pang T: SIRT2 mediates multidrug resistance in acute myelogenous leukemia cells via ERK1/2 signaling pathway. Int J Oncol. 48:613–623. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Du W, Acklin S, Jin S and Xia F: SIRT2 protects peripheral neurons from cisplatin-induced injury by enhancing nucleotide excision repair. J Clin Invest. 130:2953–2965. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL and Lei QY: NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 124:5453–5465. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei R, He D and Zhang X: Role of SIRT2 in regulation of stemness of cancer stem-like cells in renal cell carcinoma. Cell Physiol Biochem. 49:2348–2357. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fong Y, Lin YC, Wu CY, Wang HM, Lin LL, Chou HL, Teng YN, Yuan SS and Chiu CC: The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/β-catenin-Foxo3a axis. ScientificWorldJournal. 2014:9370512014. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Zhao X, Wang K, Liu J and Huang G: Dichloroacetic acid (DCA) synergizes with the SIRT2 inhibitor Sirtinol and AGK2 to enhance anti-tumor efficacy in non-small cell lung cancer. Cancer Biol Ther. 19:835–846. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang Q, Zeng SX, Zhang Y, Mayo LD and Lu H: Inauhzin and Nutlin3 synergistically activate p53 and suppress tumor growth. Cancer Biol Ther. 13:915–924. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akbaribazm M, Khazaei MR, Khazaei F and Khazaei M: Doxorubicin and Trifolium pratense L. (Red clover) extract synergistically inhibits brain and lung metastases in 4T1 tumor-bearing BALB/c mice. Food Sci Nutr. 8:5557–5570. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shang JL, Ning SB, Chen YY, Chen TX and Zhang J: MDL-800, an allosteric activator of SIRT6, suppresses proliferation and enhances EGFR-TKIs therapy in non-small cell lung cancer. Acta Pharmacol Sin. 42:120–131. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Li Y, Huang H, Huang H, Duan Y, Yuan Z, Zhu W, Mei Z, Luo L and Yan P: Isoorientin reverses lung cancer drug resistance by promoting ferroptosis via the SIRT6/Nrf2/GPX4 signaling pathway. Eur J Pharmacol. 954:1758532023. View Article : Google Scholar : PubMed/NCBI | |
Fang C, Liu Y, Chen L, Luo Y, Cui Y, Zhang N, Liu P, Zhou M and Xie Y: α-Hederin inhibits the growth of lung cancer A549 cells in vitro and in vivo by decreasing SIRT6 dependent glycolysis. Pharm Biol. 59:11–20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dai PC, Liu DL, Zhang L, Ye J, Wang Q, Zhang HW, Lin XH and Lai GX: Astragaloside IV sensitizes non-small cell lung cancer cells to gefitinib potentially via regulation of SIRT6. Tumour Biol. 39:10104283176975552017. View Article : Google Scholar : PubMed/NCBI | |
Iskandar AR, Liu C, Smith DE, Hu KQ, Choi SW, Ausman LM and Wang XD: β-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice. Cancer Prev Res (Phila). 6:309–320. 2013. View Article : Google Scholar : PubMed/NCBI | |
You J, Cheng J, Yu B, Duan C and Peng J: Baicalin, a Chinese herbal medicine, inhibits the proliferation and migration of human non-small cell lung carcinoma (NSCLC) Cells, A549 and H1299, by activating the Sirt1/Ampk signaling pathway. Med Sci Monit. 24:2126–2133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Hao B, Li D, Reiter RJ, Bai Y, Abay B, Chen G, Lin S, Zheng T, Ren Y, et al: Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis. J Pineal Res. 71:e127552021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Hao B, Zhang M, Reiter RJ, Lin S, Zheng T, Chen X, Ren Y, Yue L, Abay B, et al: Melatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development. Signal Transduct Target Ther. 6:3302021. View Article : Google Scholar : PubMed/NCBI | |
Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, Shim YM and Kim DH: Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J Cell Mol Med. 23:2872–2889. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cha BK, Kim YS, Hwang KE, Cho KH, Oh SH, Kim BR, Jun HY, Yoon KH, Jeong ET and Kim HR: Celecoxib and sulindac inhibit TGF-β1-induced epithelial-mesenchymal transition and suppress lung cancer migration and invasion via downregulation of sirtuin 1. Oncotarget. 7:57213–57227. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hwang KE, Kim YS, Hwang YR, Kwon SJ, Park DS, Cha BK, Kim BR, Yoon KH, Jeong ET and Kim HR: Pemetrexed induces apoptosis in malignant mesothelioma and lung cancer cells through activation of reactive oxygen species and inhibition of sirtuin 1. Oncol Rep. 33:2411–2419. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lai TC, Lee YL, Lee WJ, Hung WY, Cheng GZ, Chen JQ, Hsiao M, Chien MH and Chang JH: Synergistic tumor inhibition via energy elimination by repurposing penfluridol and 2-deoxy-D-glucose in lung cancer. Cancers (Basel). 14:27502022. View Article : Google Scholar : PubMed/NCBI | |
Slanovc J, Mikulčić M, Jahn N, Wizsy NGT, Sattler W, Malle E and Hrzenjak A: Prostaglandin 15d-PGJ2 inhibits proliferation of lung adenocarcinoma cells by inducing ROS production and activation of apoptosis via sirtuin-1. Biochim Biophys Acta Mol Basis Dis. 1870:1669242024. View Article : Google Scholar : PubMed/NCBI | |
Tae H, Park EY, Dey P, Son JY, Lee S-Y, Jung JH, Saloni S, Kim M-H and Kim HS: Novel SIRT1 inhibitor 15-deoxy-Δ12,14-prostaglandin J2 and its derivatives exhibit anticancer activity through apoptotic or autophagic cell death pathways in SKOV3 cells. Int J Oncol. 53:2518–2530. 2018.PubMed/NCBI | |
Hwang KE, Kim HJ, Song IS, Park C, Jung JW, Park DS, Oh SH, Kim YS and Kim HR: Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer. Int J Med Sci. 18:715–726. 2021. View Article : Google Scholar : PubMed/NCBI |