The molecular mechanisms of chemotherapeutic resistance in tumors (Review)
- Authors:
- Xin Weng
- Wei-Hong Zeng
- Li-Yuan Zhong
- Li-Hua Xie
- Wen-Jun Ge
- Zhen Lai
- Qin Qin
- Peng Liu
- De-Liang Cao
- Xi Zeng
-
Affiliations: Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R China, Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410000, P.R. China, Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China, Department of Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan), Hunan Normal University, Changsha, Hunan 410005, P.R. China - Published online on: September 30, 2024 https://doi.org/10.3892/or.2024.8816
- Article Number: 157
This article is mentioned in:
Abstract
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W and He J: Cancer incidence and mortality in China, 2016. J Natl Cancer Cent. 2:1–9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bukowski K, Kciuk M and Kontek R: Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 21:32332020. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Wang K, Zong Q, Tu Y, Dong Y and Yuan Y: Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal. Biomaterials. 270:1206492021. View Article : Google Scholar : PubMed/NCBI | |
Bedard PL, Hyman DM, Davids MS and Siu LL: Small molecules, big impact: 20 Years of targeted therapy in oncology. Lancet. 395:1078–1088. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li M, Huang M, Lin Q, Fang Q, Liu J, Chen X, Liu L, Zhan X, Shan H, et al: The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother. 150:1130642022. View Article : Google Scholar : PubMed/NCBI | |
Phan TG and Croucher PI: The dormant cancer cell life cycle. Nat Rev Cancer. 20:398–411. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Momin A, Wanggou S, Wang X, Min HK, Dou W, Gong Z, Chan J, Dong W, Fan JJ, et al: Mechanosensitive brain tumor cells construct blood-tumor barrier to mask chemosensitivity. Neuron. 111:30–48. e142023. View Article : Google Scholar : PubMed/NCBI | |
Inoue T, Aoyama-Ishikawa M, Uemura M, Kohama K, Fujisaki N, Murakami H, Yamada T and Hirata J: The role of death receptor signaling pathways in mouse Sertoli cell avoidance of apoptosis during LPS- and IL-18-induced inflammatory conditions. J Reprod Immunol. 158:1039702023. View Article : Google Scholar : PubMed/NCBI | |
Russo M, Crisafulli G, Sogari A, Reilly NM, Arena S, Lamba S, Bartolini A, Amodio V, Magrì A, Novara L, et al: Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 366:1473–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, et al: The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 486:537–540. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zheng N, Fang J, Xue G, Wang Z, Li X, Zhou M, Jin G, Rahman MM, McFadden G and Lu Y: Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance. Cancer Cell. 40:973–985.e7. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hirota K, Ooka M, Shimizu N, Yamada K, Tsuda M, Ibrahim MA, Yamada S, Sasanuma H, Masutani M and Takeda S: XRCC1 counteracts poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib, and a clinical alkylating agent, temozolomide, by promoting the removal of trapped PARP1 from broken DNA. Genes Cells. 27:331–344. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ovejero S, Soulet C and Moriel-Carretero M: The alkylating agent Methyl methanesulfonate triggers lipid alterations at the inner nuclear membrane that are independent from its DNA-damaging ability. Int J Mol Sci. 22:74612021. View Article : Google Scholar : PubMed/NCBI | |
Ghosh S: Cisplatin: The first metal based anticancer drug. Bioorg Chem. 88:1029252019. View Article : Google Scholar : PubMed/NCBI | |
Fetoni AR, Paciello F and Troiani D: Cisplatin chemotherapy and cochlear damage: Otoprotective and chemosensitization properties of polyphenols. Antioxid Redox Signal. 36:1229–1245. 2022. View Article : Google Scholar : PubMed/NCBI | |
Curry JN and McCormick JA: Cisplatin-induced kidney injury: Delivering the goods. J Am Soc Nephrol. 33:255–256. 2022. View Article : Google Scholar : PubMed/NCBI | |
Balboni B, El Hassouni B, Honeywell RJ, Sarkisjan D, Giovannetti E, Poore J, Heaton C, Peterson C, Benaim E, Lee YB, et al: RX-3117 (fluorocyclopentenyl cytosine): A novel specific antimetabolite for selective cancer treatment. Expert Opin Investig Drugs. 28:311–322. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Yu Z, Das M and Huang L: Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. Acs Nano. 14:5075–5089. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li C, Wu Q, Tu Y, Wang C, Yu X, Li B, Wang Z and Sun S and Sun S: MEDAG enhances breast cancer progression and reduces epirubicin sensitivity through the AKT/AMPK/mTOR pathway. Cell Death Dis. 12:972021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Yu K, Pang D, Wang C, Jiang J, Yang S, Liu Y, Fu P, Sheng Y, Zhang G, et al: Adjuvant capecitabine with docetaxel and cyclophosphamide plus epirubicin for triple-negative breast cancer (CBCSG010): An open-label, randomized, multicenter, phase III trial. J Clin Oncol. 38:1774–1784. 2020. View Article : Google Scholar : PubMed/NCBI | |
You JH, Lee J and Roh JL: PGRMC1-dependent lipophagy promotes ferroptosis in paclitaxel-tolerant persister cancer cells. J Exp Clin Cancer Res. 40:3502021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu R, Li C, Song Y, Liu G, Huang Q, Yu L, Zhu D, Lu C, Lu A, et al: Nab-paclitaxel promotes the cancer-immunity cycle as a potential immunomodulator. Am J Cancer Res. 11:3445–3460. 2021.PubMed/NCBI | |
Elshamy AM, Salem OM, Safa MAE, Barhoma RAE, Eltabaa EF, Shalaby AM, Alabiad MA, Arakeeb HM and Mohamed HA: Possible protective effects of CO Q10 against vincristine-induced peripheral neuropathy: Targeting oxidative stress, inflammation, and sarmoptosis. J Biochem Mol Toxicol. 36:e229762022. View Article : Google Scholar : PubMed/NCBI | |
Rajković S, Živković MD and Djuran MI: Reactions of dinuclear Platinum(II) complexes with peptides. Curr Protein Pept Sci. 17:95–105. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim ES, Tang X, Peterson DR, Kilari D, Chow CW, Fujimoto J, Kalhor N, Swisher SG, Stewart DJ, Wistuba II and Siddik ZH: Copper transporter CTR1 expression and tissue platinum concentration in non-small cell lung cancer. Lung Cancer. 85:88–93. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lv X, Song J, Xue K, Li Z, Li M, Zahid D, Cao H, Wang L, Song W, Ma T, et al: Core fucosylation of copper transporter 1 plays a crucial role in cisplatin-resistance of epithelial ovarian cancer by regulating drug uptake. Mol Carcinog. 58:794–807. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kalayda GV, Wagner CH and Jaehde U: Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells. J Inorg Biochem. 116:1–10. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Zhang S, Hu T, Qu X, Zhai J, Zhang Y, Tao L, Yin J and Song Y: Omeprazole protects against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and transporter-mediated cisplatin accumulation in rats and HK-2 cells. Chem Biol Interact. 297:130–140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Naka A, Takeda R, Shintani M, Ogane N, Kameda Y, Aoyama T, Yoshikawa T and Kamoshida S: Organic cation transporter 2 for predicting cisplatin-based neoadjuvant chemotherapy response in gastric cancer. Am J Cancer Res. 5:2285–2293. 2015.PubMed/NCBI | |
Hucke A, Rinschen MM, Bauer OB, Sperling M, Karst U, Köppen C, Sommer K, Schröter R, Ceresa C, Chiorazzi A, et al: An integrative approach to cisplatin chronic toxicities in mice reveals importance of organic cation-transporter-dependent protein networks for renoprotection. Arch Toxicol. 93:2835–2848. 2019. View Article : Google Scholar : PubMed/NCBI | |
Verhalen B, Dastvan R, Thangapandian S, Peskova Y, Koteiche HA, Nakamoto RK, Tajkhorshid E and Mchaourab HS: Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature. 543:738–741. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alam A, Kowal J, Broude E, Roninson I and Locher KP: Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science. 363:753–756. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pasello M, Giudice AM and Scotlandi K: The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol. 60:57–71. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hanssen KM, Haber M and Fletcher JI: Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat. 59:1007952021. View Article : Google Scholar : PubMed/NCBI | |
Kim Y and Chen J: Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science. 359:915–919. 2018. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto S, Azuma K, Ishii H, Bessho A, Hosokawa S, Fukamatsu N, Kunitoh H, Ishii M, Tanaka H, Aono H, et al: Low-dose erlotinib treatment in elderly or frail patients with EGFR mutation-positive non-small cell lung cancer: A multicenter phase 2 trial. JAMA Oncol. 6:e2012502020. View Article : Google Scholar : PubMed/NCBI | |
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE and Gottesman MM: Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 18:452–464. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carvalho DM, Richardson PJ, Olaciregui N, Stankunaite R, Lavarino C, Molinari V, Corley EA, Smith DP, Ruddle R, Donovan A, et al: Repurposing vandetanib plus everolimus for the treatment of ACVR1-mutant diffuse intrinsic pontine glioma. Cancer Discov. 12:416–431. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cole SPC: Targeting multidrug resistance protein 1 (MRP1, ABCC1): Past, present, and future. Annu Rev Pharmacol Toxicol. 54:95–117. 2014. View Article : Google Scholar : PubMed/NCBI | |
Johnson ZL and Chen J: ATP binding enables substrate release from multidrug resistance protein 1. Cell. 172:81–89.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vulsteke C, Lambrechts D, Dieudonné A, Hatse S, Brouwers B, van Brussel T, Neven P, Belmans A, Schöffski P, Paridaens R and Wildiers H: Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC). Ann Oncol. 24:1513–1525. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cole SPC: Multidrug resistance protein 1 (MRP1, ABCC1), a ‘multitasking’ ATP-binding cassette (ABC) transporter. J Biol Chem. 289:30880–30888. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H and Locher KP: Structure of the human multidrug transporter ABCG2. Nature. 546:504–509. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kowal J, Ni D, Jackson SM, Manolaridis I, Stahlberg H and Locher KP: Structural basis of drug recognition by the multidrug transporter ABCG2. J Mol Biol. 433:1669802021. View Article : Google Scholar : PubMed/NCBI | |
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X and Wu C: Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 277:1211102021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Bai J, Zhou Q, Hu Y, Wang Q, Yang L, Chen H, An H, Zhou C, Wang Y, et al: Glutathione prevents high glucose-induced pancreatic fibrosis by suppressing pancreatic stellate cell activation via the ROS/TGFβ/SMAD pathway. Cell Death Dis. 13:4402022. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Zhao S, Zhu J, Feng E, Lv F, Chen W, Lv S, Wu Y, Peng X and Song F: Open-source and reduced-expenditure nanosystem with ROS self-amplification and glutathione depletion for simultaneous augmented chemodynamic/photodynamic therapy. ACS Appl Mater Interfaces. 14:20682–20692. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Xu HD, Ran HH, Liang G and Wu FG: Glutathione-depleting nanomedicines for synergistic cancer therapy. ACS Nano. 15:8039–8068. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Yang X, Xue YW, Zhang XF, Wang Y, Liu WJ and Wu XJ: Promoter methylation of glutathione S-transferase pi1 and multidrug resistance gene 1 in bronchioloalveolar carcinoma and its correlation with DNA methyltransferase 1 expression. Cancer. 115:3222–3232. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Han X, Li Y, Min H, Zhao X, Zhang Y, Qi Y, Shi J, Qi S, Bao Y and Nie G: Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity. ACS Nano. 13:13445–13455. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oshimori N, Oristian D and Fuchs E: TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 160:963–976. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang KR, Zhang YF, Lei HM, Tang YB, Ma CS, Lv QM, Wang SY, Lu LM, Shen Y, Chen HZ and Zhu L: Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer. Sci Transl Med. 13:eabg64282021. View Article : Google Scholar : PubMed/NCBI | |
Pang HH, Ke YC, Li NS, Chen YT, Huang CY, Wei KC and Yang HW: A new lateral flow plasmonic biosensor based on gold-viral biomineralized nanozyme for on-site intracellular glutathione detection to evaluate drug-resistance level. Biosens Bioelectron. 165:1123252020. View Article : Google Scholar : PubMed/NCBI | |
Harris IS, Endress JE, Coloff JL, Selfors LM, McBrayer SK, Rosenbluth JM, Takahashi N, Dhakal S, Koduri V, Oser MG, et al: Deubiquitinases maintain protein homeostasis and survival of cancer cells upon glutathione depletion. Cell Metab. 29:1166–1181.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stafford WC, Peng X, Olofsson MH, Zhang X, Luci DK, Lu L, Cheng Q, Trésaugues L, Dexheimer TS, Coussens NP, et al: Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci Transl Med. 10:eaaf74442018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang M, Feng J, Qin B, Zhang C, Zhu C, Liu W, Wang Y, Liu W, Huang L, et al: Multifunctional nanoparticles co-loaded with Adriamycin and MDR-targeting siRNAs for treatment of chemotherapy-resistant esophageal cancer. J Nanobiotechnology. 20:1662022. View Article : Google Scholar : PubMed/NCBI | |
Amort M, Nachbauer B, Tuzlak S, Kieser A, Schepers A, Villunger A and Polacek N: Expression of the vault RNA protects cells from undergoing apoptosis. Nat Commun. 6:70302015. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Hao Q, Peng N, Yue X, Wang Y, Chen Y, Wu J and Zhu Y: Major vault protein: A virus-induced host factor against viral replication through the induction of type-I interferon. Hepatology. 56:57–66. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bai H, Wang C, Qi Y, Xu J, Li N, Chen L, Jiang B, Zhu X, Zhang H, Li X, et al: Major vault protein suppresses lung cancer cell proliferation by inhibiting STAT3 signaling pathway. BMC Cancer. 19:4542019. View Article : Google Scholar : PubMed/NCBI | |
Shen W, Qiu Y, Li J, Wu C, Liu Z, Zhang X, Hu X, Liao Y and Wang H: IL-25 promotes cisplatin resistance of lung cancer cells by activating NF-κB signaling pathway to increase of major vault protein. Cancer Med. 8:3491–3501. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lou L, Wang J, Lv F, Wang G, Li Y, Xing L, Shen H and Zhang X: Y-box binding protein 1 (YB-1) promotes gefitinib resistance in lung adenocarcinoma cells by activating AKT signaling and epithelial-mesenchymal transition through targeting major vault protein (MVP). Cell Oncol (Dordr). 44:109–133. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Liu W, Wang Z, Wang H, Liu J, Huang C, Zhao T, Wang X, Gao S, Ma Y, et al: CD73 induces gemcitabine resistance in pancreatic ductal adenocarcinoma: A promising target with non-canonical mechanisms. Cancer Lett. 519:289–303. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Li M, He R, Fang P, Wang Q, Yi Y, Wang F, Zhou L, Zhang Y, Chen A, et al: Major vault protein promotes hepatocellular carcinoma through targeting interferon regulatory factor 2 and decreasing p53 activity. Hepatology. 72:518–534. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pilié PG, Tang C, Mills GB and Yap TA: State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 16:81–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gourley C, Balmaña J, Ledermann JA, Serra V, Dent R, Loibl S, Pujade-Lauraine E and Boulton SJ: Moving from poly (ADP-Ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy. J Clin Oncol. 37:2257–2269. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, Chen Y, Yap TA, Haider S, Tutt ANJ and Lord CJ: Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 10:1475–1488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Benitez JA, Li J, Miki S, Ponte de Albuquerque C, Galatro T, Orellana L, Zanca C, Reed R, Boyer A, et al: Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair. Cancer Cell. 35:504–518.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Goodall J, Mateo J, Yuan W, Mossop H, Porta N, Miranda S, Perez-Lopez R, Dolling D, Robinson DR, Sandhu S, et al: Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 7:1006–1017. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dev H, Chiang TW, Lescale C, de Krijger I, Martin AG, Pilger D, Coates J, Sczaniecka-Clift M, Wei W, Ostermaier M, et al: Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol. 20:954–965. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schlacher K: PARPi focus the spotlight on replication fork protection in cancer. Nat Cell Biol. 19:1309–1310. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lord CJ and Ashworth A: Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med. 19:1381–1388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, Wong N, Lafarga V, Calvo JA, Panzarino NJ, et al: Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 535:382–387. 2016. View Article : Google Scholar : PubMed/NCBI | |
Awah CU, Chen L, Bansal M, Mahajan A, Winter J, Lad M, Warnke L, Gonzalez-Buendia E, Park C, Zhang D, et al: Ribosomal protein S11 influences glioma response to TOP2 poisons. Oncogene. 39:5068–5081. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhu Q, Li X, Ren X, Li J, Zhang Y, Zeng S, Xu L, Dong X and Zhai B: TOP2A inhibition reverses drug resistance of hepatocellular carcinoma to regorafenib. Am J Cancer Res. 12:4343–4360. 2022.PubMed/NCBI | |
Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, et al: DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 373:1697–1708. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mu Y, Lou J, Srivastava M, Zhao B, Feng XH, Liu T, Chen J and Huang J: SLFN11 inhibits checkpoint maintenance and homologous recombination repair. EMBO Rep. 17:94–109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, Ni A, Khodos I, de Stanchina E, Nguyen T, et al: Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell. 31:286–299. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guryanova OA, Shank K, Spitzer B, Luciani L, Koche RP, Garrett-Bakelman FE, Ganzel C, Durham BH, Mohanty A, Hoermann G, et al: DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 22:1488–1495. 2016. View Article : Google Scholar : PubMed/NCBI | |
Picco G, Cattaneo CM, van Vliet EJ, Crisafulli G, Rospo G, Consonni S, Vieira SF, Rodríguez IS, Cancelliere C, Banerjee R, et al: Werner helicase is a synthetic-lethal vulnerability in mismatch repair-deficient colorectal cancer refractory to targeted therapies, chemotherapy, and immunotherapy. Cancer Discov. 11:1923–1937. 2021. View Article : Google Scholar : PubMed/NCBI | |
Germano G, Lamba S, Rospo G, Barault L, Magrì A, Maione F, Russo M, Crisafulli G, Bartolini A, Lerda G, et al: Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. 552:116–120. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gay CM, Parseghian CM and Byers LA: This is our cells under pressure: Decreased DNA damage repair in response to targeted therapies facilitates the emergence of drug-resistant clones. Cancer Cell. 37:5–7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Qiao T, Dong B, Li T, Liu Q and Xu X: The effect of hypoxia-induced exosomes on anti-tumor immunity and its implication for immunotherapy. Front Immunol. 13:9159852022. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Liu HJ, Li M, Zhai DH, Tang YH, Yang L, Qiao KL, Yang JH, Zhong WL, Zhang Q, et al: Salidroside improves the hypoxic tumor microenvironment and reverses the drug resistance of platinum drugs via HIF-1α signaling pathway. EBioMedicine. 38:25–36. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Luo M, To KKW, Zhang J, Su C, Zhang H, An S, Wang F, Chen D and Fu L: Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer. Mol Cancer. 20:172021. View Article : Google Scholar : PubMed/NCBI | |
Carter BZ, Mak PY, Chen Y, Mak DH, Mu H, Jacamo R, Ruvolo V, Arold ST, Ladbury JE, Burks JK, et al: Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network. Oncotarget. 7:20054–20067. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carter BZ, Mak PY, Wang X, Tao W, Ruvolo V, Mak D, Mu H, Burks JK and Andreeff M: An ARC-regulated IL1β/Cox-2/PGE2/β-catenin/ARC circuit controls leukemia-microenvironment interactions and confers drug resistance in AML. Cancer Res. 79:1165–1177. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chambers LM, Esakov Rhoades EL, Bharti R, Braley C, Tewari S, Trestan L, Alali Z, Bayik D, Lathia JD, Sangwan N, et al: Disruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancer. Cancer Res. 82:4654–4669. 2022. View Article : Google Scholar : PubMed/NCBI | |
Johnston CD and Bullman S: Bacteria-derived L-lactate fuels cervical cancer chemoradiotherapy resistance. Trends Cancer. 10:97–99. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jiang SS, Xie YL, Xiao XY, Kang ZR, Lin XL, Zhang L, Li CS, Qian Y, Xu PP, Leng XX, et al: Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe. 31:781–797.e9. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lin ZZ, Hu MC, Hsu C, Wu YM, Lu YS, Ho JA, Yeh SH, Chen PJ and Cheng AL: Synergistic efficacy of telomerase-specific oncolytic adenoviral therapy and histone deacetylase inhibition in human hepatocellular carcinoma. Cancer Lett. 556:2160632023. View Article : Google Scholar : PubMed/NCBI | |
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A and Pathak C: Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken). 5:e12912022. View Article : Google Scholar : PubMed/NCBI | |
Freter R, Falletta P, Omrani O, Rasa M, Herbert K, Annunziata F, Minetti A, Krepelova A, Adam L, Käppel S, et al: Establishment of a fluorescent reporter of RNA-polymerase II activity to identify dormant cells. Nat Commun. 12:33182021. View Article : Google Scholar : PubMed/NCBI | |
Summers MA, McDonald MM and Croucher PI: Cancer cell dormancy in metastasis. Cold Spring Harb Perspect Med. 10:a0375562020. View Article : Google Scholar : PubMed/NCBI | |
Yeh AC and Ramaswamy S: Mechanisms of cancer cell dormancy-another hallmark of cancer? Cancer Res. 75:5014–5022. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pajic M, Blatter S, Guyader C, Gonggrijp M, Kersbergen A, Küçükosmanoğlu A, Sol W, Drost R, Jonkers J, Borst P and Rottenberg S: Selected alkylating agents can overcome drug tolerance of G0-like tumor cells and eradicate BRCA1-deficient mammary tumors in mice. Clin Cancer Res. 23:7020–7033. 2017. View Article : Google Scholar : PubMed/NCBI | |
Badia-Ramentol J, Linares J, Gómez-Llonin A and Calon A: Minimal residual disease, metastasis and immunity. Biomolecules. 11:1302021. View Article : Google Scholar : PubMed/NCBI | |
Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, Nixon AML, Bruce JP, Wintersinger JA, Singh Mer A, Lo EBL, et al: Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell. 184:226–242.e21. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cackowski FC and Heath EI: Prostate cancer dormancy and recurrence. Cancer Lett. 524:103–108. 2022. View Article : Google Scholar : PubMed/NCBI | |
Akkoc Y, Peker N, Akcay A and Gozuacik D: Autophagy and cancer dormancy. Front Oncol. 11:6270232021. View Article : Google Scholar : PubMed/NCBI | |
Damen MPF, van Rheenen J and Scheele CLGJ: Targeting dormant tumor cells to prevent cancer recurrence. FEBS J. 288:6286–6303. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Kim SH and Kang BJ: Prognostic factors of disease recurrence in breast cancer using quantitative and qualitative magnetic resonance imaging (MRI) parameters. Sci Rep. 10:75982020. View Article : Google Scholar : PubMed/NCBI | |
Hampsch RA, Wells JD, Traphagen NA, McCleery CF, Fields JL, Shee K, Dillon LM, Pooler DB, Lewis LD, Demidenko E, et al: AMPK activation by metformin promotes survival of dormant ER+ breast cancer cells. Clin Cancer Res. 26:3707–3719. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Wang F, Wu X, Li Z, Wang Z, Ren X, Zhou Y, Song F, Liang Y, Zeng Z, et al: FBX8 promotes metastatic dormancy of colorectal cancer in liver. Cell Death Dis. 11:6222020. View Article : Google Scholar : PubMed/NCBI | |
Quayle LA, Spicer A, Ottewell PD and Holen I: Transcriptomic profiling reveals novel candidate genes and signalling programs in breast cancer quiescence and dormancy. Cancers (Basel). 13:39222021. View Article : Google Scholar : PubMed/NCBI | |
Preciado J, Lam T, Azarin SM, Lou E and Aksan A: Induction of dormancy by confinement: An agarose-silica biomaterial for isolating and analyzing dormant cancer cells. J Biomed Mater Res B Appl Biomater. 109:2117–2130. 2021. View Article : Google Scholar : PubMed/NCBI | |
Drescher F, Juárez P, Arellano DL, Serafín-Higuera N, Olvera-Rodriguez F, Jiménez S, Licea-Navarro AF and Fournier PG: TIE2 induces breast cancer cell dormancy and inhibits the development of osteolytic bone metastases. Cancers (Basel). 12:8682020. View Article : Google Scholar : PubMed/NCBI | |
Cho J, Min HY, Lee HJ, Hyun SY, Sim JY, Noh M, Hwang SJ, Park SH, Boo HJ, Lee HJ, et al: RGS2-mediated translational control mediates cancer cell dormancy and tumor relapse. J Clin Invest. 131:e1719012021. View Article : Google Scholar | |
Clark AM, Heusey HL, Griffith LG, Lauffenburger DA and Wells A: IP-10 (CXCL10) can trigger emergence of dormant breast cancer cells in a metastatic liver microenvironment. Front Oncol. 11:6761352021. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Zhou R, Zhao Y, Pan Y, Liang H, Zhang JS, Tai S, Jin L and Teng CB: Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif. 52:e125682019. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kurppa KJ, Liu Y, To C, Zhang T, Fan M, Vajdi A, Knelson EH, Xie Y, Lim K, Cejas P, et al: Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell. 37:104–122.e12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dhimolea E, de Matos Simoes R, Kansara D, Al'Khafaji A, Bouyssou J, Weng X, Sharma S, Raja J, Awate P, Shirasaki R, et al: An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell. 39:240–256.e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hussein AM, Wang Y, Mathieu J, Margaretha L, Song C, Jones DC, Cavanaugh C, Miklas JW, Mahen E, Showalter MR, et al: Metabolic control over mTOR-dependent diapause-like state. Dev Cell. 52:236–250. e72020. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, et al: The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest. 118:3917–3929. 2008.PubMed/NCBI | |
Anlaş AA and Nelson CM: Soft microenvironments induce chemoresistance by increasing autophagy downstream of integrin-linked kinase. Cancer Res. 80:4103–4113. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tallón de Lara P, Castañón H, Vermeer M, Núñez N, Silina K, Sobottka B, Urdinez J, Cecconi V, Yagita H, Movahedian Attar F, et al: CD39+PD-1+CD8+ T cells mediate metastatic dormancy in breast cancer. Nat Commun. 12:7692021. View Article : Google Scholar : PubMed/NCBI | |
Ju S, Wang F, Wang Y and Ju S: CSN8 is a key regulator in hypoxia-induced epithelial-mesenchymal transition and dormancy of colorectal cancer cells. Mol Cancer. 19:1682020. View Article : Google Scholar : PubMed/NCBI | |
Chen ML, Sun A, Cao W, Eliason A, Mendez KM, Getzler AJ, Tsuda S, Diao H, Mukori C, Bruno NE, et al: Physiological expression and function of the MDR1 transporter in cytotoxic T lymphocytes. J Exp Med. 217:e201913882020. View Article : Google Scholar : PubMed/NCBI | |
Mu QG, Lin G, Jeon M, Wang H, Chang FC, Revia RA, Yu J and Zhang M: Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. Mater Today (Kidlington). 50:149–169. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li C, Jin S, Liu J, Xue X, Eltahan AS, Sun J, Tan J, Dong J and Liang XJ: Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials. 144:119–129. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ling X, Chen X, Riddell IA, Tao W, Wang J, Hollett G, Lippard SJ, Farokhzad OC, Shi J and Wu J: Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance. Nano Lett. 18:4618–4625. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Du Y, Yang J, Shao B, Mi Z, Yao Y, Cui Y, He F, Zhang Y and Yang P: Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano. 16:3647–3663. 2022. View Article : Google Scholar : PubMed/NCBI |