Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review)
- Authors:
- Asif Shahzad
- Wenjing Liu
- Yijian Sun
- Xiangjie Liu
- Jiaojiao Xia
- Kun Cui
- Buqing Sai
- Yuechun Zhu
- Zhe Yang
- Qiao Zhang
-
Affiliations: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China - Published online on: October 15, 2024 https://doi.org/10.3892/or.2024.8826
- Article Number: 167
-
Copyright: © Shahzad et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rini BI, Campbell SC and Escudier B: Renal cell carcinoma. Lancet. 373:1119–1132. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Bray F, Pisani P and Parkin D: Globocan 2002: Cancer incidence, mortality and prevalence worldwide. IARC Cancerbase. 52004. | |
Parkin DM and Bray F: International patterns of cancer incidence and mortality. Cancer Epidemiol Prevention. 101–138. 2006. View Article : Google Scholar | |
Mohammadian M, Pakzad R, Towhidi F, Makhsosi BR, Ahmadi A and Salehiniya H: Incidence and mortality of kidney cancer and its relationship with HDI (Human Development Index) in the world in 2012. Clujul Med. 90:2862017.PubMed/NCBI | |
Lobo J, Ohashi R, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Netto GJ, et al: Who 2022 landscape of papillary and chromophobe renal cell carcinoma. Histopathology. 81:426–438. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hoerner CR, Miao SY, Hsieh JJ and Fan AC: Targeting metabolic pathways in kidney cancer: Rationale and therapeutic opportunities. Cancer J. 26:407–418. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barron CC, Bilan PJ, Tsakiridis T and Tsiani E: Facilitative glucose transporters: implications for cancer detection, prognosis and treatment. Metabolism. 65:124–139. 2016. View Article : Google Scholar : PubMed/NCBI | |
Furuta E, Okuda H, Kobayashi A and Watabe K: Metabolic genes in cancer: Their roles in tumor progression and clinical implications. Biochim Biophys Acta. 1805:141–152. 2010.PubMed/NCBI | |
Menendez JA and Lupu R: Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets. 21:1001–1016. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cai L and Tu BP: Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol. 28:59–87. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rathmell WK, Rathmell JC and Linehan WM: Metabolic pathways in kidney cancer: Current therapies and future directions. J Clin Oncol. JCO2018792309. 2018.doi: 10.1200/JCO.2018.79.2309 (Epub ahead of print). View Article : Google Scholar | |
Weiss RH: Metabolomics and metabolic reprogramming in kidney cancer. Semin Nephrol. 38:175–182. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wettersten HI: Reprogramming of metabolism in kidney cancer. Semin Nephrol. 40:2–13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wettersten HI, Aboud OA, Lara PN Jr and Weiss RH: Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 13:410–419. 2017. View Article : Google Scholar : PubMed/NCBI | |
Linehan WM, Srinivasan R and Schmidt LS: The genetic basis of kidney cancer: A metabolic disease. Nat Rev Urol. 7:277–285. 2010. View Article : Google Scholar : PubMed/NCBI | |
De Marinis F, Rinaldi M, Ardizzoni A, Bruzzi P, Pennucci MC, Portalone L, D'Aprile M, Ripanti P, Romano F, Belli M, et al: The role of vindesine and lonidamine in the treatment of elderly patients with advanced non-small cell lung cancer: A phase III randomized FONICAP trial. Italian Lung Cancer Task Force. Tumori. 85:177–182. 1999. View Article : Google Scholar : PubMed/NCBI | |
Acharya N and Singh KP: Recent advances in the molecular basis of chemotherapy resistance and potential application of epigenetic therapeutics in chemorefractory renal cell carcinoma. WIREs Mech Dis. 14:e15752022. View Article : Google Scholar : PubMed/NCBI | |
Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM and Tiwari AK: Natural polyphenols in cancer chemoresistance. Nutr Cancer. 68:879–891. 2016. View Article : Google Scholar : PubMed/NCBI | |
de Luna FCF, Ferreira WAS, Casseb SMM and de Oliveira EHC: Anticancer potential of flavonoids: An overview with an emphasis on tangeretin. Pharmaceuticals (Basel). 16:12292023. View Article : Google Scholar : PubMed/NCBI | |
Kumar A and Jaitak V: Natural products as multidrug resistance modulators in cancer. Eur J Med Chem. 176:268–291. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chrun ES, Modolo F and Daniel FI: Histone modifications: A review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol Res Pract. 213:1329–1339. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kopustinskiene DM, Jakstas V, Savickas A and Bernatoniene J: Flavonoids as anticancer agents. Nutrients. 12:4572020. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhang H and Gao P: Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 13:877–919. 2022. View Article : Google Scholar : PubMed/NCBI | |
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F and Eid AH: Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother. 146:1124422022. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J and Prieto MA: Status and challenges of Plant-anticancer compounds in cancer treatment. Pharmaceuticals (Basel). 14:1572021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y: Inhibitors of basal glucose transport and their anticancer activities and mechanism. Ohio University; 2012 | |
Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A, Reynolds GE, Chi JT, Wu J, Solow-Cordero DE, et al: Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med. 3:94ra702011. View Article : Google Scholar : PubMed/NCBI | |
Kodama M and Nakayama KI: A second warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis contributes to malignant evolution of cancer. Bioessays. 42:20001692020. View Article : Google Scholar | |
Sharma RA, Gescher AJ and Steward WP: Curcumin: The story so far. Eur J Cancer. 41:1955–1968. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pavan AR, Silva GD, Jornada DH, Chiba DE, Fernandes GF, Man Chin C and Dos Santos JL: Unraveling the anticancer effect of curcumin and resveratrol. Nutrients. 8:6282016. View Article : Google Scholar : PubMed/NCBI | |
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J and Ma X: Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (2020). 4:e2182023. View Article : Google Scholar : PubMed/NCBI | |
Alamgir A and Alamgir A: Drugs: Their natural, synthetic, and biosynthetic sources. Therapeutic Use of Medicinal Plants and Their Extracts: Volume 1 = Pharmacognosy. 105–123. 2017. View Article : Google Scholar | |
Yuan H, Ma Q, Ye L and Piao G: The traditional medicine and modern medicine from natural products. Molecules. 21:5592016. View Article : Google Scholar : PubMed/NCBI | |
Atanasov AG, Zotchev SB, Dirsch VM; International Natural Product Sciences Taskforce, ; Supuran CT: Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov. 20:200–216. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fabiani R: Antitumoral properties of natural products. Molecules. 25:6502020. View Article : Google Scholar : PubMed/NCBI | |
Lichota A and Gwozdzinski K: Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 19:35332018. View Article : Google Scholar : PubMed/NCBI | |
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W and Zheng Q: Natural products as anticancer agents: Current status and future perspectives. Molecules. 27:83672022. View Article : Google Scholar : PubMed/NCBI | |
Karimi A, Majlesi M and Rafieian-Kopaei M: Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol. 4:27–30. 2015.PubMed/NCBI | |
Anand P, Kunnumakkara AB, Newman RA and Aggarwal BB: Bioavailability of curcumin: Problems and promises. Mol Pharm. 4:807–818. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Jiang Z, Jiang M and Sun Y: Berberine as a potential agent for the treatment of colorectal cancer. Front Med (Lausanne). 9:8869962022. View Article : Google Scholar : PubMed/NCBI | |
Yang CS and Wang X: Green tea and cancer prevention. Nutr Cancer. 62:931–937. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bosetti C, Rossi M, McLaughlin JK, Negri E, Talamini R, Lagiou P, Montella M, Ramazzotti V, Franceschi S and LaVecchia C: Flavonoids and the risk of renal cell carcinoma. Cancer Epidemiol Biomarkers Prev. 16:98–101. 2007. View Article : Google Scholar : PubMed/NCBI | |
Silva A, Silva V, Igrejas G, Aires A, Falco V, Valentão P and Poeta P: Phenolic compounds classification and their distribution in winemaking by-products. Eur Food Res Technol. 249:207–239. 2023. View Article : Google Scholar | |
Razi SM and Rashidinejad A: Bioactive compounds: Chemistry, structure, and functionality. In: Spray drying encapsulation of bioactive materials; CRC Press: pp. 1–46. 2021 | |
Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH and Jaremko M: Antiviral activities of flavonoids. Biomed Pharmacother. 140:1115962021. View Article : Google Scholar : PubMed/NCBI | |
Al Aboody MS and Mickymaray S: Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics (Basel). 9:452020. View Article : Google Scholar | |
Xie Y, Yang W, Tang F, Chen X and Ren L: Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr Med Chem. 22:132–149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Heim KE, Tagliaferro AR and Bobilya DJ: Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 13:572–584. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V and Kohli K: Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm Allergy Drug Targets. 8:229–235. 2009. View Article : Google Scholar : PubMed/NCBI | |
Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K and Büsselberg D: Flavonoids and their Anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 9:4302019. View Article : Google Scholar : PubMed/NCBI | |
Snijman PW, Swanevelder S, Joubert E, Green IR and Gelderblom WC: The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): Some dose-response effects on mutagen activation-flavonoid interactions. Mutat Res. 631:111–123. 2007. View Article : Google Scholar : PubMed/NCBI | |
Oliveira AKS, de Oliveira E Silva AM, Pereira RO, Santos AS, Barbosa Junior EV, Bezerra MT, Barreto RSS, Quintans-Junior LJ and Quintans JSS: Anti-obesity properties and mechanism of action of flavonoids: A review. Crit Rev Food Sci Nutr. 62:7827–7848. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Shang P and Li D: Luteolin: A flavonoid that has multiple Cardio-protective effects and its molecular mechanisms. Front Pharmacol. 8:6922017. View Article : Google Scholar : PubMed/NCBI | |
Trachootham D, Alexandre J and Huang P: Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gorrini C, Harris IS and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang MZ and Li JY: Physiological regulation of reactive oxygen species in organisms based on their physicochemical properties. Acta Physiol (Oxf). 228:e133512020. View Article : Google Scholar : PubMed/NCBI | |
Cao G, Sofic E and Prior RL: Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic Biol Med. 22:749–760. 1997. View Article : Google Scholar : PubMed/NCBI | |
Havsteen BH: The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 96:67–202. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tavsan Z and Kayali HA: Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed Pharmacother. 116:1090042019. View Article : Google Scholar : PubMed/NCBI | |
Biswas P, Dey D, Biswas PK, Rahaman TI, Saha S, Parvez A, Khan DA, Lily NJ, Saha K, Sohel M, et al: A comprehensive analysis and Anti-cancer activities of quercetin in ROS-mediated cancer and cancer stem cells. Int J Mol Sci. 23:117462022. View Article : Google Scholar : PubMed/NCBI | |
Reyes-Farias M and Carrasco-Pozo C: The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int J Mol Sci. 20:31772019. View Article : Google Scholar : PubMed/NCBI | |
Bansal A and Simon MC: Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 217:22912018. View Article : Google Scholar : PubMed/NCBI | |
Desideri E, Ciccarone F and Ciriolo MR: Targeting glutathione metabolism: Partner in crime in anticancer therapy. Nutrients. 11:19262019. View Article : Google Scholar : PubMed/NCBI | |
Bansal A and Simon MC: Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 217:2291–2298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yoo D, Jung E, Noh J, Hyun H, Seon S, Hong S, Kim D and Lee D: Glutathione-depleting Pro-oxidant as a selective anticancer therapeutic agent. ACS Omega. 4:10070–10077. 2019. View Article : Google Scholar : PubMed/NCBI | |
Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM and Domenicotti C: Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013:9729132013. View Article : Google Scholar : PubMed/NCBI | |
Wu JH and Batist G: Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta. 1830:3350–3353. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sobhakumari A: Dual role of oxidative stress in head and neck cancer chemotherapy: Cytotoxicity and pro-survival autophagy. The University of Iowa; 2013, View Article : Google Scholar | |
Liang F, Fang Y, Cao W, Zhang Z, Pan S and Xu X: Attenuation of tert-Butyl Hydroperoxide (t-BHP)-induced oxidative damage in HepG2 cells by tangeretin: Relevance of the Nrf2-ARE and MAPK signaling pathways. J Agric Food Chem. 66:6317–6325. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fatima N, Baqri SSR, Bhattacharya A, Koney NK-K, Husain K, Abbas A and Ansari RA: Role of flavonoids as epigenetic modulators in cancer prevention and therapy. Front Genet. 12:7587332021. View Article : Google Scholar : PubMed/NCBI | |
Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN and Simabuco FM: The hallmarks of flavonoids in cancer. Molecules. 26:20292021. View Article : Google Scholar : PubMed/NCBI | |
Seo HS, Ku JM, Choi HS, Choi YK, Woo JK, Kim M, Kim I, Na CH, Hur H, Jang BH, et al: Quercetin induces Caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol Rep. 36:31–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Akhtar MF, Saleem A, Rasul A, Baig MM, Bin-Jumah M and Daim MM: Anticancer natural medicines: An overview of cell signaling and other targets of anticancer phytochemicals. Eur J Pharmacol. 888:1734882020. View Article : Google Scholar : PubMed/NCBI | |
Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ and Kao YH: Antimitogenic effect of green tea (−)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol. 288:C1094–C108. 2005. View Article : Google Scholar : PubMed/NCBI | |
Han DW, Lee MH, Kim HH, Hyon SH and Park JC: Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-κB in human dermal fibroblasts. Acta Pharmacol Sin. 32:637–646. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shih LJ, Hsu PC, Chuu CP, Shui HA, Yeh CC, Chen YC and Kao YH: Epigallocatechin-3-gallate synergistically enhanced arecoline-induced cytotoxicity by redirecting cycle arrest to apoptosis. Curr Issues Mol Biol. 46:1516–1529. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Hu Z, Horta CA and Yang J: Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol. 88:46–66. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mendes LF, Gaspar VM, Conde TA, Mano JF and Duarte IF: Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Sci Rep. 9:149062019. View Article : Google Scholar : PubMed/NCBI | |
Usuwanthim K, Wisitpongpun P and Luetragoon T: Molecular identification of phytochemical for anticancer treatment. Anticancer Agents Med Chem. 20:651–666. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hay N: Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat Rev Cancer. 16:635–649. 2016. View Article : Google Scholar : PubMed/NCBI | |
Triplitt CL: Understanding the kidneys' role in blood glucose regulation. Am J Manag Care. 18 (1 Suppl):S11–S16. 2012.PubMed/NCBI | |
Boroughs LK and DeBerardinis RJ: Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 17:351–359. 2015. View Article : Google Scholar : PubMed/NCBI | |
Morani F, Phadngam S, Follo C, Titone R, Aimaretti G, Galetto A, Alabiso O and Isidoro C: PTEN regulates plasma membrane expression of glucose transporter 1 and glucose uptake in thyroid cancer cells. J Mol Endocrinol. 53:247–258. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei R, Mao L, Xu P, Zheng X, Hackman RM, Mackenzie GG and Wang Y: Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct. 9:5682–5696. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moreira L, Araújo I, Costa T, Correia-Branco A, Faria A, Martel F and Keating E: Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp Cell Res. 319:1784–1795. 2013. View Article : Google Scholar : PubMed/NCBI | |
Prpa E: A mechanistic investigation into the acute effects of apple polyphenols on carbohydrate digestion and absorption. King's College London; 2021 | |
Pérez A, Ojeda P, Ojeda L, Salas Mn, Rivas CI, Vera JC and Reyes AM: Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins. Biochemistry. 50:8834–8845. 2011. View Article : Google Scholar : PubMed/NCBI | |
Patra S, Pradhan B, Nayak R, Behera C, Rout L, Jena M, Efferth T and Bhutia SK: Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Semin Cancer Biol. 73:310–320. 2021. View Article : Google Scholar : PubMed/NCBI | |
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, et al: Flavonoids targeting HIF-1: Implications on cancer metabolism. Cancers. 13:1302021. View Article : Google Scholar : PubMed/NCBI | |
Zambrano A, Molt M, Uribe E and Salas M: Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strategy. Int J Mol Sci. 20:33742019. View Article : Google Scholar : PubMed/NCBI | |
Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A, Aksoy BA, Liu EM, Shen R, Lee W, et al: An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell. 29:104–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty S, Balan M, Sabarwal A, Choueiri TK and Pal S: Metabolic reprogramming in renal cancer: Events of a metabolic disease. Biochim Biophys Acta Rev Cancer. 1876:1885592021. View Article : Google Scholar : PubMed/NCBI | |
Shan S, Shi J, Yang P, Jia B, Wu H, Zhang X and Li Z: Apigenin restrains colon cancer cell proliferation via targeted blocking of pyruvate kinase M2-dependent glycolysis. J Agric Food Chem. 65:8136–8144. 2017. View Article : Google Scholar : PubMed/NCBI | |
Monteiro F and Shetty SS: Natural antioxidants as inhibitors of pyruvate kinase M2 in warburg phenotypes. J Herbal Med. 42:1007502023. View Article : Google Scholar | |
Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, Chen J, Mao Y, Wang F, Dai W, et al: PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res. 38:2042019. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Li W, Liu H and Yu X: Xanthohumol inhibits colorectal cancer cells via downregulation of hexokinases II-mediated glycolysis. Int J Biol Sci. 15:24972019. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Pan L, Gao C, Xu H, Li Y, Zhang L, Ma L, Meng L, Sun X and Qin H: Quercetin inhibits the proliferation of Glycolysis-Addicted HCC cells by reducing hexokinase 2 and Akt-mTOR pathway. Molecules. 24:19932019. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Liu R, Li J, Li Z, Liu J, Xiong R, Lei X, Zheng X, Xie Z and Tang G: Design, synthesis, and preliminary biological evaluation of 3′,4′,5′-trimethoxy flavonoid salicylate derivatives as potential anti-tumor agents. N J Chemistry. 43:1874–1884. 2019. View Article : Google Scholar | |
Guo Y, Wei L, Zhou Y, Lu N, Tang X, Li Z and Wang X: Flavonoid Gl-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3β-modulated mitochondrial binding of HKII. Free Radic Biol Med. 146:119–129. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mazlaghaninia M, Atri MS and Seyedalipour B: Scopoletin and morin inhibit lactate dehydrogenase enzyme activity, which is critical for cancer metabolism. Hormozgan Med J. 23:e882692019. View Article : Google Scholar | |
Jia L, Huang S, Yin X, Zan Y, Guo Y and Han L: Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through akt-mtor pathway mediated autophagy induction. Life Sci. 208:123–130. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bader A, Tuccinardi T, Granchi C, Martinelli A, Macchia M, Minutolo F, De Tommasi N and Braca A: Phenylpropanoids and flavonoids from phlomis kurdica as inhibitors of human lactate dehydrogenase. Phytochemistry. 116:262–268. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wu L, Feng J, Li J, Liu T, Zhang R, Xu S, Cheng K, Zhou Y, Zhou S, et al: In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci Rep. 6:284792016. View Article : Google Scholar : PubMed/NCBI | |
Dihal AA, van der Woude H, Hendriksen PJ, Charif H, Dekker LJ, IJsselstijn L, de Boer VC, Alink GM, Burgers PC, Rietjens IM, et al: Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis. Proteomics. 8:45–61. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiménez-Uribe AP, Hernández-Cruz EY, Ramírez-Magaña KJ and Pedraza-Chaverri J: Involvement of tricarboxylic acid cycle metabolites in kidney diseases. Biomolecules. 11:12592021. View Article : Google Scholar : PubMed/NCBI | |
Liu JJ, Liu S, Gurung RL, Ching J, Kovalik J-P, Tan TY and Lim SC: Urine tricarboxylic acid cycle metabolites predict progressive chronic kidney disease in type 2 diabetes. J Clin Endocrinol Metab. 103:4357–4364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saunier E, Benelli C and Bortoli S: The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer. 138:809–817. 2016. View Article : Google Scholar : PubMed/NCBI | |
Blouin JM, Penot G, Collinet M, Nacfer M, Forest C, Laurent-Puig P, Coumoul X, Barouki R, Benelli C and Bortoli S: Butyrate elicits a metabolic switch in human colon cancer cells by targeting the pyruvate dehydrogenase complex. Int J Cancer. 128:2591–2601. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coricovac D, Dehelean CA, Pinzaru I, Mioc A, Aburel OM, Macasoi I, Draghici GA, Petean C, Soica C, Boruga M, et al: Assessment of betulinic acid cytotoxicity and mitochondrial metabolism impairment in a human melanoma cell line. Int J Mol Sci. 22:48702021. View Article : Google Scholar : PubMed/NCBI | |
Peeters TH, Lenting K, Breukels V, van Lith SA, van den Heuvel CN, Molenaar R, van Rooij A, Wevers R, Span PN, Heerschap A and Leenders WPJ: Isocitrate dehydrogenase 1-mutated cancers are sensitive to the green tea polyphenol epigallocatechin-3-gallate. Cancer Metab. 7:42019. View Article : Google Scholar : PubMed/NCBI | |
Bianchi G, Ravera S, Traverso C, Amaro A, Piaggio F, Emionite L, Bachetti T, Pfeffer U and Raffaghello L: Curcumin induces a fatal energetic impairment in tumor cells in vitro and in vivo by inhibiting ATP-synthase activity. Carcinogenesis. 39:1141–1150. 2018. View Article : Google Scholar : PubMed/NCBI | |
Patel K, Singh GK and Patel DK: A review on pharmacological and analytical aspects of naringenin. Chi J Integr Med. 24:551–560. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A and Büsselberg D: Flavonoids in cancer and apoptosis. Cancers (Basel). 11:282018. View Article : Google Scholar : PubMed/NCBI | |
Brecht K, Riebel V, Couttet P, Paech F, Wolf A, Chibout SD, Pognan F, Krähenbühl S and Uteng M: Mechanistic insights into selective killing of oxphos-dependent cancer cells by arctigenin. Toxicol In Vitro. 40:55–65. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Ma F and Qian HL: Defueling the cancer: ATP synthase as an emerging target in cancer therapy. Mol Ther Oncolytics. 23:82–95. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kicinska A and Jarmuszkiewicz W: Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules. 25:30602020. View Article : Google Scholar : PubMed/NCBI | |
Zheng KY, Choi RC, Cheung AW, Guo AJ, Bi CW, Zhu KY, Fu Q, Du Y, Zhang WL, Zhan JY, et al: Flavonoids from radix astragali induce the expression of erythropoietin in cultured cells: A signaling mediated via the accumulation of hypoxia-inducible factor-1α. J Agric Food Chem. 59:1697–1704. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Zhou S and Li S: Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem. 18:3168–3189. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roy M and Datta A: Cancer genetics and therapeutics: Focus on phytochemicals. Springer Nature; 2019, View Article : Google Scholar | |
Kittiratphatthana N, Kukongviriyapan V, Prawan A and Senggunprai L: Luteolin induces cholangiocarcinoma cell apoptosis through the mitochondrial-dependent pathway mediated by reactive oxygen species. J Pharmacy Pharmacol. 68:1184–1192. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nenkov M, Ma Y, Gaßler N and Chen Y: Metabolic reprogramming of colorectal cancer cells and the microenvironment: Implication for therapy. Int J Mol Sci. 22:62622021. View Article : Google Scholar : PubMed/NCBI | |
Adem S, Comakli V, Kuzu M and Demirdag R: Investigation of the effects of some phenolic compounds on the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from human erythrocytes. J Biochem Mol Toxicol. 28:510–514. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gomez LS, Zancan P, Marcondes MC, Ramos-Santos L, Meyer-Fernandes JR, Sola-Penna M and Da Silva D: Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie. 95:1336–1343. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang P, Du W and Wu M: Regulation of the pentose phosphate pathway in cancer. Protein Cell. 5:592–602. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhang Z, Zhu Y and Qin S: Glucose-6-phosphate dehydrogenase: A biomarker and potential therapeutic target for cancer. Anticancer Agents Med Chem. 14:280–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, Hitosugi T, Zhang L, Zhang S, Seo JH, et al: 6-phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol. 17:1484–1496. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kerimi A and Williamson G: Differential impact of flavonoids on redox modulation, bioenergetics, and cell signaling in normal and tumor cells: A comprehensive review. Antioxid Redox Signal. 29:1633–1659. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mazzio EA, Close F and Soliman KF: The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in parkinson's disease. Int J Mol Sci. 12:506–569. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li P, Tian W and Ma X: Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol Cancer. 13:1382014. View Article : Google Scholar : PubMed/NCBI | |
Sciacovelli M, Gaude E, Hilvo M and Frezza C: The metabolic alterations of cancer cells. Methods Enzymol. 542:1–23. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee KH, Lee MS, Cha EY, Sul JY, Lee JS, Kim JS, Park JB and Kim JY: Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol Med Rep. 15:2163–2173. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sainero-Alcolado L, Garde-Lapido E, Snaebjörnsson MT, Schoch S, Stevens I, Ruiz-Pérez MV, Dyrager C, Pelechano V, Axelson H, Schulze A and Arsenian-Henriksson M: Targeting myc induces lipid droplet accumulation by upregulation of hilpda in clear cell renal cell carcinoma. Proc Natl Acad Sci USA. 121:e23104791212024. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Tian W: Green tea epigallocatechin gallate: A natural inhibitor of Fatty-acid synthase. Biochem Biophys Res Commun. 288:1200–1206. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tan SK, Hougen HY, Merchan JR, Gonzalgo ML and Welford SM: Fatty acid metabolism reprogramming in ccRCC: Mechanisms and potential targets. Nat Rev Urol. 20:48–60. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang CH, Tsai SJ, Wang YJ, Pan MH, Kao JY and Way TD: EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol Nutr Food Res. 53:1156–1165. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qi X, Li Q, Che X, Wang Q and Wu G: The uniqueness of clear cell renal cell carcinoma: Summary of the process and abnormality of glucose metabolism and lipid metabolism in ccRCC. Front Oncol. 11:7277782021. View Article : Google Scholar : PubMed/NCBI | |
Potze L, Di Franco S, Grandela C, Pras-Raves ML, Picavet DI, van Veen HA, van Lenthe H, Mullauer FB, van der Wel NN, Luyf A, et al: Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification. Oncogene. 35:427–437. 2016. View Article : Google Scholar : PubMed/NCBI | |
Horiguchi A, Asano T, Asano T, Ito K, Sumitomo M and Hayakawa M: Fatty acid synthase over expression is an indicator of tumor aggressiveness and poor prognosis in renal cell carcinoma. J Urol. 180:1137–1140. 2008. View Article : Google Scholar : PubMed/NCBI | |
Funabashi H, Kawaguchi A, Tomoda H, Omura S, Okuda S and Iwasaki S: Binding site of cerulenin in fatty acid synthetase. J Biochem. 105:751–755. 1989. View Article : Google Scholar : PubMed/NCBI | |
Li BH and Tian WX: Inhibitory effects of flavonoids on animal fatty acid synthase. J Biochem. 135:85–91. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jung KH, Lee JH, Quach CHT, Paik JY, Oh H, Park JW, Lee EJ, Moon SH and Lee KH: Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated Hypoxia-inducible factor-1α activation. J Nucl Med. 54:2161–2167. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Zhuang M, Zhong C, Peng J, Wang X, Li J, Chen Z and Huang Y: Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway. Oncol Rep. 33:457–463. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Xiao Y, Evans BS and Zhang F: Negative feedback regulation of fatty acid production based on a Malonyl-coA Sensor-actuator. ACS Synth Biol. 4:132–140. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vahlensieck H, Pridzun L, Reichenbach H and Hinnen A: Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr Genet. 25:95–100. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kandori S, Kojima T, Matsuoka T, Yoshino T, Sugiyama A, Nakamura E, Shimazui T, Funakoshi Y, Kanaho Y and Nishiyama H: Phospholipase D2 promotes disease progression of renal cell carcinoma through the induction of angiogenin. Cancer Sci. 109:1865–1875. 2018. View Article : Google Scholar : PubMed/NCBI | |
Daurkin I, Eruslanov E, Stoffs T, Perrin GQ, Algood C, Gilbert SM, Rosser CJ, Su LM, Vieweg J and Kusmartsev S: Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res. 71:6400–6409. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Zhang Y, Frilot N, Kim JI, Kim WJ and Daaka Y: Prostaglandin E2 regulates renal cell carcinoma invasion through the EP4 Receptor-Rap GTPase signal transduction pathway. J Biol Chem. 286:33954–33962. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fan WH, Wang FC, Jin Z, Zhu L and Zhang JX: Curcumin synergizes with cisplatin to inhibit colon cancer through targeting the MicroRNA-137-Glutaminase axis. Curr Med Sci. 42:108–117. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK, Chen H, Clark JE, Alborn WE, Eisenberg R and Massion PP: SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res. 19:560–570. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tuna B, Yorukoglu K, Gurel D, Mungan U and Kirkali Z: Significance of COX-2 expression in human renal cell carcinoma. Urology. 64:1116–1120. 2004. View Article : Google Scholar : PubMed/NCBI | |
Galleano M, Calabro V, Prince PD, Litterio MC, Piotrkowski B, Vazquez-Prieto MA, Miatello RM, Oteiza PI and Fraga CG: Flavonoids and metabolic syndrome. Ann N Y Acad Sci. 1259:87–94. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brusselmans K, Vrolix R, Verhoeven G and Swinnen JV: Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem. 280:5636–5645. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E and Vousden KH: Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 493:542–546. 2013. View Article : Google Scholar : PubMed/NCBI | |
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, et al: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 481:380–384. 2012. View Article : Google Scholar | |
Wang G, Wang YZ, Yu Y, Yin PH and Xu K: The antitumor activity of betulinic Acid-loaded nanoliposomes against colorectal cancer in vitro and in vivo via glycolytic and glutaminolytic pathways. J Biomed Nanotechnol. 16:235–251. 2020. View Article : Google Scholar : PubMed/NCBI | |
Newman AC, Labuschagne CF, Vousden KH and Maddocks OD: Use of 13C315N1-Serine or 13C515N1-Methionine for studying methylation dynamics in cancer cell metabolism and epigenetics. Methods Mol Biol. 1928:55–67. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Fan M, Liu Z, Li X and Wang H: Serine, glycine and One-carbon metabolism in cancer (Review). Int J Oncol. 58:158–170. 2021. View Article : Google Scholar : PubMed/NCBI | |
Papalazarou V, Newman AC, Huerta-Uribe A, Legrave NM, Falcone M, Zhang T, McGarry L, Athineos D, Shanks E, Blyth K, et al: Phenotypic profiling of solute carriers characterizes serine transport in cancer. Nat Metab. 5:2148–2168. 2023. View Article : Google Scholar : PubMed/NCBI | |
Amelio I, Cutruzzolá F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, et al: Flavonoids attenuate cancer metabolism by modulating lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol. 949:1756552023. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A, Agron S, Stettner N, Sun Q, Brandis A, Helbling D, et al: Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature. 527:379–383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bowles TL, Kim R, Galante J, Parsons CM, Virudachalam S, Kung HJ and Bold RJ: Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer. 123:1950–1955. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ensor CM, Holtsberg FW, Bomalaski JS and Clark MA: Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62:5443–5450. 2002.PubMed/NCBI | |
Pournourmohammadi S, Grimaldi M, Stridh MH, Lavallard V, Waagepetersen HS, Wollheim CB and Maechler P: Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state? Int J Biochem Cell Biol. 88:220–225. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wettersten HI, Hakimi AA, Morin D, Bianchi C, Johnstone ME, Donohoe DR, Trott JF, Aboud OA, Stirdivant S, Neri B, et al: Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 75:2541–2552. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hornigold N, Dunn KR, Craven RA, Zougman A, Trainor S, Shreeve R, Brown J, Sewell H, Shires M, Knowles M, et al: Dysregulation at multiple points of the kynurenine pathway is a ubiquitous feature of renal cancer: Implications for tumour immune evasion. Br J Cancer. 123:137–147. 2020. View Article : Google Scholar : PubMed/NCBI | |
Riesenberg R, Weiler C, Spring O, Eder M, Buchner A, Popp T, Castro M, Kammerer R, Takikawa O, Hatz RA, et al: Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with Long-term survival of patients with renal cell carcinoma. Clin Cancer Res. 13:6993–7002. 2007. View Article : Google Scholar : PubMed/NCBI | |
Trott JF, Kim J, Aboud OA, Wettersten H, Stewart B, Berryhill G, Uzal F, Hovey RC, Chen CH, Anderson K, et al: Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer. Oncotarget. 7:66540–66557. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beckermann KE, Johnson DB and Sosman JA: PD-1/PD-l1 blockade in renal cell cancer. Expert Rev Clin Immunol. 13:77–84. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A and Mellor AL: Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 189:1363–1372. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jochems C, Fantini M, Fernando RI, Kwilas AR, Donahue RN, Lepone LM, Grenga I, Kim YS, Brechbiel MW, Gulley JL, et al: The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor Antigen-specific T cells. Oncotarget. 7:37762–37772. 2016. View Article : Google Scholar : PubMed/NCBI | |
Naoi M, Wu Y, Shamoto-Nagai M and Maruyama W: Mitochondria in neuroprotection by phytochemicals: Bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Mol Sci. 20:24512019. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Aziz SM, Aeron A and Kahil TA: Health benefits and possible risks of herbal medicine. Microbes Food Health. 97–116. 2016. View Article : Google Scholar | |
Ojo O, Ajuwape A, Otesile E, Owoade A, Oyekunle M and Adetosoye A: Potentially zoonotic shiga Toxin-producing escherichia coli serogroups in the faeces and meat of Food-producing animals in ibadan, Nigeria. Int J Food Microbiol. 142:214–221. 2010. View Article : Google Scholar : PubMed/NCBI | |
Crowell JA, Korytko PJ, Morrissey RL, Booth TD and Levine BS: Resveratrol-associated renal toxicity. Toxicol Sci. 82:614–619. 2004. View Article : Google Scholar : PubMed/NCBI | |
Balaji S and Chempakam B: Toxicity prediction of compounds from turmeric (Curcuma longa L). Food Chem Toxicol. 48:2951–2959. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qiu P, Man S, Li J, Liu J, Zhang L, Yu P and Gao W: Overdose intake of curcumin initiates the unbalanced state of bodies. J Agric Food Chem. 64:2765–2771. 2016. View Article : Google Scholar : PubMed/NCBI | |
van Duursen MB, Nijmeijer S, De Morree E, de Jong PC and van den Berg M: Genistein induces breast Cancer-associated aromatase and stimulates Estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology. 289:67–73. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang Y, Wan X, Yang CS and Zhang J: Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway. Toxicol Appl Pharmacol. 283:65–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
McCullough ML and Giovannucci EL: Diet and cancer prevention. Oncogene. 23:6349–6364. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez CA: Nutrition and cancer: The current epidemiological evidence. Br J Nutr. 96 (Suppl 1):S42–S45. 2006. View Article : Google Scholar : PubMed/NCBI | |
Surh YJ: Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shree TJ, Poompavai S, Begum S, Gowrisree V, Hemalatha S, Sieni E and Sundararajan R: Cancer-fighting phytochemicals: Another look. J Nanomed Biother Discov. 9:1622019. | |
Tohill BC and Joint F: Dietary intake of fruit and vegetables and management of body weight (electronic resource). World Health Organization; 2005 | |
Chen H and Liu RH: Potential mechanisms of action of dietary phytochemicals for cancer prevention by targeting cellular signaling transduction pathways. J Agric Food Chem. 66:3260–3276. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Li W, Shi H, Xie X, Li L, Tang H, Wu M, Kong Y, Yang L, Gao J, et al: Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of mir-34a. Mol Cell Biochem. 382:103–111. 2013. View Article : Google Scholar : PubMed/NCBI | |
Islam MR, Rahman MM, Dhar PS, Nowrin FT, Sultana N, Akter M, Rauf A, Khalil AA, Gianoncelli A and Ribaudo G: The role of natural and Semi-synthetic compounds in ovarian cancer: Updates on mechanisms of action, current trends and perspectives. Molecules. 28:20702023. View Article : Google Scholar : PubMed/NCBI | |
Hemaiswarya S, Prabhakar PK and Doble M: Synergistic herb interactions with anticancer drugs. In: Herb-drug combinations: A new complementary therapeutic strategy; Springer: pp. 145–173. 2022 | |
Chen S, Zhang Z and Zhang J: Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo. Drug Des Devel Ther. 1145–1153. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bai L, Li X, He L, Zheng Y, Lu H and Li J, Zhong L, Tong R, Jiang Z, Shi J and Li J: Antidiabetic potential of flavonoids from traditional chinese medicine: A review. Am J Chin Med. 47:933–957. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu BY, Liu CT, Su YL, Chen SY, Chen YH and Tsai MY: A review of complementary therapies with medicinal plants for Chemotherapy-induced peripheral neuropathy. Complement Ther Med. 42:226–232. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZJ: Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci. 75:1659–1699. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mahmoud NN, Carothers AM, Grunberger D, Bilinski RT, Churchill MR, Martucci C, Newmark HL and Bertagnolli MM: Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis. 21:921–927. 2000. View Article : Google Scholar : PubMed/NCBI | |
Galati G and O'brien PJ: Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 37:287–303. 2004. View Article : Google Scholar : PubMed/NCBI | |
Siddiqi A, Rani M, Bansal P and Rizvi MMA: Renal cell carcinoma management: A step to Nano-chemoprevention. Life Sci. 308:1209222022. View Article : Google Scholar : PubMed/NCBI |