Lactate and lactylation in gastrointestinal cancer: Current progress and perspectives (Review)
- Authors:
- Yufen He
- Yaxi Huang
- Peng Peng
- Qi Yan
- Lidan Ran
-
Affiliations: Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China, Department of Intensive Care Unit, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China - Published online on: November 8, 2024 https://doi.org/10.3892/or.2024.8839
- Article Number: 6
-
Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Huang J, Lucero-Prisno DE III, Zhang L, Xu W, Wong SH, Ng SC and Wong MCS: Updated epidemiology of gastrointestinal cancers in East Asia. Nat Rev Gastroenterol Hepatol. 20:271–287. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shah SC and Itzkowitz SH: Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology. 162:715–730.e3. 2022. View Article : Google Scholar : PubMed/NCBI | |
Joshi SS and Badgwell BD: Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 71:264–279. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Ma X, Ye T, Wang H, Wang Z, Liu Q and Zhao K: Esophageal cancer in China: Practice and research in the new era. Int J Cancer. 152:1741–1751. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wood LD, Canto MI, Jaffee EM and Simeone DM: Pancreatic cancer: Pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 163:386–402.e1. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liberti MV and Locasale JW: The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Patti GJ: The Warburg effect: A signature of mitochondrial overload. Trends Cell Biol. 33:1014–1020. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI | |
Brooks GA: The science and translation of lactate shuttle theory. Cell Metab. 27:757–785. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lv X, Lv Y and Dai X: Lactate, histone lactylation and cancer hallmarks. Expert Rev Mol Med. 25:e72023. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Yang F, Xiao Z, Luo H, Chen H, Chen Z, Liu Q and Xiao Y: Lactylation: Novel epigenetic regulatory and therapeutic opportunities. Am J Physiol Endocrinol Metab. 324:E330–E338. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Ye Z, Li Z, Jing DS, Fan GX, Liu MQ, Zhuo QF, Ji SR, Yu XJ, Xu XW and Qin Y: Lactate-induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell Prolif. 56:e134782023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Cao X, Li B, Zhao Z, Chen S, Lai SWT, Muend SA, Nossa GK, Wang L, Guo W, et al: Warburg effect is a cancer immune evasion mechanism against macrophage immunosurveillance. Front Immunol. 11:6217572021. View Article : Google Scholar : PubMed/NCBI | |
Kes MMG, Van den Bossche J, Griffioen AW and Huijbers EJM: Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochim Biophys Acta Rev Cancer. 1874:1884272020. View Article : Google Scholar : PubMed/NCBI | |
Cheung SM, Husain E, Masannat Y, Miller ID, Wahle K, Heys SD and He J: Lactate concentration in breast cancer using advanced magnetic resonance spectroscopy. Br J Cancer. 123:261–267. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Zhan L, Yanxiang Guo J, et al: Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, et al: Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹3C]pyruvate. Sci Transl Med. 5:198ra082013. View Article : Google Scholar : PubMed/NCBI | |
Mortazavi Farsani SS and Verma V: Lactate mediated metabolic crosstalk between cancer and immune cells and its therapeutic implications. Front Oncol. 13:11755322023. View Article : Google Scholar : PubMed/NCBI | |
San-Millán I and Brooks GA: Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis. 38:119–133. 2017.PubMed/NCBI | |
Petersen C, Nielsen MD, Andersen ES, Basse AL, Isidor MS, Markussen LK, Viuff BM, Lambert IH, Hansen JB and Pedersen SF: MCT1 and MCT4 expression and lactate flux activity increase during white and brown adipogenesis and impact adipocyte metabolism. Sci Rep. 7:131012017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xin C, Wang S, Zhuo S, Zhu J, Li Z, Liu Y, Yang L and Chen Y: Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle. Sci Adv. 10:eadn45082024. View Article : Google Scholar : PubMed/NCBI | |
Mai Z, Lin Y, Lin P, Zhao X and Cui L: Modulating extracellular matrix stiffness: A strategic approach to boost cancer immunotherapy. Cell Death Dis. 15:3072024. View Article : Google Scholar : PubMed/NCBI | |
Caslin HL, Abebayehu D, Pinette JA and Ryan JJ: Lactate is a metabolic mediator that shapes immune cell fate and function. Front Physiol. 12:6884852021. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, Zhou Z, Hu Q and Cong X: Lactylation: The novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics. 16:722024. View Article : Google Scholar : PubMed/NCBI | |
Sun P, Ma L and Lu Z: Lactylation: Linking the Warburg effect to DNA damage repair. Cell Metab. 36:1637–1639. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liebner T, Kilic S, Walter J, Aibara H, Narita T and Choudhary C: Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription. Nat Commun. 15:49622024. View Article : Google Scholar : PubMed/NCBI | |
Shvedunova M and Akhtar A: Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G and Zou B: NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 5:2272020. View Article : Google Scholar : PubMed/NCBI | |
Navas LE and Carnero A: NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther. 6:22021. View Article : Google Scholar : PubMed/NCBI | |
Chen AN, Luo Y, Yang YH, Fu JT, Geng XM, Shi JP and Yang J: Lactylation, a novel metabolic reprogramming code: Current status and prospects. Front Immunol. 12:6889102021. View Article : Google Scholar : PubMed/NCBI | |
Varner EL, Trefely S, Bartee D, von Krusenstiern E, Izzo L, Bekeova C, O'Connor RS, Seifert EL, Wellen KE, Meier JL and Snyder NW: Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. Open Biol. 10:2001872020. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Chen K, Yao W, Zheng R, He Q, Xia J, Li J, Shao Y, Zhang L, Huang L, et al: Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance. J Hepatol. 74:1038–1052. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, et al: Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 131:893–908. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Huang L, Gu Y, Cang W, Sun P and Xiang Y: Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 23:119432022. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X and Jia R: Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 22:852021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, et al: Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell. 187:294–311.e21. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Zhang Y, Xu J, Wang P, Wu B, Lu S, Lu X, You S, Huang X, Li M, et al: α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 33:679–698. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X, Zhang X and Liu Y: Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci. 18:6210–6225. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Song H, Li M and Lu P: Histone lactylation bridges metabolic reprogramming and epigenetic rewiring in driving carcinogenesis: Oncometabolite fuels oncogenic transcription. Clin Transl Med. 14:e16142024. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, Wang H, Song Y, Du Y, Cui B, et al: Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 82:1660–1677.e10. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xin Q, Wang H, Li Q, Liu S, Qu K, Liu C and Zhang J: Lactylation: A passing fad or the future of posttranslational modification. Inflammation. 45:1419–1429. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Fan W, Li N, Ma Y, Yao M, Wang G, He S, Li W, Tan J, Lu Q and Hou S: YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 24:872023. View Article : Google Scholar : PubMed/NCBI | |
Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan M, Xiang J, He N, Hu Z and Wang F: CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer. 22:1512023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang M, Liu Y, Zhao S, Wang Y, Wang M, Niu W, Jin F and Li Z: Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension. J Mol Cell Biol. 14:mjac0732023. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Xie D, Xiao T, Cheng C, Wang D, Sun J, Wu M, Yang Y, Zhang A and Liu Q: H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. J Hazard Mater. 461:1325822024. View Article : Google Scholar : PubMed/NCBI | |
Galle E, Wong CW, Ghosh A, Desgeorges T, Melrose K, Hinte LC, Castellano-Castillo D, Engl M, de Sousa JA, Ruiz-Ojeda FJ, et al: H3K18 lactylation marks tissue-specific active enhancers. Genome Biol. 23:2072022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Qin L, Chen W, Chen Q, Sun J and Wang G: Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1. Eur J Med Chem. 226:1138062021. View Article : Google Scholar : PubMed/NCBI | |
She X, Wu Q, Rao Z, Song D, Huang C, Feng S, Liu A, Liu L, Wan K, Li X, et al: SETDB1 methylates MCT1 promoting tumor progression by enhancing the lactate shuttle. Adv Sci (Weinh). 10:e23018712023. View Article : Google Scholar : PubMed/NCBI | |
Hadjihambi A, Konstantinou C, Klohs J, Monsorno K, Le Guennec A, Donnelly C, Cox IJ, Kusumbe A, Hosford PS, Soffientini U, et al: Partial MCT1 invalidation protects against diet-induced non-alcoholic fatty liver disease and the associated brain dysfunction. J Hepatol. 78:180–190. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Yi J, Chen Y, Bai X, Lu C, Feng S and Zhou X: PRSS2 regulates EMT and metastasis via MMP-9 in gastric cancer. Acta Histochem. 125:1520712023. View Article : Google Scholar : PubMed/NCBI | |
Hwang KE, Kim HJ, Song IS, Park C, Jung JW, Park DS, Oh SH, Kim YS and Kim HR: Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer. Int J Med Sci. 18:715–726. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Huang D, Jiang Y, Hou J, Tian M, Li J, Sun L, Zhang Y, Zhang T, Li Z, et al: Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer. Front Oncol. 11:6475592021. View Article : Google Scholar : PubMed/NCBI | |
Izzo LT and Wellen KE: Histone lactylation links metabolism and gene regulation. Nature. 574:492–493. 2019. View Article : Google Scholar : PubMed/NCBI | |
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Irizarry-Caro RA, Mcdaniel MM, Overcast GR, Jain VG, Troutman TD and Pasare C: TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA. 117:30628–30638. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ivashkiv LB: The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol. 20:85–86. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, Holland EC and Stephan MT: Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 10:39742019. View Article : Google Scholar : PubMed/NCBI | |
Dichtl S, Lindenthal L, Zeitler L, Behnke K, Schlösser D, Strobl B, Scheller J, El Kasmi KC and Murray PJ: Lactate and IL6 define separable paths of inflammatory metabolic adaptation. Sci Adv. 7:eabg35052021. View Article : Google Scholar : PubMed/NCBI | |
Siska PJ, Singer K, Evert K, Renner K and Kreutz M: The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev. 295:187–202. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang ZH, Peng WB, Zhang P, Yang XP and Zhou Q: Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine. 73:1036272021. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI | |
de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A and Manzo-Merino J: Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol. 9:11432019. View Article : Google Scholar : PubMed/NCBI | |
Tay C, Tanaka A and Sakaguchi S: Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell. 41:450–465. 2023. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Li L, Chen X, Gou H, Yan K and Xu Y: Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol. 41:19–29. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lopez Krol A, Nehring HP, Krause FF, Wempe A, Raifer H, Nist A, Stiewe T, Bertrams W, Schmeck B, Luu M, et al: Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells. EMBO Rep. 23:e546852022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar : PubMed/NCBI | |
Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z, Geng D, Yue J, Tang Y, Tian L, et al: The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Invest. 134:e1745872024. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Zou X, Yang S, Zhang A, Li N and Ma Z: Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer. Front Immunol. 14:11499892023. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T and Zhao Y: The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci. 77:305–321. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shirbandi K, Rikhtegar R, Khalafi M, Mirza Aghazadeh Attari M, Rahmani F, Javanmardi P, Iraji S, Babaei Aghdam Z and Rezaei Rashnoudi AM: Functional magnetic resonance spectroscopy of lactate in Alzheimer disease: A comprehensive review of Alzheimer disease pathology and the role of lactate. Top Magn Reson Imaging. 32:15–26. 2023.PubMed/NCBI | |
Afshar M and van Hall G: LC-MS/MS method for quantitative profiling of ketone bodies, α-keto acids, lactate, pyruvate and their stable isotopically labelled tracers in human plasma: An analytical panel for clinical metabolic kinetics and interactions. J Chromatogr B Analyt Technol Biomed Life Sci. 1230:1239062023. View Article : Google Scholar : PubMed/NCBI | |
Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pivovarova AI and Macgregor GG: Glucose-dependent growth arrest of leukemia cells by MCT1 inhibition: Feeding Warburg's sweet tooth and blocking acid export as an anticancer strategy. Biomed Pharmacother. 98:173–179. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saulle E, Spinello I, Quaranta MT, Pasquini L, Pelosi E, Iorio E, Castelli G, Chirico M, Pisanu ME, Ottone T, et al: Targeting lactate metabolism by inhibiting MCT1 or MCT4 impairs leukemic cell proliferation, induces two different related death-pathways and increases chemotherapeutic sensitivity of acute myeloid leukemia cells. Front Oncol. 10:6214582021. View Article : Google Scholar : PubMed/NCBI | |
Todenhöfer T, Seiler R, Stewart C, Moskalev I, Gao J, Ladhar S, Kamjabi A, Al Nakouzi N, Hayashi T, Choi S, et al: Selective inhibition of the lactate transporter MCT4 reduces growth of invasive bladder cancer. Mol Cancer Ther. 17:2746–2755. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Zhu Z, He Y, Zhang Z, Zhang Y, Wang Y, Luo J, Peng T, Cheng F, Gao J, et al: A lactate-induced Snail/STAT3 pathway drives GPR81 expression in lung cancer cells. Biochim Biophys Acta Mol Basis Dis. 1866:1655762020. View Article : Google Scholar : PubMed/NCBI | |
Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF and Ganapathy V: The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene. 39:3292–3304. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Yang S, He J, Li W, Zhang A, Li N, Zhou G and Sun B: Glucose transporter 3 (GLUT3) promotes lactylation modifications by regulating lactate dehydrogenase A (LDHA) in gastric cancer. Cancer Cell Int. 23:3032023. View Article : Google Scholar : PubMed/NCBI | |
Huang YF, Wang G, Ding L, Bai ZR, Leng Y, Tian JW, Zhang JZ, Li YQ, Ahmad Qin YH, et al: Lactate-upregulated NADPH-dependent NOX4 expression via HCAR1/PI3K pathway contributes to ROS-induced osteoarthritis chondrocyte damage. Redox Biol. 67:1028672023. View Article : Google Scholar : PubMed/NCBI | |
Nareika A, He L, Game BA, Slate EH, Sanders JJ, London SD, Lopes-Virella MF and Huang Y: Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-kappaB transcriptional activities. Am J Physiol Endocrinol Metab. 289:E534–E542. 2005. View Article : Google Scholar : PubMed/NCBI | |
Long L, Xiong W, Lin F, Hou J, Chen G, Peng T, He Y, Wang R, Xu Q and Huang Y: Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery. J Exp Clin Cancer Res. 42:1172023. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F, Gill PS, Ha T, Liu L, Williams DL and Li C: Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 29:133–146. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar : PubMed/NCBI | |
Albogami SM, Al-Kuraishy HM, Al-Maiahy TJ, Al-Buhadily AK, Al-Gareeb AI, Alorabi M, Alotaibi SS, De Waard M, Sabatier JM, Saad HM and Batiha GE: Hypoxia-inducible factor 1 and preeclampsia: A new perspective. Curr Hypertens Rep. 24:687–692. 2022. View Article : Google Scholar : PubMed/NCBI | |
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q and Kuca K: The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 41:1622–1643. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Xu J, Fan M, Tu F, Wang X, Ha T, Williams DL and Li C: Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol. 11:5879132020. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Yang X, Wang J, Wang Z, Wang Q, Ding Y and Yu A: H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway. J Neuroinflammation. 20:2082023. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H and Qu S: The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int. 24:2462024. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Chen K, Zhu Y, Hu Z, Wang Y, Chen J, Li Y, Li D and Wei P: A multi-dimensional approach to unravel the intricacies of lactylation related signature for prognostic and therapeutic insight in colorectal cancer. J Transl Med. 22:2112024. View Article : Google Scholar : PubMed/NCBI | |
Zha J, Zhang J, Lu J, Zhang G, Hua M, Guo W, Yang J and Fan G: A review of lactate-lactylation in malignancy: Its potential in immunotherapy. Front Immunol. 15:13849482024. View Article : Google Scholar : PubMed/NCBI | |
Su J, Zheng Z, Bian C, Chang S, Bao J, Yu H, Xin Y and Jiang X: Functions and mechanisms of lactylation in carcinogenesis and immunosuppression. Front Immunol. 14:12530642023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lu W, Hu Y, Wen S, Qian C, Wu W and Huang P: Effective inhibition of nasopharyngeal carcinoma in vitro and in vivo by targeting glycolysis with oxamate. Int J Oncol. 43:1710–1718. 2013. View Article : Google Scholar : PubMed/NCBI | |
Manerba M, Di Ianni L, Govoni M, Roberti M, Recanatini M and Di Stefano G: Lactate dehydrogenase inhibitors can reverse inflammation induced changes in colon cancer cells. Eur J Pharm Sci. 96:37–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Sánchez R, Marín-Hernández Á, Del Mazo-Monsalvo I, Saavedra E and Rodríguez-Enríquez S: Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Biochim Biophys Acta Gen Subj. 1861:3221–3236. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wigfield SM, Winter SC, Giatromanolaki A, Taylor J, Koukourakis ML and Harris AL: PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer. 98:1975–1984. 2008. View Article : Google Scholar : PubMed/NCBI | |
Quanz M, Bender E, Kopitz C, Grünewald S, Schlicker A, Schwede W, Eheim A, Toschi L, Neuhaus R, Richter C, et al: Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance. Mol Cancer Ther. 17:2285–2296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Curtis NJ, Mooney L, Hopcroft L, Michopoulos F, Whalley N, Zhong H, Murray C, Logie A, Revill M, Byth KF, et al: Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt's lymphoma anti-tumor activity. Oncotarget. 8:69219–69236. 2017. View Article : Google Scholar : PubMed/NCBI | |
Polański R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE, et al: Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 20:926–937. 2014. View Article : Google Scholar : PubMed/NCBI | |
Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, Monterey MD, Galloway MP, Sloan AE and Mathupala SP: Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: An in vivo study. Neoplasia. 13:620–632. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ullah MS, Davies AJ and Halestrap AP: The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 281:9030–9037. 2006. View Article : Google Scholar : PubMed/NCBI | |
Grasa L, Chueca E, Arechavaleta S, García-González MA, Sáenz MÁ, Valero A, Hördnler C, Lanas Á and Piazuelo E: Antitumor effects of lactate transport inhibition on esophageal adenocarcinoma cells. J Physiol Biochem. 79:147–161. 2023. View Article : Google Scholar : PubMed/NCBI | |
Payen VL, Mina E, Van Hée VF, Porporato PE and Sonveaux P: Monocarboxylate transporters in cancer. Mol Metab. 33:48–66. 2020. View Article : Google Scholar : PubMed/NCBI | |
Spinello I, Saulle E, Quaranta MT, Pasquini L, Pelosi E, Castelli G, Ottone T, Voso MT, Testa U and Labbaye C: The small-molecule compound AC-73 targeting CD147 inhibits leukemic cell proliferation, induces autophagy and increases the chemotherapeutic sensitivity of acute myeloid leukemia cells. Haematologica. 104:973–985. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhai X, Yang Y, Wan J, Zhu R and Wu Y: Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol Rep. 30:2983–2991. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schwab M, Thunborg K, Azimzadeh O, von Toerne C, Werner C, Shevtsov M, Di Genio T, Zdralevic M, Pouyssegur J, Renner K, et al: Targeting cancer metabolism breaks radioresistance by impairing the stress response. Cancers (Basel). 13:37622021. View Article : Google Scholar : PubMed/NCBI | |
Lin YL, Yuksel Durmaz Y, Nör JE and ElSayed MEH: Synergistic combination of small molecule inhibitor and RNA interference against antiapoptotic Bcl-2 protein in head and neck cancer cells. Mol Pharm. 10:2730–2738. 2013. View Article : Google Scholar : PubMed/NCBI | |
García-Castillo V, López-Urrutia E, Villanueva-Sánchez O, Ávila-Rodríguez MÁ, Zentella-Dehesa A, Cortés-González C, López-Camarillo C, Jacobo-Herrera NJ and Pérez-Plasencia C: Targeting metabolic remodeling in triple negative breast cancer in a murine model. J Cancer. 8:178–189. 2017. View Article : Google Scholar : PubMed/NCBI | |
Muramatsu H, Sumitomo M, Morinaga S, Kajikawa K, Kobayashi I, Nishikawa G, Kato Y, Watanabe M, Zennami K, Kanao K, et al: Targeting lactate dehydrogenase-A promotes docetaxel-induced cytotoxicity predominantly in castration-resistant prostate cancer cells. Oncol Rep. 42:224–230. 2019.PubMed/NCBI | |
Manerba M, Di Ianni L, Fiume L, Roberti M, Recanatini M and Di Stefano G: Lactate dehydrogenase inhibitors sensitize lymphoma cells to cisplatin without enhancing the drug effects on immortalized normal lymphocytes. Eur J Pharm Sci. 74:95–102. 2015. View Article : Google Scholar : PubMed/NCBI | |
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, Aghebati-Maleki L and Baradaran B: The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front Immunol. 14:11138822023. View Article : Google Scholar : PubMed/NCBI | |
Ogura M, Ando K, Suzuki T, Ishizawa K, Oh SY, Itoh K, Yamamoto K, Au WY, Tien HF, Matsuno Y, et al: A multicentre phase II study of vorinostat in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma. Br J Haematol. 165:768–776. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kaufman JL, Mina R, Jakubowiak AJ, Zimmerman TL, Wolf JJ, Lewis C, Gleason C, Sharp C, Martin T, Heffner LT, et al: Combining carfilzomib and panobinostat to treat relapsed/refractory multiple myeloma: Results of a multiple myeloma research consortium phase I study. Blood Cancer J. 9:32019. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Zhang L, Ji K, Ding L and Wu G: Regulatory mechanisms of GCN5 in osteogenic differentiation of MSCs in periodontitis. Clin Exp Dent Res. 9:464–471. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shao G, Liu Y, Ma T, Zhang L, Yuan M and Zhao S: GCN5 inhibition prevents IL-6-induced prostate cancer metastases through PI3K/PTEN/Akt signaling by inactivating Egr-1. Biosci Rep. 38:BSR201808162018. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Li P and Sun Z: Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol. 14:12843442023. View Article : Google Scholar : PubMed/NCBI | |
Miao Z, Zhao X and Liu X: Hypoxia induced β-catenin lactylation promotes the cell proliferation and stemness of colorectal cancer through the wnt signaling pathway. Exp Cell Res. 422:1134392023. View Article : Google Scholar : PubMed/NCBI | |
Zang Y, Wang A, Zhang J, Xia M, Jiang Z, Jia B, Lu C, Chen C, Wang S, Zhang Y, et al: Hypoxia promotes histone H3K9 lactylation to enhance LAMC2 transcription in esophageal squamous cell carcinoma. iScience. 27:1101882024. View Article : Google Scholar : PubMed/NCBI |