Biological implications of decoding the extracellular matrix of vulva cancer
- Authors:
- Mohammad Emranul Islam
- Kala Chand Debnath
- Rohan Moniruzzaman
- Kohei Okuyama
- Shajedul Islam
- Harsh Nitin Dongre
-
Affiliations: Department of Oral and Maxillofacial Surgery, City Dental College and Hospital, 1229 Dhaka, Bangladesh, Department of Head and Neck Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA, Department of Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA, Center for Cancer Biomarkers and Gade Laboratory for Pathology, Institute of Clinical Medicine, University of Bergen, 5021 Bergen, Norway - Published online on: December 6, 2024 https://doi.org/10.3892/or.2024.8852
- Article Number: 19
-
Copyright: © Islam et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Olawaiye AB, Cuello MA and Rogers LJ: Cancer of the vulva: 2021 update. Int J Gynaecol Obstet. 155 (Suppl 1):7–18. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rogers LJ and Cuello MA: Cancer of the vulva. Int J Gynaecol Obstet. 143 (Suppl 2):S4–S13. 2018. View Article : Google Scholar | |
Alkatout I, Schubert M, Garbrecht N, Weigel MT, Jonat W, Mundhenke C and Günther V: Vulvar cancer: Epidemiology, clinical presentation, and management options. Int J Womens Health. 7:305–313. 2015. View Article : Google Scholar : PubMed/NCBI | |
Capria A, Tahir N and Fatehi M: Vulva Cancer. StatPearls. StatPearls Publishing; Treasure Island, FL: 2024, PubMed/NCBI | |
Bucchi L, Pizzato M, Rosso S and Ferretti S: New insights into the epidemiology of vulvar cancer: Systematic literature review for an update of incidence and risk factors. Cancers (Basel). 14:3892022. View Article : Google Scholar : PubMed/NCBI | |
Brinton LA, Thistle JE, Liao LM and Trabert B: Epidemiology of vulvar neoplasia in the NIH-AARP Study. Gynecol Oncol. 145:298–304. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gadducci A, Tana R, Barsotti C, Guerrieri ME and Genazzani AR: Clinico-pathological and biological prognostic variables in squamous cell carcinoma of the vulva. Crit Rev Oncol Hematol. 83:71–83. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dongre HN, Elnour R, Tornaas S, Fromreide S, Thomsen LCV, Kolseth IBM, Nginamau ES, Johannessen AC, Vintermyr OK, Costea DE and Bjørge L: TP53 mutation and human papilloma virus status as independent prognostic factors in a Norwegian cohort of vulva squamous cell carcinoma. Acta Obstet Gynecol Scand. 103:165–175. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dongre H and Costea DE: Tumor-Fibroblast Interactions in CarcinomasBiomarkers of the Tumor Microenvironment. Springer; New York, NY: pp. 109–124. 2022, View Article : Google Scholar | |
Dzobo K and Dandara C: The Extracellular Matrix: Its composition, function, remodeling, and role in tumorigenesis. Biomimetics (Basel). 8:1462023. View Article : Google Scholar : PubMed/NCBI | |
Pappa KI, Jacob-Hirsch J, Vlachos GD, Christodoulou I, Partsinevelos G, Amariglio N, Markaki S, Antsaklis A and Anagnou NP: Expression profiling of vulvar carcinoma: clues for deranged extracellular matrix remodeling and effects on multiple signaling pathways combined with discrete patient subsets. Transl Oncol. 4:301–313. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sleeboom JJF, van Tienderen GS, Schenke-Layland K, van der Laan LJW, Khalil AA and Verstegen MMA: The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci Transl Med. 16:eadg38402024. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee A and Bravo-Cordero JJ: Regulation of dormancy during tumor dissemination: the role of the ECM. Cancer Metastasis Rev. 42:99–112. 2023. View Article : Google Scholar : PubMed/NCBI | |
Popova NV and Jücker M: The functional role of extracellular matrix proteins in cancer. Cancers (Basel). 14:2382022. View Article : Google Scholar : PubMed/NCBI | |
Walker C, Mojares E and Del Río Hernández A: Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 19:30282018. View Article : Google Scholar : PubMed/NCBI | |
Yue B: Biology of the extracellular matrix: An overview. J Glaucoma. 23 (8 Suppl 1):S20–S23. 2014. View Article : Google Scholar : PubMed/NCBI | |
Condic M, Rohr A, Riemann S, Staerk C, Ayub TH, Doeser A, Zillinger T, Merkelbach-Bruse S, Buettner R, Barchet W, et al: Immune profiling of vulvar squamous cell cancer discovers a macrophage-rich subtype associated with poor prognosis. Cancer Res Commun. 4:861–875. 2024. View Article : Google Scholar : PubMed/NCBI | |
van Esch EM, van Poelgeest MI, Trimbos JB, Fleuren GJ, Jordanova ES and van der Burg SH: Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of HPV-induced vulvar neoplasia. Int J Cancer. 136:E85–E94. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI and Schillaci R: Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol. 13:11354562023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wei JR, Dong J, Lin QG, Tang H, Jia YX, Tan W, Chen QY, Zeng TT, Xing S, et al: Laminin γ2-mediating T cell exclusion attenuates response to anti-PD-1 therapy. Sci Adv. 7:eabc83462021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Huang X, Huang R, Zhu H, Ye P, Lin X, Zhang S, Wu M and Jiang F: MMP1 overexpression promotes cancer progression and associates with poor outcome in head and neck carcinoma. Comput Math Methods Med. 2022:30583422022.PubMed/NCBI | |
Liu M, Hu Y, Zhang MF, Luo KJ, Xie XY, Wen J, Fu JH and Yang H: MMP1 promotes tumor growth and metastasis in esophageal squamous cell carcinoma. Cancer Lett. 377:97–104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kurnia I, Rauf S, Hatta M, Arifuddin S, Hidayat YM, Natzir R, Kaelan C, Bukhari A, Pelupessy NU and Patelonggi IJ: Molecular Patho-mechanisms of cervical cancer (MMP1). Ann Med Surg (Lond). 77:1034152022.PubMed/NCBI | |
Han L, Sheng B, Zeng Q, Yao W and Jiang Q: Correlation between MMP2 expression in lung cancer tissues and clinical parameters: A retrospective clinical analysis. BMC Pulm Med. 20:2832020. View Article : Google Scholar : PubMed/NCBI | |
Samantaray S, Sharma R, Chattopadhyaya TK, Gupta SD and Ralhan R: Increased expression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 130:37–44. 2004. View Article : Google Scholar : PubMed/NCBI | |
Azevedo Martins JM, Rabelo-Santos SH, do Amaral Westin MC and Zeferino LC: Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: A competing risk analysis. BMC Cancer. 20:6602020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Yang F, Chai L, Zhang L, Li S, Xu Z and Kong L: CCAAT/Enhancer Binding Protein β-Mediated MMP3 upregulation promotes esophageal squamous cell cancer invasion in vitro and is associated with metastasis in human patients. Genet Test Mol Biomarkers. 23:304–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gkouveris I, Nikitakis NG, Aseervatham J, Rao N and Ogbureke KUE: Matrix metalloproteinases in head and neck cancer: Current perspectives. Metalloproteinases Med. 4:47–61. 2017. View Article : Google Scholar | |
Shao L, Wang X, Liu W, Zhang C, Ma W, Yu X and Han J: The role and function of secretory protein MMP3 in cervical cancer. researchsquare. https://doi.org/10.21203/rs.3.rs-2449297/v1 | |
Liu D, Nakano J, Ishikawa S, Yokomise H, Ueno M, Kadota K, Urushihara M and Huang CL: Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer. 58:384–391. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chuang HC, Su CY, Huang HY, Huang CC, Chien CY, Du YY and Chuang JH: Active matrix metalloproteinase-7 is associated with invasion in buccal squamous cell carcinoma. Mod Pathol. 21:1444–1450. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Zheng X, Du Y, Xing Y, Xu K and Cui L: Matrix metalloproteinase-7 may serve as a novel biomarker for cervical cancer. Onco Targets Ther. 11:4207–4220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ma J, Guo Q, Duan F, Tang F, Zheng P, Zhao Z and Lu G: Overexpression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. Dis Esophagus. 22:664–667. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tsukamoto S, Koma YI, Kitamura Y, Tanigawa K, Azumi Y, Miyako S, Urakami S, Hosono M, Kodama T, Nishio M, et al: Matrix metalloproteinase 9 induced in esophageal squamous cell carcinoma cells via close contact with tumor-associated macrophages contributes to cancer progression and poor prognosis. Cancers (Basel). 15:29872023. View Article : Google Scholar : PubMed/NCBI | |
Deraz EM, Kudo Y, Yoshida M, Obayashi M, Tsunematsu T, Tani H, Siriwardena SB, Keikhaee MR, Qi G, Iizuka S, et al: MMP-10/stromelysin-2 promotes invasion of head and neck cancer. PLoS One. 6:e254382011. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Qin YR, Bi J, Guo A, Fu L and Guan XY: Overexpression of matrix metalloproteinase 10 is associated with poor survival in patients with early stage of esophageal squamous cell carcinoma. Dis Esophagus. 25:656–663. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Miyake M, Lawton A, Goodison S and Rosser CJ: Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer. 14:3102014. View Article : Google Scholar : PubMed/NCBI | |
Ma B, Ran R, Liao HY and Zhang HH: The paradoxical role of matrix metalloproteinase-11 in cancer. Biomed Pharmacother. 141:1118992021. View Article : Google Scholar : PubMed/NCBI | |
Hsin CH, Chou YE, Yang SF, Su SC, Chuang YT, Lin SH and Lin CW: MMP-11 promoted the oral cancer migration and Fak/Src activation. Oncotarget. 8:32783–32793. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lv FZ, Wang JL, Wu Y, Chen HF and Shen XY: Knockdown of MMP12 inhibits the growth and invasion of lung adenocarcinoma cells. Int J Immunopathol Pharmacol. 28:77–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim JM, Kim HJ, Koo BS, Rha KS and Yoon YH: Expression of matrix metalloproteinase-12 is correlated with extracapsular spread of tumor from nodes with metastasis in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol. 270:1137–1142. 2013. View Article : Google Scholar : PubMed/NCBI | |
Han F, Zhang S, Zhang L and Hao Q: The overexpression and predictive significance of MMP-12 in esophageal squamous cell carcinoma. Pathol Res Pract. 213:1519–1522. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kudo Y, Iizuka S, Yoshida M, Tsunematsu T, Kondo T, Subarnbhesaj A, Deraz EM, Siriwardena SB, Tahara H, Ishimaru N, et al: Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem. 287:38716–38728. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiao XL, Chen D, Wang JG and Zhang KJ: Clinical significance of serum matrix metalloproteinase-13 levels in patients with esophageal squamous cell carcinoma (ESCC). Eur Rev Med Pharmacol Sci. 18:509–515. 2014.PubMed/NCBI | |
Zheng Cl, Lu Q, Zhang N, Jing PY, Zhang JP, Wang WP and Li GZ: Comprehensive analysis of the immune and prognostic implication of MMP14 in lung cancer. Dis Markers. 2021:59175062021. View Article : Google Scholar : PubMed/NCBI | |
Kurahara S, Shinohara M, Ikebe T, Nakamura S, Beppu M, Hiraki A, Takeuchi H and Shirasuna K: Expression of MMPS, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: Correlations with tumor invasion and metastasis. Head Neck. 21:627–638. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang Y, Zhang Y, Liu W and Wang J: Cryptotanshinone inhibits lung cancer invasion via microRNA-133a/matrix metalloproteinase 14 regulation. Oncol Lett. 18:2554–2559. 2019.PubMed/NCBI | |
Chen N, Zhang G, Fu J and Wu Q: Matrix metalloproteinase-14 (MMP-14) downregulation inhibits esophageal squamous cell carcinoma cell migration, invasion, and proliferation. Thorac Cancer. 11:3168–3174. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Li S, Zhou L, Yang L, Wu X, Tang B, Xie S, Fang L, Zheng S and Hong T: Immune Infiltration of MMP14 in pan cancer and its prognostic effect on tumors. Front Oncol. 11:7176062021. View Article : Google Scholar : PubMed/NCBI | |
Fan QC, Tian H, Wang Y and Liu XB: Integrin-α5 promoted the progression of oral squamous cell carcinoma and modulated PI3K/AKT signaling pathway. Arch Oral Biol. 101:85–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park SJ, Min HJ, Yoon C, Kim SH, Kim JH and Lee SY: Integrin β1 regulates the perineural invasion and radioresistance of oral squamous carcinoma cells by modulating cancer cell stemness. Cell Signal. 110:1108082023. View Article : Google Scholar : PubMed/NCBI | |
Ramos DM, But M, Regezi J, Schmidt BL, Atakilit A, Dang D, Ellis D, Jordan R and Li X: Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol. 21:297–307. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ishida Y, Shintani T, Nobumoto T, Sakurai S, Hamana T, Yanamoto S and Hayashido Y: Interaction of Integrin αvβ8 With Type I collagen promotes squamous cell carcinoma cell motility via RAC1 activation. Anticancer Res. 43:4833–4841. 2023. View Article : Google Scholar : PubMed/NCBI | |
Thomas GJ, Jones J and Speight PM: Integrins and oral cancer. Oral Oncol. 33:381–388. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hou S, Hao X, Li J, Weng S, Wang J, Zhao T, Li W, Hu X, Deng B, Gu J and Hang Q: TM4SF1 promotes esophageal squamous cell carcinoma metastasis by interacting with integrin α6. Cell Death Dis. 13:6092022. View Article : Google Scholar : PubMed/NCBI | |
Xie YH, Ran LQ, Wu ZY, Sun C, Xu XE, Zou HY, Fang WK and Xie JJ: Role of Integrin β1 in the progression and chemo-resistance of esophageal squamous cell carcinoma. J Cancer. 13:2074–2085. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie JJ, Guo JC, Wu ZY, Xu XE, Wu JY, Chen B, Ran LQ, Liao LD, Li EM and Xu LY: Integrin α5 promotes tumor progression and is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Hum Pathol. 48:69–75. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dmello C, Sawant S, Alam H, Gangadaran P, Tiwari R, Dongre H, Rana N, Barve S, Costea DE, Chaukar D, et al: Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells. Int J Biochem Cell Biol. 70:161–172. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Liao G and Li G: Regulatory effects of COL1A1 on apoptosis induced by radiation in cervical cancer cells. Cancer Cell Int. 17:732017. View Article : Google Scholar : PubMed/NCBI | |
Geng Q, Shen Z, Li L and Zhao J: COL1A1 is a prognostic biomarker and correlated with immune infiltrates in lung cancer. PeerJ. 9:e111452021. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Tian P, Pang J, Lai L, He G, Song Y and Zheng Y: Clinical significance of COL1A1 and COL1A2 expression levels in hypopharyngeal squamous cell carcinoma. Oncol Lett. 20:803–809. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li G, Jiang W, Kang Y, Yu X, Zhang C and Feng Y: High expression of collagen 1A2 promotes the proliferation and metastasis of esophageal cancer cells. Ann Transl Med. 8:16722020. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Li X, Wang D, Zhang L, Li X, Su L, Fan X and Yang X: COL3A1: Potential prognostic predictor for head and neck cancer based on immune-microenvironment alternative splicing. Cancer Med. 12:4882–4894. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Sun J, Li C and Zhang K: COL4A1 promotes the proliferation and migration of oral squamous cell carcinoma cells by binding to NID1. Exp Ther Med. 25:1762023. View Article : Google Scholar : PubMed/NCBI | |
Di YB, Bao Y, Guo J, Liu W, Zhang SX, Zhang GH and Li TK: COL11A1 as a potential prognostic target for oral squamous cell carcinoma. Medicine (Baltimore). 101:e309892022. View Article : Google Scholar : PubMed/NCBI | |
Sok JC, Lee JA, Dasari S, Joyce S, Contrucci SC, Egloff AM, Trevelline BK, Joshi R, Kumari N, Grandis JR and Thomas SM: Collagen type XI α1 facilitates head and neck squamous cell cancer growth and invasion. Br J Cancer. 109:3049–3056. 2013. View Article : Google Scholar : PubMed/NCBI | |
Galiger C, Löffek S, Stemmler MP, Kroeger JK, Mittapalli VR, Fauth L, Esser PR, Kern JS, Meiss F, Laßmann S, et al: Targeting of cell surface proteolysis of collagen XVII impedes squamous cell carcinoma progression. Mol Ther. 26:17–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Jung SN, Oh C, Lee K, Won HR, Chang JW, Kim JM and Koo BS: LAMB3 is associated with disease progression and cisplatin cytotoxic sensitivity in head and neck squamous cell carcinoma. Eur J Surg Oncol. 45:359–365. 2019. View Article : Google Scholar : PubMed/NCBI | |
Marangon Junior H, Rocha VN, Leite CF, de Aguiar MC, Souza PE and Horta MC: Laminin-5 gamma 2 chain expression is associated with intensity of tumor budding and density of stromal myofibroblasts in oral squamous cell carcinoma. J Oral Pathol Med. 43:199–204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhou J, Lu J, Xiong H, Shi X and Gong L: Significance of CD44 expression in head and neck cancer: A systemic review and meta-analysis. BMC Cancer. 14:152014. View Article : Google Scholar : PubMed/NCBI | |
Mirhashemi M, Sadeghi M, Ghazi N, Saghravanian N, Dehghani M and Aminian A: Prognostic value of CD44 expression in oral squamous cell carcinoma: A meta-analysis. Ann Diagn Pathol. 67:1522132023. View Article : Google Scholar : PubMed/NCBI | |
Sawant S, Ahire C, Dongre H, Joshi S, Jamghare S, Rane P, Kane S and Chaukar D: Prognostic significance of elevated serum CD44 levels in patients with oral squamous cell carcinoma. J Oral Pathol Med. 47:665–673. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kudo Y, Ogawa I, Kitajima S, Kitagawa M, Kawai H, Gaffney PM, Miyauchi M and Takata T: Periostin promotes invasion and anchorage-independent growth in the metastatic process of head and neck cancer. Cancer Res. 66:6928–6935. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maleš J, Mihalj H, Šestak A, Kralik K and Smolić M: Osteopontin levels in patients with squamous metastatic head and neck cancer. Medicina (Kaunas). 57:1852021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang X, Zheng K, Liu Y, Li J and Wang S, Liu K, Song X, Li N, Xie S and Wang S: The clinical significance of collagen family gene expression in esophageal squamous cell carcinoma. PeerJ. 7:e77052019. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Yang Y, Zhang H, Luan S, Xiao X, Li X, Fang P, Shang Q, Chen L, Zeng X and Yuan Y: Overexpressed COL3A1 has prognostic value in human esophageal squamous cell carcinoma and promotes the aggressiveness of esophageal squamous cell carcinoma by activating the NF-κB pathway. Biochem Biophys Res Commun. 613:193–200. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zhang C, Yang X, Chen Y, Zhang H, Liu J and Wu Q: Cytoplasmic collagen XIαI as a prognostic biomarker in esophageal squamous cell carcinoma. Cancer Biol Ther. 19:364–372. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Chen X, Lu P, Ma W, Yue D, Song L and Fan Q: MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma. Biochem Biophys Res Commun. 473:821–827. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen XM, Wu YP, Feng YB, Luo ML, Du XL, Zhang Y, Cai Y, Xu X, Han YL, Zhang X, et al: Interaction of MT1-MMP and laminin-5gamma2 chain correlates with metastasis and invasiveness in human esophageal squamous cell carcinoma. Clin Exp Metastasis. 24:541–550. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Chen X, Wu Y, Li J, Zhang S, Wang K, Guan X, Yang K and Bai Y: LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ. 25:1980–1995. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Che Y, Zhang C, Huang J, Lei Y, Lu Z, Sun N and He J: LAMC1 upregulation via TGFβ induces inflammatory cancer-associated fibroblasts in esophageal squamous cell carcinoma via NF-κB-CXCL1-STAT3. Mol Oncol. 15:3125–3146. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kamil Mohammed Al-Mosawi A, Cheshomi H, Hosseinzadeh A and M Matin M: Prognostic and Clinical Value of CD44 and CD133 in Esophageal Cancer: A Systematic Review and Meta-analysis. Iran J Allergy Asthma Immunol. 19:105–116. 2020.PubMed/NCBI | |
Miyako S, Koma YI, Nakanishi T, Tsukamoto S, Yamanaka K, Ishihara N, Azumi Y, Urakami S, Shimizu M, Kodama T, et al: Periostin in cancer-associated fibroblasts promotes esophageal squamous cell carcinoma progression by enhancing cancer and stromal cell migration. Am J Pathol. 194:828–848. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Liang S, Guo H, Xu L, Li J and Peng J: OPN promotes cell proliferation and invasion through NF-κB in human esophageal squamous cell carcinoma. Genet Res (Camb). 2022:31548272022. View Article : Google Scholar : PubMed/NCBI | |
Chiu TJ, Lu HI, Chen CH, Huang WT, Wang YM, Lin WC and Li SH: Osteopontin expression is associated with the poor prognosis in patients with locally advanced esophageal squamous cell carcinoma receiving preoperative chemoradiotherapy. Biomed Res Int. 2018:90982152018. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Liu G, Sun Y, Wu J, Xiong Z, Jin T and Chen M: Collagen type VI α5 gene variations may predict the risk of lung cancer development in Chinese Han population. Sci Rep. 10:50102020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Sun Y, Guo Z and Liu H: COL3A1 overexpression associates with poor prognosis and cisplatin resistance in lung cancer. Balkan Med J. 39:393–400. 2022. View Article : Google Scholar : PubMed/NCBI | |
Voiles L, Lewis DE, Han L, Lupov IP, Lin TL, Robertson MJ, Petrache I and Chang HC: Overexpression of type VI collagen in neoplastic lung tissues. Oncol Rep. 32:1897–1904. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee CS, Siprashvili Z, Mah A, Bencomo T, Elcavage LE, Che Y, Shenoy RM, Aasi SZ and Khavari PA: Mutant collagen COL11A1 enhances cancerous invasion. Oncogene. 40:6299–6307. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Cai R, Wang T, Yang X, Wang M, Kuang Z, Xie Y, Zhang J and Zheng Y: LAMC2 promotes the proliferation of cancer cells and induce infiltration of macrophages in non-small cell lung cancer. Ann Transl Med. 9:13922021. View Article : Google Scholar : PubMed/NCBI | |
Akashi T, Ito E, Eishi Y, Koike M, Nakamura K and Burgeson RE: Reduced Expression of Laminin alpha3 and alpha5 Chains in Non-small Cell Lung Cancers. Jpn J Cancer Res. 92:293–301. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rousselle P and Scoazec JY: Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol. 62:149–165. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Zhao W and Shao W: Prognostic value of CD44 and CD44v6 expression in patients with non-small cell lung cancer: meta-analysis. Tumour Biol. 35:7383–7389. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu CH, Wang W, Lin Y, Qian LH, Zhang XW, Wang QB and Yu LK: Diagnostic and prognostic value of serum periostin in patients with non-small cell lung cancer. Oncotarget. 8:18746–18753. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wang S and Zhang M: Evaluation of kininogen 1, osteopontin and α-1-antitrypsin in plasma, bronchoalveolar lavage fluid and urine for lung squamous cell carcinoma diagnosis. Oncol Lett. 19:2785–2792. 2020.PubMed/NCBI | |
Hou T, Tong C, Kazobinka G, Zhang W, Huang X, Huang Y and Zhang Y: Expression of COL6A1 predicts prognosis in cervical cancer patients. Am J Transl Res. 8:2838–2844. 2016.PubMed/NCBI | |
Skyldberg B, Salo S, Eriksson E, Aspenblad U, Moberger B, Tryggvason K and Auer G: Laminin-5 as a Marker of Invasiveness in Cervical Lesions. J Natl Cancer Inst. 91:1882–1887. 1999. View Article : Google Scholar : PubMed/NCBI | |
Noel JC, Fernandez-Aguilar S, Fayt I, Buxant F, Ansion MH, Simon P and Anaf V: Laminin-5γ2 chain expression in cervical intraepithelial neoplasia and invasive cervical carcinoma. Acta Obstet Gynecol Scand. 84:1119–1123. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kainz C, Kohlberger P, Tempfer C, Sliutz G, Gitsch G, Reinthaller A and Breitenecker G: Prognostic value of CD44 splice variants in human stage III cervical cancer. Eur J Cancer. 31:1706–1709. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG, Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L and Wang W: Periostin+cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol. 15:210–227. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gillot L, Lebeau A, Baudin L, Pottier C, Louis T, Durré T, Longuespée R, Mazzucchelli G, Nizet C, Blacher S, et al: Periostin in lymph node pre-metastatic niches governs lymphatic endothelial cell functions and metastatic colonization. Cell Mol Life Sci. 79:2952022. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Yi L, Liang Y, Chen Y, Wang W, Liao Y, Zhang C, Huang H, Huang J and Yao S: Biological and Clinicopathological Characteristics of OPN in Cervical Cancers. Front Genet. 13:8365092022. View Article : Google Scholar : PubMed/NCBI | |
Castor MDGFC, Torres LC, Mello RJV, Natal RA and Vassallo J: Study on collagen parameters in vulvar cancer and preneoplastic lesions by Second Harmonic Generation microscopy. Sci Rep. 10:55682020. View Article : Google Scholar : PubMed/NCBI | |
Holthoff ER, Byrum SD, Mackintosh SG, Kelly T, Tackett AJ, Quick CM and Post SR: Vulvar squamous cell carcinoma aggressiveness is associated with differential expression of collagen and STAT1. Clin Proteomics. 14:402017. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Shen Y, Gong K, Wu Z, Zhang T, Zhang X and Li S: Increased osteopontin expression is associated with progression from vulvar precancerous lesions to vulvar squamous cell carcinoma. Arch Gynecol Obstet. 289:637–644. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sgambato A, Tarquini E, Resci F, De Paola B, Faraglia B, Camerini A, Rettino A, Migaldi M, Cittadini A and Zannoni GF: Aberrant expression of alpha-dystroglycan in cervical and vulvar cancer. Gynecol Oncol. 103:397–404. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brockbank EC, Bridges J, Marshall CJ and Sahai E: Integrin beta1 is required for the invasive behaviour but not proliferation of squamous cell carcinoma cells in vivo. Br J Cancer. 92:102–112. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hefler LA, Concin N, Mincham D, Thompson J, Swarte NB, van Eijkeren MA, Sie-Go DM, Hammond I, McCartney AJ, Tempfer CB and Speiser P: The prognostic value of immunohistochemically detected CD44v3 and CD44v6 expression in patients with surgically staged vulvar carcinoma: A multicenter study. Cancer. 94:125–130. 2002. View Article : Google Scholar : PubMed/NCBI | |
Johansson N, Vaalamo M, Grénman S, Hietanen S, Klemi P, Saarialho-Kere U and Kähäri VM: Collagenase-3 (MMP-13) is expressed by tumor cells in invasive vulvar squamous cell carcinomas. Am J Pathol. 154:469–480. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bovo AC, da Silva ID, Takita LC, Fochi J, Stávale JN, Marks G and de Lima GR: A comparative study of MMP-2 in vulvar neoplasms. Gynecol Oncol. 93:454–457. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hua H, Li M, Luo T, Yin Y and Jiang Y: Matrix metalloproteinases in tumorigenesis: An evolving paradigm. Cell Mol Life Sci. 68:3853–3868. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kerkelä E, Ala-aho R, Klemi P, Grénman S, Shapiro SD, Kähäri VM and Saarialho-Kere U: Metalloelastase (MMP-12) expression by tumour cells in squamous cell carcinoma of the vulva correlates with invasiveness, while that by macrophages predicts better outcome. J Pathol. 198:258–269. 2002. View Article : Google Scholar : PubMed/NCBI | |
Goepel C, Stoerer S and Koelbl H: Tenascin in preinvasive lesions of the vulva and vulvar cancer. Anticancer Res. 23:4587–4591. 2003.PubMed/NCBI | |
Surico N, Priori L, Savoia P, Cremona O and Marchisio PC: Distribution of integrins and extracellular matrix proteins in vulvar squamous cell carcinomas. Eur J Gynaecol Oncol. 16:147–154. 1995.PubMed/NCBI | |
Hellman K, Hellström AC, Silfverswärd C, Salo S, Aspenblad U, Nilsson B, Frankendal B, Tryggvasson K and Auer G: Cancer of the vagina: Laminin-5gamma2 chain expression and prognosis. Int J Gynecol Cancer. 10:391–396. 2000. View Article : Google Scholar : PubMed/NCBI | |
Theocharis AD, Manou D and Karamanos NK: The extracellular matrix as a multitasking player in disease. FEBS J. 286:2830–2869. 2019. View Article : Google Scholar : PubMed/NCBI | |
Diao B and Yang P: Comprehensive analysis of the expression and prognosis for laminin genes in ovarian cancer. Pathol Oncol Res. 27:16098552021. View Article : Google Scholar : PubMed/NCBI | |
Jing J, Lien CF, Sharma S, Rice J, Brennan PA and Górecki DC: Aberrant expression, processing and degradation of dystroglycan in squamous cell carcinomas. Eur J Cancer. 40:2143–2151. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sgambato A and Brancaccio A: The dystroglycan complex: From biology to cancer. J Cell Physiol. 205:163–169. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N and Martinez-Fierro ML: the roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 21:97392020. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Weaver VM and Werb Z: The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 196:395–406. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Costea DE, Hills A, Osman AH, Thurlow J, Kalna G, Huang X, Pena Murillo C, Parajuli H, Suliman S, Kulasekara KK, et al: Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. Cancer Res. 73:3888–3901. 2013. View Article : Google Scholar : PubMed/NCBI | |
Obradovic A, Graves D, Korrer M, Wang Y, Roy S, Naveed A, Xu Y, Luginbuhl A, Curry J, Gibson M, et al: Immunostimulatory cancer-associated fibroblast subpopulations can predict immunotherapy response in head and neck cancer. Clin Cancer Res. 28:2094–2109. 2022. View Article : Google Scholar : PubMed/NCBI | |
Puram SV, Tirosh I, Parikh AS, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, Deschler DG, et al: Single-Cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 171:1611–1624.e24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Zhang Y, Wu C and Huang Q: Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: Opportunities and challenges. Cell Death Discov. 9:1242023. View Article : Google Scholar : PubMed/NCBI | |
Mirkeshavarz M, Ganjibakhsh M, Aminishakib P, Farzaneh P, Mahdavi N, Vakhshiteh F, Karimi A, Gohari NS, Kamali F, Kharazifard MJ, et al: Interleukin-6 secreted by oral cancer-associated fibroblast accelerated VEGF expression in tumor and stroma cells. Cell Mol Biol (Noisy-le-grand). 63:131–136. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bae JY, Kim EK, Yang DH, Zhang X, Park YJ, Lee DY, Che CM and Kim J: Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1α induces cancer progression. Neoplasia. 16:928–938. 2014. View Article : Google Scholar : PubMed/NCBI | |
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lavie D, Ben-Shmuel A, Erez N and Scherz-Shouval R: Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 3:793–807. 2022. View Article : Google Scholar : PubMed/NCBI | |
El Herch I, Tornaas S, Dongre HN and Costea DE: Heterogeneity of cancer-associated fibroblasts and tumor-promoting roles in head and neck squamous cell carcinoma. Front Mol Biosci. 11:13400242024. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang L, Zhu Y, Zhao D, Zhang J, Zhu Y, Pang J, Xiao Y, Wu Q, Wang Y and Zhan Q: AKT2(S128)/CCTα(S315/319/323)-positive cancer-associated fibroblasts (CAFs) mediate focal adhesion kinase (FAK) inhibitors resistance via secreting phosphatidylcholines (PCs). Signal Transduct Target Ther. 9:212024. View Article : Google Scholar : PubMed/NCBI | |
Li W, Xu T, Jin H, Li M and Jia Q: Emerging role of cancer-associated fibroblasts in esophageal squamous cell carcinoma. Pathol Res Pract. 253:1550022024. View Article : Google Scholar : PubMed/NCBI | |
Qin X, Guo H, Wang X, Zhu X, Yan M, Wang X, Xu Q, Shi J, Lu E, Chen W and Zhang J: Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol. 20:122019. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Zhang L, Yang M, Wu X, Wang X, Huang W, Yuan L, Pan H, Wang Y, Wang Z, et al: Cancer-associated fibroblasts promote the survival of irradiated nasopharyngeal carcinoma cells via the NF-κB pathway. J Exp Clin Cancer Res. 40:872021. View Article : Google Scholar : PubMed/NCBI | |
Li X, González-Maroto C and Tavassoli M: Crosstalk between CAFs and tumour cells in head and neck cancer. Cell Death Discov. 10:3032024. View Article : Google Scholar : PubMed/NCBI | |
Dongre H, Rana N, Fromreide S, Rajthala S, Bøe Engelsen I, Paradis J, Gutkind JS, Vintermyr OK, Johannessen AC, Bjørge L and Costea DE: Establishment of a novel cancer cell line derived from vulvar carcinoma associated with lichen sclerosus exhibiting a fibroblast-dependent tumorigenic potential. Exp Cell Res. 386:1116842020. View Article : Google Scholar : PubMed/NCBI | |
Milacic M, Beavers D, Conley P, Gong C, Gillespie M, Griss J, Haw R, Jassal B, Matthews L, May B, et al: The reactome pathway knowledgebase 2024. Nucleic Acids Res. 52((D1)): D672–D678. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B and Liu XS: TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48:W509–W514. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network, . Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network and Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada's Michael Smith Genome Sciences Centre; Harvard Medical School; Helen F. Graham Cancer Center &Research Institute at Christiana Care Health Services et al., . Integrated genomic and molecular characterization of cervical cancer. Nature. 543:378–384. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network; Analysis Working Group; Asan University; BC Cancer Agency; Brigham and Women's Hospital; Broad Institute; Brown University; Case Western Reserve University; Dana-Farber Cancer Institute; Duke University et al., . Integrated genomic characterization of oesophageal carcinoma. Nature. 541:169–175. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Comprehensive genomic characterization of squamous cell lung cancers. Nature. 489:519–525. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bergonzini C, Kroese K, Zweemer AJM and Danen EHJ: Targeting integrins for cancer therapy-disappointments and opportunities. Front Cell Dev Biol. 10:8638502022. View Article : Google Scholar : PubMed/NCBI | |
Winer A, Adams S and Mignatti P: Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol Cancer Ther. 17:1147–1155. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yan Z, Hu X, Tang B and Deng F: Role of osteopontin in cancer development and treatment. Heliyon. 9:e210552023. View Article : Google Scholar : PubMed/NCBI | |
Zagani R, Hamzaoui N, Cacheux W, de Reyniès A, Terris B, Chaussade S, Romagnolo B, Perret C and Lamarque D: Cyclooxygenase-2 inhibitors down-regulate osteopontin and Nr4A2-new therapeutic targets for colorectal cancers. Gastroenterology. 37:1358–1366.e1-e3. 2009. View Article : Google Scholar | |
Sroka TC, Pennington ME and Cress AE: Synthetic D-amino acid peptide inhibits tumor cell motility on laminin-5. Carcinogenesis. 27:1748–1757. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tran M, Rousselle P, Nokelainen P, Tallapragada S, Nguyen NT, Fincher EF and Marinkovich MP: Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res. 68:2885–2894. 2008. View Article : Google Scholar : PubMed/NCBI | |
Heider KH, Sproll M, Susani S, Patzelt E, Beaumier P, Ostermann E, Ahorn H and Adolf GR: Characterization of a high-affinity monoclonal antibody specific for CD44v6 as candidate for immunotherapy of squamous cell carcinomas. Cancer Immunol Immunother. 43:245–253. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sandström K, Nestor M, Ekberg T, Engström M, Anniko M and Lundqvist H: Targeting CD44v6 expressed in head and neck squamous cell carcinoma: Preclinical characterization of an 111In-labeled monoclonal antibody. Tumour Biol. 29:137–144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Song K, Yu Z, Zu X, Li G, Hu Z and Xue Y: Collagen remodeling along cancer progression providing a novel opportunity for cancer diagnosis and treatment. Int J Mol Sci. 23:105092022. View Article : Google Scholar : PubMed/NCBI | |
Singh B, Sims H, Trueheart I, Simpson K, Wang KC, Patzkowsky K, Wegman T, Soma JM, Dixon R, Jayes F, et al: A Phase I clinical trial to assess safety and tolerability of injectable collagenase in women with symptomatic uterine fibroids. Reprod Sci. 28:2699–2709. 2021. View Article : Google Scholar : PubMed/NCBI | |
Oo KK, Kamolhan T, Soni A, Thongchot S, Mitrpant C, O-Charoenrat P, Thuwajit C and Thuwajit P: Development of an engineered peptide antagonist against periostin to overcome doxorubicin resistance in breast cancer. BMC Cancer. 21:652021. View Article : Google Scholar : PubMed/NCBI | |
Nakazawa Y, Taniyama Y, Sanada F, Morishita R, Nakamori S, Morimoto K, Yeung KT and Yang J: Periostin blockade overcomes chemoresistance via restricting the expansion of mesenchymal tumor subpopulations in breast cancer. Sci Rep. 8:40132018. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Saxton RE, Ramos L, Chang DD, Karlan BY, Gasson JC and Slamon DJ: Neutralizing monoclonal antibody to periostin inhibits ovarian tumor growth and metastasis. Mol Cancer Ther. 10:1500–1508. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee YJ, Kim IS, Park SA, Kim Y, Lee JE, Noh DY, Kim KT, Ryu SH and Suh PG: Periostin-binding DNA aptamer inhibits breast cancer growth and metastasis. Mol Ther. 21:1004–1013. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu GX, Xi HQ, Sun XY and Wei B: Role of periostin and its antagonist PNDA-3 in gastric cancer metastasis. World J Gastroenterol. 21:2605–2613. 2015. View Article : Google Scholar : PubMed/NCBI |