1
|
Sancho-Garnier H and Colonna M: Breast
cancer epidemiology. Presse Med. 48:1076–1084. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Harbeck N and Gnant M: Breast cancer.
Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kal S, Chakraborty S, Karmakar S and Ghosh
MK: Wnt/β-catenin signaling and p68 conjointly regulate CHIP in
colorectal carcinoma. Biochim Biophys Acta Mol Cell Res.
1869:1191852022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mani SKK, Yan B, Cui Z, Sun J, Utturkar S,
Foca A, Fares N, Durantel D, Lanman N, Merle P, et al: Restoration
of RNA helicase DDX5 suppresses hepatitis B virus (HBV)
biosynthesis and Wnt signaling in HBV-related hepatocellular
carcinoma. Theranostics. 10:10957–10972. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu C, Wang L, Jiang Q, Zhang J, Zhu L,
Lin L, Jiang H, Lin D, Xiao Y, Fang W and Guo S: Hepatoma-derived
growth factor and DDX5 promote carcinogenesis and progression of
endometrial cancer by activating β-catenin. Front Oncol. 9:2112019.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Cai ZG, Shi XJ, Gao Y, Wei MJ, Wang CY and
Yu GY: Beta-catenin expression pattern in primary oral squamous
cell carcinoma. Chin Med J (Engl). 121:1866–1870. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhu L, Tian Q, Gao H, Wu K, Wang B, Ge G,
Jiang S, Wang K, Zhou C, He J, et al: PROX1 promotes breast cancer
invasion and metastasis through WNT/β-catenin pathway via
interacting with hnRNPK. Int J Biol Sci. 18:2032–2046. 2022.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Han S, Hao H, Han H, Xue D, Jiao Y, Xie Y,
Xu Y, Huangfu L, Fu J, Wang S, et al: CUEDC2 drives β-catenin
nuclear translocation and promotes triple-negative breast cancer
tumorigenesis. Cells. 11:30672022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bucan V, Mandel K, Bertram C, Lazaridis A,
Reimers K, Park-Simon TW, Vogt PM and Hass R: LEF-1 regulates
proliferation and MMP-7 transcription in breast cancer cells. Genes
Cells. 17:559–567. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Holmes KA, Song JS, Liu XS, Brown M and
Carroll JS: Nkx3-1 and LEF-1 function as transcriptional inhibitors
of estrogen receptor activity. Cancer Res. 68:7380–7385. 2008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Shtutman M, Zhurinsky J, Simcha I,
Albanese C, D'Amico M, Pestell R and Ben-Ze'ev A: The cyclin D1
gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad
Sci USA. 96:5522–5527. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gu S, Liu F, Xie X, Ding M, Wang Z, Xing
X, Xiao T and Sun X: β-Sitosterol blocks the LEF-1-mediated
Wnt/β-catenin pathway to inhibit proliferation of human colon
cancer cells. Cell Signal. 104:1105852023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tucker PA and Sallai L: The AAA+
superfamily-a myriad of motions. Curr Opin Struct Biol. 17:641–652.
2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Qiu XB, Lin YL, Thome KC, Pian P, Schlegel
BP, Weremowicz S, Parvin JD and Dutta A: An eukaryotic RuvB-like
protein (RUVBL1) essential for growth. J Biol Chem.
273:27786–27793. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z,
Chen S, Yang Y, Wang S, Shen P, et al: CircMYO10 promotes
osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to
enhance the transcriptional activity of β-catenin/LEF1 complex via
effects on chromatin remodeling. Mol Cancer. 18:1502019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mello T, Materozzi M, Zanieri F, Simeone
I, Ceni E, Bereshchenko O, Polvani S, Tarocchi M, Marroncini G,
Nerlov C, et al: Liver haploinsufficiency of RuvBL1 causes hepatic
insulin resistance and enhances hepatocellular carcinoma
progression. Int J Cancer. 146:3410–3422. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang C and Wu S: RUVBL1-modulated
chromatin remodeling alters the transcriptional activity of
oncogenic CTNNB1 in uveal melanoma. Cell Death Discov. 9:1322023.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zeng Y, Kong Y, Liao L and Zhu H:
Involvement of RUVBL1 in WNT/β-catenin signaling in oral squamous
cell carcinoma. Dis Markers. 2022:33984922022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dauden MI, López-Perrote A and Llorca O:
RUVBL1-RUVBL2 AAA-ATPase: A versatile scaffold for multiple
complexes and functions. Curr Opin Struct Biol. 67:78–85. 2021.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Li X, Li H, Shao MM, Miao J, Fu Y and Hu
B: Downregulation of AHNAK2 inhibits cell cycle of lung
adenocarcinoma cells by interacting with RUVBL1. Thorac Cancer.
14:2093–2104. 2023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lacombe J, Mangé A, Jarlier M,
Bascoul-Mollevi C, Rouanet P, Lamy PJ, Maudelonde T and Solassol J:
Identification and validation of new autoantibodies for the
diagnosis of DCIS and node negative early-stage breast cancers. Int
J Cancer. 132:1105–1113. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ahn YT, Kim MS, Kim YS and An WG:
Astaxanthin reduces stemness markers in BT20 and T47D breast cancer
stem cells by inhibiting expression of pontin and mutant p53. Mar
Drugs. 18:5772020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Li M, Yang L, Chan AKN, Pokharel SP, Liu
Q, Mattson N, Xu X, Chang WH, Miyashita K, Singh P, et al:
Epigenetic control of translation checkpoint and tumor progression
via RUVBL1-EEF1A1 axis. Adv Sci (Weinh). 10:e22065842023.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Fan W, Xie J, Xia J, Zhang Y, Yang M, Wang
H, Pan Y, Zhang M, Han B, Wu B, et al: RUVBL1-ITFG1 Interaction is
required for collective invasion in breast cancer. Biochim Biophys
Acta Gen Subj. 1861:1788–1800. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu X, Xie P, Hao N, Zhang M, Liu Y, Liu
P, Semenza GL, He J and Zhang H: HIF-1-regulated expression of
calreticulin promotes breast tumorigenesis and progression through
Wnt/β-catenin pathway activation. Proc Natl Acad Sci USA.
118:e21091441182021. View Article : Google Scholar : PubMed/NCBI
|
27
|
El Ayachi I, Fatima I, Wend P,
Alva-Ornelas JA, Runke S, Kuenzinger WL, Silva J, Silva W, Gray JK,
Lehr S, et al: The WNT10B network is associated with survival and
metastases in chemoresistant triple-negative breast cancer. Cancer
Res. 79:982–993. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Malladi S, Macalinao DG, Jin X, He L,
Basnet H, Zou Y, de Stanchina E and Massagué J: Metastatic latency
and immune evasion through autocrine inhibition of WNT. Cell.
165:45–60. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang X, Jung YS, Jun S, Lee S, Wang W,
Schneider A, Sun Oh Y, Lin SH, Park BJ, Chen J, et al: PAF-Wnt
signaling-induced cell plasticity is required for maintenance of
breast cancer cell stemness. Nat Commun. 7:106332016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Won HY, Lee JY, Shin DH, Park JH, Nam JS,
Kim HC and Kong G: Loss of Mel-18 enhances breast cancer stem cell
activity and tumorigenicity through activating Notch signaling
mediated by the Wnt/TCF pathway. FASEB J. 26:5002–5013. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Shen H, Yan W, Yuan J, Wang Z and Wang C:
Nek2B activates the wnt pathway and promotes triple-negative breast
cancer chemothezrapy-resistance by stabilizing β-catenin. J Exp
Clin Cancer Res. 38:2432019. View Article : Google Scholar : PubMed/NCBI
|