1
|
Henson ES and Gibson SB: Surviving cell
death through epidermal growth factor (EGF) signal transduction
pathways: Implications for cancer therapy. Cell Signal.
18:2089–2097. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Marquardt H, Hunkapiller MW, Hood LE and
Todaro GJ: Rat transforming growth factor type 1: Structure and
relation to epidermal growth factor. Science. 223:1079–1082. 1984.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Slamon DJ, Clark GM, Wong SG, Levin WJ,
Ullrich A and McGuire WL: Human breast cancer: Correlation of
relapse and survival with amplification of the HER-2/neu oncogene.
Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI
|
4
|
Higashiyama S, Abraham JA, Miller J,
Fiddes JC and Klagsbrun M: A heparin-binding growth factor secreted
by macrophage-like cells that is related to EGF. Science.
251:936–939. 1991. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shing Y, Christofori G, Hanahan D, Ono Y,
Sasada R, Igarashi K and Folkman J: Betacellulin: A mitogen from
pancreatic beta cell tumors. Science. 259:1604–1607. 1993.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Toyoda H, Komurasaki T, Uchida D, Takayama
Y, Isobe T, Okuyama T and Hanada K: Epiregulin. A novel epidermal
growth factor with mitogenic activity for rat primary hepatocytes.
J Biol Chem. 270:7495–7500. 1995.PubMed/NCBI
|
7
|
Rayego-Mateos S, Rodrigues-Díez R,
Morgado-Pascual JL, Rodrigues Díez RR, Mas S, Lavoz C, Alique M,
Pato J, Keri G, Ortiz A, et al: Connective tissue growth factor is
a new ligand of epidermal growth factor receptor. J Mol Cell Biol.
5:323–335. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Normanno N, De Luca A, Bianco C, Strizzi
L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F and
Salomon DS: Epidermal growth factor receptor (EGFR) signaling in
cancer. Gene. 366:2–16. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wieduwilt MJ and Moasser MM: The epidermal
growth factor receptor family: Biology driving targeted
therapeutics. Cell Mol Life Sci. 65:1566–1584. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Brand TM, Iida M, Li C and Wheeler DL: The
nuclear epidermal growth factor receptor signaling network and its
role in cancer. Discov Med. 12:419–432. 2011.PubMed/NCBI
|
11
|
Clapéron A, Mergey M, Nguyen Ho-Bouldoires
TH, Vignjevic D, Wendum D, Chrétien Y, Merabtene F, Frazao A,
Paradis V, Housset C, et al: EGF/EGFR axis contributes to the
progression of cholangiocarcinoma through the induction of an
epithelial-mesenchymal transition. J Hepatol. 61:325–332. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Sarcognato S, Sacchi D, Fassan M, Fabris
L, Cadamuro M, Zanus G, Cataldo I, Capelli P, Baciorri F,
Cacciatore M and Guido M: Cholangiocarcinoma. Pathologica.
113:158–169. 2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hsu M, Sasaki M, Igarashi S, Sato Y and
Nakanuma Y: KRAS and GNAS mutations and p53 overexpression in
biliary intraepithelial neoplasia and intrahepatic
cholangiocarcinomas. Cancer. 119:1669–1674. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu CC, Yu CTR, Chang GC, Lai JM and Hsu
SL: Aurora-A promotes gefitinib resistance via a NF-κB signaling
pathway in p53 knockdown lung cancer cells. Biochem Biophys Res
Commun. 405:168–172. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Massarelli E, Varella-Garcia M, Tang X,
Xavier AC, Ozburn NC, Liu DD, Bekele BN, Herbst RS and Wistuba II:
KRAS mutation is an important predictor of resistance to therapy
with epidermal growth factor receptor tyrosine kinase inhibitors in
non-small-cell lung cancer. Clin Cancer Res. 13:2890–2896. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Amelia T, Kartasasmita RE, Ohwada T and
Tjahjono DH: Structural insight and development of EGFR tyrosine
kinase inhibitors. Molecules. 27:8192022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Leone F, Cavalloni G, Pignochino Y,
Sarotto I, Ferraris R, Piacibello W, Venesio T, Capussotti L, Risio
M and Aglietta M: Somatic mutations of epidermal growth factor
receptor in bile duct and gallbladder carcinoma. Clin Cancer Res.
12:1680–1685. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schubbert S, Shannon K and Bollag G:
Hyperactive Ras in developmental disorders and cancer. Nat Rev
Cancer. 7:295–308. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Serna-Blasco R, Sánchez-Herrero E,
Sanz-Moreno S, Rodriguez-Festa A, García-Veros E, Casarrubios M,
Sierra-Rodero B, Laza-Briviesca R, Cruz-Bermúdez A, Mielgo-Rubio X,
et al: KRAS p.G12C mutation occurs in 1% of EGFR-mutated advanced
non-small-cell lung cancer patients progressing on a first-line
treatment with a tyrosine kinase inhibitor. ESMO Open.
6:1002792021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jeannot V, Busser B, Brambilla E, Wislez
M, Robin B, Cadranel J, Coll JL and Hurbin A: The PI3K/AKT pathway
promotes gefitinib resistance in mutant KRAS lung adenocarcinoma by
a deacetylase-dependent mechanism. Int J Cancer. 134:2560–2571.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tanaka T, Munshi A, Brooks C, Liu J, Hobbs
ML and Meyn RE: Gefitinib radiosensitizes non-small cell lung
cancer cells by suppressing cellular DNA repair capacity. Clin
Cancer Res. 14:1266–1273. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yabuuchi S, Katayose Y, Oda A, Mizuma M,
Shirasou S, Sasaki T, Yamamoto K, Oikawa M, Rikiyama T, Onogawa T,
et al: ZD1839 (IRESSA) stabilizes p27Kip1 and enhances
radiosensitivity in cholangiocarcinoma cell lines. Anticancer Res.
29:1169–1180. 2009.PubMed/NCBI
|
23
|
Wang K, Chen YF, Yang YCSH, Huang HM, Lee
SY, Shih YJ, Li ZL, Whang-Peng J, Lin HY and Davis PJ: The power of
heteronemin in cancers. J Biomed Sci. 29:412022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lin HY, Tey SL, Ho Y, Chin YT, Wang K,
Whang-Peng J, Shih YJ, Chen YR, Yang YN, Chen YC, et al:
Heteronemin induces anti-proliferation in cholangiocarcinoma cells
via inhibiting TGF-β pathway. Mar Drugs. 16:4892018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Unson S, Chang TC, Yang YN, Wang SH, Huang
CH, Crawford DR, Huang HM, Li ZL, Lin HY, Whang-Peng J, et al:
Heteronemin and tetrac induce anti-proliferation by blocking
EGFR-mediated signaling in colorectal cancer cells. Mar Drugs.
20:4822022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang YCSH, Li ZL, Huang TY, Su KW, Lin CY,
Huang CH, Chen HY, Lu MC, Huang HM, Lee SY, et al: Effect of
estrogen on heteronemin-induced anti-proliferative effect in breast
cancer cells with different estrogen receptor status. Front Cell
Dev Biol. 9:6886072021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang CH, Huang TY, Chang WJ, Pan YS, Chu
HR, Li ZL, Unson S, Chin YT, Lin CY, Huang HM, et al: Combined
treatment of heteronemin and tetrac induces antiproliferation in
oral cancer cells. Mar Drugs. 18:3482020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chung CC, Huang TY, Chu HR, De Luca R,
Candelotti E, Huang CH, Yang YCSH, Incerpi S, Pedersen JZ, Lin CY,
et al: Heteronemin and tetrac derivatives suppress non-small cell
lung cancer growth via ERK1/2 inhibition. Food Chem Toxicol.
161:1128502022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chang WT, Bow YD, Fu PJ, Li CY, Wu CY,
Chang YH, Teng YN, Li RN, Lu MC, Liu YC and Chiu CC: A Marine
terpenoid, heteronemin, induces both the apoptosis and ferroptosis
of hepatocellular carcinoma cells and involves the ROS and MAPK
pathways. Oxid Med Cell Longev. 2021:76890452021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Samuels HH, Stanley F and Casanova J:
Depletion of L-3,5,3′-triiodothyronine and L-thyroxine in euthyroid
calf serum for use in cell culture studies of the action of thyroid
hormone. Endocrinology. 105:80–85. 1979. View Article : Google Scholar : PubMed/NCBI
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Yoon JH, Gwak GY, Lee HS, Bronk SF,
Werneburg NW and Gores GJ: Enhanced epidermal growth factor
receptor activation in human cholangiocarcinoma cells. J Hepatol.
41:808–814. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chong ZZ and Maiese K: The Src homology 2
domain tyrosine phosphatases SHP-1 and SHP-2: Diversified control
of cell growth, inflammation, and injury. Histol Histopathol.
22:1251–1267. 2007.PubMed/NCBI
|
34
|
Whitfield ML, George LK, Grant GD and
Perou CM: Common markers of proliferation. Nat Rev Cancer.
6:99–106. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Garcia R, Franklin RA and McCubrey JA: EGF
induces cell motility and multi-drug resistance gene expression in
breast cancer cells. Cell Cycle. 5:2820–2826. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu SY, Sung PJ, Chang YL, Pan SL and Teng
CM: Heteronemin, a spongean sesterterpene, induces cell apoptosis
and autophagy in human renal carcinoma cells. Biomed Res Int.
2015:7382412015.PubMed/NCBI
|
37
|
Lan T, Li Y, Wang Y, Mu CY, Tao AB, Gong
JL, Zhou Y, Xu H, Li SB, Gu B, et al: Increased endogenous PKG I
activity attenuates EGF-induced proliferation and migration of
epithelial ovarian cancer via the MAPK/ERK pathway. Cell Death Dis.
14:392023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Silini A, Ghilardi C, Figini S, Sangalli
F, Fruscio R, Dahse R, Pedley RB, Giavazzi R and Bani M: Regulator
of G-protein signaling 5 (RGS5) protein: A novel marker of cancer
vasculature elicited and sustained by the tumor's proangiogenic
microenvironment. Cell Mol Life Sci. 69:1167–1178. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang SH, Lin HY, Chang VH, Chen CC, Liu
YR, Wang J, Zhang K, Jiang X and Yen Y: Lovastatin overcomes
gefitinib resistance through TNF-α signaling in human
cholangiocarcinomas with different LKB1 statuses in vitro and in
vivo. Oncotarget. 6:23857–23873. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nakajima Y, Takagi H, Kakizaki S,
Horiguchi N, Sato K, Sunaga N and Mori M: Gefitinib and gemcitabine
coordinately inhibited the proliferation of cholangiocarcinoma
cells. Anticancer Res. 32:5251–5262. 2012.PubMed/NCBI
|
41
|
Sritananuwat P, Sueangoen N, Thummarati P,
Islam K and Suthiphongchai T: Blocking ERK1/2 signaling impairs
TGF-β1 tumor promoting function but enhances its tumor suppressing
role in intrahepatic cholangiocarcinoma cells. Cancer Cell Int.
17:852017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Indramanee S, Sawanyawisuth K,
Silsirivanit A, Dana P, Phoomak C, Kariya R, Klinhom-On N, Sorin S,
Wongkham C, Okada S and Wongkham S: Terminal fucose mediates
progression of human cholangiocarcinoma through EGF/EGFR activation
and the Akt/Erk signaling pathway. Sci Rep. 9:172662019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Thiery JP, Acloque H, Huang RYJ and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Choudhary KS, Rohatgi N, Halldorsson S,
Briem E, Gudjonsson T, Gudmundsson S and Rolfsson O: EGFR
signal-network reconstruction demonstrates metabolic crosstalk in
EMT. PLoS Comput Biol. 12:e10049242016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue
P, Fu H and Khuri FR: Activation of Akt and eIF4E survival pathways
by rapamycin-mediated mammalian target of rapamycin inhibition.
Cancer Res. 65:7052–7058. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shi Y, Yan H, Frost P, Gera J and
Lichtenstein A: Mammalian target of rapamycin inhibitors activate
the AKT kinase in multiple myeloma cells by up-regulating the
insulin-like growth factor receptor/insulin receptor
substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther.
4:1533–1540. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cloughesy TF, Yoshimoto K, Nghiemphu P,
Brown K, Dang J, Zhu S, Hsueh T, Chen Y, Wang W, Youngkin D, et al:
Antitumor activity of rapamycin in a phase I trial for patients
with recurrent PTEN-deficient glioblastoma. PLoS Med. 5:e82008.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Bergholz JS and Zhao JJ: How compensatory
mechanisms and adaptive rewiring have shaped our understanding of
therapeutic resistance in cancer. Cancer Res. 81:6074–6077. 2021.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Guo L, Zhou F, Liu H, Kou X, Zhang H, Chen
X and Qiu J: Genomic mutation characteristics and prognosis of
biliary tract cancer. Am J Transl Res. 14:4990–5002.
2022.PubMed/NCBI
|
50
|
Chen M, Sharma A, Lin Y, Wu Y, He Q, Gu Y,
Xu ZP, Monteiro M and Gu W: Insluin and epithelial growth factor
(EGF) promote programmed death ligand 1(PD-L1) production and
transport in colon cancer stem cells. BMC Cancer. 19:1532019.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Harding JJ, Khalil DN, Fabris L and
Abou-Alfa GK: Rational development of combination therapies for
biliary tract cancers. J Hepatol. 78:217–228. 2023. View Article : Google Scholar : PubMed/NCBI
|