1
|
Lu B, Natarajan E, Balaji Raghavendran HR
and Markandan UD: Molecular classification, treatment, and genetic
biomarkers in triple-negative breast cancer: A review. Technol
Cancer Res Treat. 22:153303382211452462023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Geurts V and Kok M: Immunotherapy for
metastatic triple negative breast cancer: Current paradigm and
future approaches. Curr Treat Options Oncol. 24:628–643. 2023.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lee J: Current treatment landscape for
early triple-negative breast cancer (TNBC). J Clin Med.
12:15242023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ribatti D, Nico B, Ruggieri S, Tamma R,
Simone G and Mangia A: Angiogenesis and antiangiogenesis in
triple-negative breast cancer. Transl Oncol. 9:453–457. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Goggins E, Mironchik Y, Kakkad S, Jacob D,
Wildes F, Bhujwalla ZM and Krishnamachary B: Reprogramming of
VEGF-mediated extracellular matrix changes through autocrine
signaling. Cancer Biol Ther. 24:21841452023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Medina MA, Oza G, Sharma A, Arriaga LG,
Hernández Hernández JM, Rotello VM and Ramirez JT: Triple-negative
breast cancer: A review of conventional and advanced therapeutic
strategies. Int J Environ Res Public Health. 17:20782020.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Y, Zhan Z, Yin X, Fu S and Deng X:
Targeted therapeutic strategies for triple-negative breast cancer.
Front Oncol. 11:7315352021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Alahdal M and Elkord E: Non-coding RNAs in
cancer immunotherapy: Predictive biomarkers and targets. Clin
Transl Med. 13:e14252023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Beňačka R, Szabóová D, Guľašová Z,
Hertelyová Z and Radoňak J: Non-coding RNAs in human cancer and
other diseases: Overview of the diagnostic potential. Int J Mol
Sci. 24:162132023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Isachesku E, Braicu C, Pirlog R,
Kocijancic A, Busuioc C, Pruteanu LL, Pandey DP and Berindan-Neagoe
I: The role of non-coding RNAs in epigenetic dysregulation in
glioblastoma development. Int J Mol Sci. 24:163202023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Girard A, Sachidanandam R, Hannon GJ and
Carmell MA: A germline-specific class of small RNAs binds mammalian
Piwi proteins. Nature. 442:199–202. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kuramochi-Miyagawa S, Watanabe T, Gotoh K,
Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri
TW, et al: DNA methylation of retrotransposon genes is regulated by
Piwi family members MILI and MIWI2 in murine fetal testes. Genes
Dev. 22:908–917. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu Z, Yu X, Zhang S, He Y and Guo W: Novel
roles of PIWI proteins and PIWI-interacting RNAs in human health
and diseases. Cell Commun Signal. 21:3432023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Deng X, Liao T, Xie J, Kang D, He Y, Sun
Y, Wang Z, Jiang Y, Miao X, Yan Y, et al: The burgeoning importance
of PIWI-interacting RNAs in cancer progression. Sci China Life Sci.
67:653–662. 2024. View Article : Google Scholar : PubMed/NCBI
|
15
|
Garcia-Borja E, Siegl F, Mateu R, Slaby O,
Sedo A, Busek P and Sana J: Critical appraisal of the piRNA-PIWI
axis in cancer and cancer stem cells. Biomark Res. 12:152024.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Cheng J, Deng H, Xiao B, Zhou H, Zhou F,
Shen Z and Guo J: piR-823, a novel non-coding small RNA,
demonstrates in vitro and in vivo tumor suppressive activity in
human gastric cancer cells. Cancer Lett. 315:12–17. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang
L, Chen L, Chu ZB, Tang B, Wang K, et al: piRNA-823 contributes to
tumorigenesis by regulating de novo DNA methylation and
angiogenesis in multiple myeloma. Leukemia. 29:196–206. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yao J, Wang YW, Fang BB, Zhang SJ and
Cheng BL: piR-651 and its function in 95-D lung cancer cells.
Biomed Rep. 4:546–550. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Weng W, Liu N, Toiyama Y, Kusunoki M,
Nagasaka T, Fujiwara T, Wei Q, Qin H, Lin H, Ma Y and Goel A: Novel
evidence for a PIWI-interacting RNA (piRNA) as an oncogenic
mediator of disease progression, and a potential prognostic
biomarker in colorectal cancer. Mol Cancer. 17:162018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Du X, Li H, Xie X, Shi L, Wu F, Li G, Lai
C and Heng B: piRNA-31115 promotes cell proliferation and invasion
via PI3K/AKT pathway in clear cell renal carcinoma. Dis Markers.
2021:69153292021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Koduru SV, Tiwari AK, Leberfinger A,
Hazard SW, Kawasawa YI, Mahajan M and Ravnic DJ: A comprehensive
NGS data analysis of differentially regulated miRNAs, piRNAs,
lncRNAs and sn/snoRNAs in triple negative breast cancer. J Cancer.
8:578–596. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Mao Z, Wang B, Zhang T and Cui B: The
roles of m6A methylation in cervical cancer: Functions, molecular
mechanisms, and clinical applications. Cell Death Dis. 14:7342023.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu ZM, Huo FC, Zhang J, Shan HJ and Pei
DS: Crosstalk between m6A modification and alternative splicing
during cancer progression. Clin Transl Med. 13:e14602023.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Z, Liu N, Shi S, Liu S and Lin H: The
role of PIWIL4, an argonaute family protein, in breast cancer. J
Biol Chem. 291:10646–10658. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhong Z, Jiao Z and Yu FX: The Hippo
signaling pathway in development and regeneration. Cell Rep.
43:1139262024. View Article : Google Scholar : PubMed/NCBI
|
27
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang
G, Wang Y, Zhao S and Jiang X: IGF2BPs as novel m6A
readers: Diverse roles in regulating cancer cell biological
functions, hypoxia adaptation, metabolism, and immunosuppressive
tumor microenvironment. Genes Dis. 11:890–920. 2023. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cambria E, Coughlin MF, Floryan MA,
Offeddu GS, Shelton SE and Kamm RD: Linking cell mechanical memory
and cancer metastasis. Nat Rev Cancer. 24:216–228. 2024. View Article : Google Scholar : PubMed/NCBI
|
29
|
Carrera-Aguado I, Marcos-Zazo L,
Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F and Muñoz-Félix
JM: The inhibition of vessel co-option as an emerging strategy for
cancer therapy. Int J Mol Sci. 25:9212024. View Article : Google Scholar : PubMed/NCBI
|
30
|
Feng Y, Luo S, Fan D, Guo X and Ma S: The
role of vascular endothelial cells in tumor metastasis. Acta
Histochem. 125:1520702023. View Article : Google Scholar : PubMed/NCBI
|
31
|
Peng C, Xu Y, Wu J, Wu D, Zhou L and Xia
X: TME-related biomimetic strategies against cancer. Int J
Nanomedicine. 19:109–135. 2024. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zou Y, Yang A, Chen B, Deng X, Xie J, Dai
D, Zhang J, Tang H, Wu T, Zhou Z, et al: crVDAC3 alleviates
ferroptosis by impeding HSPB1 ubiquitination and confers
trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug
Resist Updat. 77:1011262024. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhao Q, Qian L, Guo Y, Lü J, Li D, Xie H,
Wang Q, Ma W, Liu P, Liu Y, et al: IL11 signaling mediates piR-2158
suppression of cell stemness and angiogenesis in breast cancer.
Theranostics. 13:2337–2349. 2023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cunha ERK, Ying W and Olefsky JM:
Exosome-mediated impact on systemic metabolism. Annu Rev Physiol.
86:225–253. 2024. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yao J, Chen Y and Lin Z: Exosomes:
Mediators in microenvironment of colorectal cancer. Int J Cancer.
153:904–917. 2023. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang
J, Fan C, Li Z, Wang F, Guo C, et al: RNA modifications in cancer.
Br J Cancer. 129:204–221. 2023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang L, Tian S, Zheng X, Zhang M, Zhou X,
Shang Y and Han Y: N6-methyladenosine RNA methylation in liver
diseases: From mechanism to treatment. J Gastroenterol. 58:718–733.
2023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhu L, Zhang H, Zhang X and Xia L: RNA m6A
methylation regulators in sepsis. Mol Cell Biochem. 479:2165–2180.
2024. View Article : Google Scholar : PubMed/NCBI
|
39
|
Deng X, Qing Y, Horne D, Huang H and Chen
J: The roles and implications of RNA m6A modification in
cancer. Nat Rev Clin Oncol. 20:507–526. 2023. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ding SQ, Zhang XP, Pei JP, Bai X, Ma JJ,
Zhang CD and Dai DQ: Role of N6-methyladenosine RNA modification in
gastric cancer. Cell Death Discov. 9:2412023. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu X, Xie X, Sui C, Liu X, Song M, Luo Q,
Zhan P, Feng J and Liu J: Unraveling the cross-talk between
N6-methyladenosine modification and non-coding RNAs in breast
cancer: Mechanisms and clinical implications. Int J Cancer.
154:1877–1889. 2024. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jin Q, Qu H and Quan C: New insights into
the regulation of METTL3 and its role in tumors. Cell Commun
Signal. 21:3342023. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li Y, Wang K, Liu W and Zhang Y: The
potential emerging role of piRNA/PIWI complex in virus infection.
Virus Genes. 60:333–346. 2024. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ni XF, Xie QQ, Zhao JM, Xu YJ, Ji M, Hu
WW, Wu J and Wu CP: The hepatic microenvironment promotes lung
adenocarcinoma cell proliferation, metastasis, and
epithelial-mesenchymal transition via METTL3-mediated
N6-methyladenosine modification of YAP1. Aging (Albany NY).
13:4357–4369. 2021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ying Y, Ma X, Fang J, Chen S, Wang W, Li
J, Xie H, Wu J, Xie B, Liu B, et al: EGR2-mediated regulation of
m6A reader IGF2BP proteins drive RCC tumorigenesis and
metastasis via enhancing S1PR3 mRNA stabilization. Cell Death Dis.
12:7502021. View Article : Google Scholar : PubMed/NCBI
|