The microbiome, its molecular mechanisms and its potential as a therapeutic strategy against colorectal carcinogenesis (Review)
- Authors:
- Stella Baliou
- Maria Adamaki
- Demetrios A. Spandidos
- Anthony M. Kyriakopoulos
- Ioannis Christodoulou
- Vassilis Zoumpourlis
-
Affiliations: National Hellenic Research Foundation, 11635 Athens, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, Nasco AD Biotechnology Laboratory, 18536 Athens, Greece - Published online on: December 20, 2018 https://doi.org/10.3892/wasj.2018.6
- Pages: 3-19
-
Copyright: © Baliou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970. 2013.PubMed/NCBI View Article : Google Scholar | |
Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, et al: The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 60:208–215. 2015.PubMed/NCBI View Article : Google Scholar | |
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: MetaHIT Consortium: A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65. 2010.PubMed/NCBI View Article : Google Scholar | |
Blaser MJ: Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep. 7:956–960. 2006.PubMed/NCBI View Article : Google Scholar | |
Bultman SJ: Emerging roles of the microbiome in cancer. Carcinogenesis. 35:249–255. 2014.PubMed/NCBI View Article : Google Scholar | |
Clemente JC, Ursell LK and Parfrey LW and Knight R: The impact of the gut microbiota on human health: An integrative view. Cell. 148:1258–1270. 2012.PubMed/NCBI View Article : Google Scholar | |
Plottel CS and Blaser MJ: Microbiome and malignancy. Cell Host Microbe. 10:324–335. 2011.PubMed/NCBI View Article : Google Scholar | |
Petersen C and Round JL: Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 16:1024–1033. 2014.PubMed/NCBI View Article : Google Scholar | |
Dietert RR and Dietert JM: The microbiome and sustainable healthcare. Healthcare (Basel). 3:100–129. 2015.PubMed/NCBI View Article : Google Scholar | |
Arslan N: Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol. 20:16452–16463. 2014.PubMed/NCBI View Article : Google Scholar | |
Schwabe RF and Jobin C: The microbiome and cancer. Nat Rev Cancer. 13:800–812. 2013.PubMed/NCBI View Article : Google Scholar | |
Garrett WS: Cancer and the microbiota. Science. 348:80–86. 2015.PubMed/NCBI View Article : Google Scholar | |
Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. 2012.PubMed/NCBI View Article : Google Scholar | |
Grice EA and Segre JA: The skin microbiome. Nat Rev Microbiol. 9:244–253. 2011.PubMed/NCBI View Article : Google Scholar | |
Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD and Doré J: Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 65:4799–4807. 1999.PubMed/NCBI | |
Savage DC: Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 31:107–133. 1977.PubMed/NCBI View Article : Google Scholar | |
Neish AS: Microbes in gastrointestinal health and disease. Gastroenterology. 136:65–80. 2009.PubMed/NCBI View Article : Google Scholar | |
Goncharova GI, Dorofeĭchuk VG, Smolianskaia AZ and Sokolova KIa: Microbial ecology of the intestines in health and in pathology. Antibiot Khimioter. 34:462–466. 1989.(In Russian). PubMed/NCBI | |
Dominguez-Bello MG, Blaser MJ, Ley RE and Knight R: Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology. 140:1713–1719. 2011.PubMed/NCBI View Article : Google Scholar | |
Mulder IE, Schmidt B, Lewis M, Delday M, Stokes CR, Bailey M, Aminov RI, Gill BP, Pluske JR, Mayer CD, et al: Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS One. 6(e28279)2011.PubMed/NCBI View Article : Google Scholar | |
Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, et al: Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 108((Suppl 1)): 4586–4591. 2011.PubMed/NCBI View Article : Google Scholar | |
Rajilić-Stojanović M, Heilig HGHJ, Molenaar D, Kajander K, Surakka A, Smidt H and de Vos WM: Development and application of the human intestinal tract chip, a phylogenetic microarray: Analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol. 11:1736–1751. 2009.PubMed/NCBI View Article : Google Scholar | |
Turnbaugh PJ, Bäckhed F, Fulton L and Gordon JI: Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 3:213–223. 2008.PubMed/NCBI View Article : Google Scholar | |
Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A and Haslberger AG: Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol. 44:440–446. 2009.PubMed/NCBI View Article : Google Scholar | |
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE and Relman DA: Diversity of the human intestinal microbial flora. Science. 308:1635–1638. 2005.PubMed/NCBI View Article : Google Scholar | |
Sommer F and Bäckhed F: The gut microbiota - masters of host development and physiology. Nat Rev Microbiol. 11:227–238. 2013.PubMed/NCBI View Article : Google Scholar | |
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA and Gordon JI: Host-bacterial mutualism in the human intestine. Science. 307:1915–1920. 2005.PubMed/NCBI View Article : Google Scholar | |
Tlaskalová-Hogenová H, Stepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zádníková R, Kozáková H, Rossmann P, Bártová J, Sokol D, et al: Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 93:97–108. 2004.PubMed/NCBI View Article : Google Scholar | |
Wang L, Zhao N, Zhang F, Yue W and Liang M: Effect of taurine on leucocyte function. Eur J Pharmacol. 616:275–280. 2009.PubMed/NCBI View Article : Google Scholar | |
O'Hara AM and Shanahan F: The gut flora as a forgotten organ. EMBO Rep. 7:688–693. 2006.PubMed/NCBI View Article : Google Scholar | |
Proctor LM: The human microbiome project in 2011 and beyond. Cell Host Microbe. 10:287–291. 2011.PubMed/NCBI View Article : Google Scholar | |
Weisburger JH, Reddy BS, Narisawa T and Wynder EL: Germ-free status and colon tumor induction by N-methyl-N'-nitro-N-nitrosoguanidine. Proc Soc Exp Biol Med. 148:1119–1121. 1975.PubMed/NCBI | |
Peterson DA, Frank DN, Pace NR and Gordon JI: Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe. 3:417–427. 2008.PubMed/NCBI View Article : Google Scholar | |
Walsh CJ, Guinane CM, O'Toole PW and Cotter PD: Beneficial modulation of the gut microbiota. FEBS Lett. 588:4120–4130. 2014.PubMed/NCBI View Article : Google Scholar | |
Kamada N and Núñez G: Role of the gut microbiota in the development and function of lymphoid cells. J Immunol. 190:1389–1395. 2013.PubMed/NCBI View Article : Google Scholar | |
Blaser MJ and Falkow S: What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 7:887–894. 2009.PubMed/NCBI View Article : Google Scholar | |
Hooper LV and Macpherson AJ: Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 10:159–169. 2010.PubMed/NCBI View Article : Google Scholar | |
Palmer C, Bik EM, DiGiulio DB, Relman DA and Brown PO: Development of the human infant intestinal microbiota. PLoS Biol. 5(e177)2007.PubMed/NCBI View Article : Google Scholar | |
Neish AS: Mucosal immunity the microbiome. Ann Am Thorac Soc. 11((Suppl 1)): S28–S32. 2014.PubMed/NCBI View Article : Google Scholar | |
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK and Knight R: Diversity, stability and resilience of the human gut microbiota. Nature. 489:220–230. 2012.PubMed/NCBI View Article : Google Scholar | |
Morgan XC and Huttenhower C: Chapter 12: Human microbiome analysis. PLOS Comput Biol. 8(e1002808)2012.PubMed/NCBI View Article : Google Scholar | |
Hooper LV, Littman DR and Macpherson AJ: Interactions between the microbiota and the immune system. Science. 336:1268–1273. 2012.PubMed/NCBI View Article : Google Scholar | |
Khoruts A, Dicksved J, Jansson JK and Sadowsky MJ: Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol. 44:354–360. 2010.PubMed/NCBI View Article : Google Scholar | |
Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R and Busscher HJ: Microbiota restoration: Natural and supplemented recovery of human microbial communities. Nat Rev Microbiol. 9:27–38. 2011.PubMed/NCBI View Article : Google Scholar | |
Swiatczak B, Rescigno M and Cohen IR: Systemic features of immune recognition in the gut. Microbes Infect. 13:983–991. 2011.PubMed/NCBI View Article : Google Scholar | |
Arthur JC and Jobin C: The struggle within Microbial influences on colorectal cancer. Inflamm Bowel Dis. 17:396–409. 2011.PubMed/NCBI View Article : Google Scholar | |
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD and Gordon JI: Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 102:11070–11075. 2005.PubMed/NCBI View Article : Google Scholar | |
Ivanov II, Frutos R de L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB and Littman DR: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 4:337–349. 2008.PubMed/NCBI View Article : Google Scholar | |
Johansson MEV, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodríguez-Piñeiro AM, Arike L, Wising C, Svensson F, Bäckhed F, et al: Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. 18:582–592. 2015.PubMed/NCBI View Article : Google Scholar | |
Spiljar M, Merkler D and Trajkovski M: The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol. 8(1353)2017.PubMed/NCBI View Article : Google Scholar | |
Round JL and Mazmanian SK: Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 107:12204–12209. 2010.PubMed/NCBI View Article : Google Scholar | |
Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, Sinha R, Mantegazza AR, Ma HL, Crawford A, Angelosanto JM, et al: Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 498:113–117. 2013.PubMed/NCBI View Article : Google Scholar | |
Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, et al: The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 31:677–689. 2009.PubMed/NCBI View Article : Google Scholar | |
Garland CD, Lee A and Dickson MR: Segmented filamentous bacteria in the rodent small intestine: Their colonization of growing animals and possible role in host resistance to Salmonella. Microb Ecol. 8:181–190. 1982.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL, Alonzo F, Ng C, Chen A, Lin X, et al: Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature. 510:152–156. 2014.PubMed/NCBI View Article : Google Scholar | |
Schnupf P, Gaboriau-Routhiau V and Cerf-Bensussan N: Host interactions with segmented filamentous bacteria: An unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol. 25:342–351. 2013.PubMed/NCBI View Article : Google Scholar | |
Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, Littman DR, Benoist C and Mathis D: Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 32:815–827. 2010.PubMed/NCBI View Article : Google Scholar | |
Song X, Gao H, Lin Y, Yao Y, Zhu S, Wang J, Liu Y, Yao X, Meng G, Shen N, et al: Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity. 40:140–152. 2014.PubMed/NCBI View Article : Google Scholar | |
Xu M, Pokrovskii M, Ding Y, Yi R, Au C, Harrison OJ, Galan C, Belkaid Y, Bonneau R and Littman DR: c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature. 554:373–377. 2018.PubMed/NCBI View Article : Google Scholar | |
Kamada N and Núñez G: Regulation of the immune system by the resident intestinal bacteria. Gastroenterology. 146:1477–1488. 2014.PubMed/NCBI View Article : Google Scholar | |
Martín R, Miquel S, Chain F, Natividad JM, Jury J, Lu J, Sokol H, Theodorou V, Bercik P, Verdu EF, et al: Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 15(67)2015.PubMed/NCBI View Article : Google Scholar | |
Honda K and Littman DR: The microbiota in adaptive immune homeostasis and disease. Nature. 535:75–84. 2016.PubMed/NCBI View Article : Google Scholar | |
Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, et al: Compartmentalized control of skin immunity by resident commensals. Science. 337:1115–1119. 2012.PubMed/NCBI View Article : Google Scholar | |
Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, Conlan S, Himmelfarb S, Byrd AL, Deming C, et al: Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 520:104–108. 2015.PubMed/NCBI View Article : Google Scholar | |
Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, et al: Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 10:497–506. 2011.PubMed/NCBI View Article : Google Scholar | |
Hajishengallis G and Lamont RJ: Breaking bad: Manipulation of the host response by Porphyromonas gingivalis. Eur J Immunol. 44:328–338. 2014.PubMed/NCBI View Article : Google Scholar | |
Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, Paley MA, Antenus M, Williams KL, Erikson J, et al: Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 37:158–170. 2012.PubMed/NCBI View Article : Google Scholar | |
Belkaid Y and Naik S: Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol. 14:646–653. 2013.PubMed/NCBI View Article : Google Scholar | |
Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS and Iwasaki A: Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA. 108:5354–5359. 2011.PubMed/NCBI View Article : Google Scholar | |
Chervonsky AV: Microbiota autoimmunity. Cold Spring Harb Perspect Biol. 5(a007294)2013.PubMed/NCBI View Article : Google Scholar | |
Lee YK, Menezes JS, Umesaki Y and Mazmanian SK: Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 108((Suppl 1)): 4615–4622. 2011.PubMed/NCBI View Article : Google Scholar | |
Kim YG, Udayanga KGS, Totsuka N, Weinberg JB, Núñez G and Shibuya A: Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe. 15:95–102. 2014.PubMed/NCBI View Article : Google Scholar | |
Mangeney M, Pothlichet J, Renard M, Ducos B and Heidmann T: Endogenous retrovirus expression is required for murine melanoma tumor growth in vivo. Cancer Res. 65:2588–2591. 2005.PubMed/NCBI View Article : Google Scholar | |
Vaishnava S, Behrendt CL, Ismail AS, Eckmann L and Hooper LV: Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA. 105:20858–20863. 2008.PubMed/NCBI View Article : Google Scholar | |
Ménard S, Cerf-Bensussan N and Heyman M: Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 3:247–259. 2010.PubMed/NCBI View Article : Google Scholar | |
Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y and Merad M: Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 343(1249288)2014.PubMed/NCBI View Article : Google Scholar | |
Rescigno M: Intestinal microbiota and its effects on the immune system. Cell Microbiol. 16:1004–1013. 2014.PubMed/NCBI View Article : Google Scholar | |
Siegel R, Desantis C and Jemal A: Colorectal cancer statistics 2014. CA Cancer J Clin. 64:104–117. 2014.PubMed/NCBI View Article : Google Scholar | |
Shen H, Yang J, Huang Q, Jiang MJ, Tan YN, Fu JF, Zhu LZ, Fang XF and Yuan Y: Different treatment strategies and molecular features between right-sided and left-sided colon cancers. World J Gastroenterol. 21:6470–6478. 2015.PubMed/NCBI View Article : Google Scholar | |
Tamas K, Walenkamp AM, de Vries EG, van Vugt MA, Beets-Tan RG, van Etten B, de Groot DJ and Hospers GA: Rectal and colon cancer: Not just a different anatomic site. Cancer Treat Rev. 41:671–679. 2015.PubMed/NCBI View Article : Google Scholar | |
Carethers JM and Jung BH: Genetics and genetic biomarkers in sporadic colorectal Cancer. Gastroenterology. 149:1177–1190.e3. 2015.PubMed/NCBI View Article : Google Scholar | |
Watson AJ and Collins PD: Colon cancer A civilization disorder. Dig Dis. 29:222–228. 2011.PubMed/NCBI View Article : Google Scholar | |
Starnes CO: Coley's toxins in perspective. Nature. 357:11–12. 1992.PubMed/NCBI View Article : Google Scholar | |
Hoption Cann SA, van Netten JP and van Netten C: Dr William Coley and tumour regression: A place in history or in the future. Postgrad Med J. 79:672–680. 2003.PubMed/NCBI | |
Grange JM, Bottasso O, Stanford CA and Stanford JL: The use of mycobacterial adjuvant-based agents for immunotherapy of cancer. Vaccine. 26:4984–4990. 2008.PubMed/NCBI View Article : Google Scholar | |
Reddy BS, Mastromarino A and Wynder EL: Further leads on metabolic epidemiology of large bowel cancer. Cancer Res. 35:3403–3406. 1975.PubMed/NCBI | |
Schreiber H, Nettesheim P, Lijinsky W, Richter CB and Walburg HE Jr: Induction of lung cancer in germfree, specific-pathogen-free, and infected rats by N-nitrosoheptamethyleneimine: Enhancement by respiratory infection. J Natl Cancer Inst. 49:1107–1114. 1972.PubMed/NCBI | |
Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, et al: Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 21:504–516. 2012.PubMed/NCBI View Article : Google Scholar | |
Reddy BS and Watanabe K: Effect of intestinal microflora on 2,2'-dimethyl-4-aminobiphenyl-induced carcinogenesis in F344 rats. J Natl Cancer Inst. 61:1269–1271. 1978.PubMed/NCBI | |
Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS and Jobin C: Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 4(e6026)2009.PubMed/NCBI View Article : Google Scholar | |
Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Potter A, Varro A, Eibach D, Suerbaum S, et al: Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology. 140:210–220. 2011.PubMed/NCBI View Article : Google Scholar | |
Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P and Tlaskalova-Hogenova H: Colorectal carcinogenesis in germ-free and conventionally reared rats: Different intestinal environments affect the systemic immunity. Int J Oncol. 32:609–617. 2008.PubMed/NCBI View Article : Google Scholar | |
Dove WF, Clipson L, Gould KA, Luongo C, Marshall DJ, Moser AR, Newton MA and Jacoby RF: Intestinal neoplasia in the ApcMin mouse: Independence from the microbial and natural killer (beige locus) status. Cancer Res. 57:812–814. 1997.PubMed/NCBI | |
Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et al: Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 499:97–101. 2013.PubMed/NCBI View Article : Google Scholar | |
Chen GY, Shaw MH, Redondo G and Núñez G: The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68:10060–10067. 2008.PubMed/NCBI View Article : Google Scholar | |
Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 491:254–258. 2012.PubMed/NCBI View Article : Google Scholar | |
Klimesova K, Kverka M, Zakostelska Z, Hudcovic T, Hrncir T, Stepankova R, Rossmann P, Ridl J, Kostovcik M, Mrazek J, et al: Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. Inflamm Bowel Dis. 19:1266–1277. 2013.PubMed/NCBI View Article : Google Scholar | |
Garrett WS, Punit S, Gallini CA, Michaud M, Zhang D, Sigrist KS, Lord GM, Glickman JN and Glimcher LH: Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell. 16:208–219. 2009.PubMed/NCBI View Article : Google Scholar | |
Kado S, Uchida K, Funabashi H, Iwata S, Nagata Y, Ando M, Onoue M, Matsuoka Y, Ohwaki M and Morotomi M: Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res. 61:2395–2398. 2001.PubMed/NCBI | |
Engle SJ, Ormsby I, Pawlowski S, Boivin GP, Croft J, Balish E and Doetschman T: Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res. 62:6362–6366. 2002.PubMed/NCBI | |
Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K, Plank B, Horwitz BH and Fox JG: CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol. 162:691–702. 2003.PubMed/NCBI View Article : Google Scholar | |
Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, Glickman JN and Glimcher LH: Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 131:33–45. 2007.PubMed/NCBI View Article : Google Scholar | |
Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, Punit S, Karlsson M, Bry L, Glickman JN, et al: Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 8:292–300. 2010.PubMed/NCBI View Article : Google Scholar | |
Balish E and Warner T: Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol. 160:2253–2257. 2002.PubMed/NCBI View Article : Google Scholar | |
Zhan Y, Chen PJ, Sadler WD, Wang F, Poe S, Núñez G, Eaton KA and Chen GY: Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 73:7199–7210. 2013.PubMed/NCBI View Article : Google Scholar | |
Hussain SP, Hofseth LJ and Harris CC: Radical causes of cancer. Nat Rev Cancer. 3:276–285. 2003.PubMed/NCBI View Article : Google Scholar | |
Maddocks ODK, Short AJ, Donnenberg MS, Bader S and Harrison DJ: Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One. 4(e5517)2009.PubMed/NCBI View Article : Google Scholar | |
Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, Wang E, Ma W, Haines D, O'hUigin C, et al: MyD88-mediated signaling prevents development of adenocarcinomas of the colon: Role of interleukin 18. J Exp Med. 207:1625–1636. 2010.PubMed/NCBI View Article : Google Scholar | |
Saleh M and Trinchieri G: Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 11:9–20. 2011.PubMed/NCBI View Article : Google Scholar | |
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S and Medzhitov R: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 118:229–241. 2004.PubMed/NCBI View Article : Google Scholar | |
Sears CL and Garrett WS: Microbes, microbiota, and colon cancer. Cell Host Microbe. 15:317–328. 2014.PubMed/NCBI View Article : Google Scholar | |
Eslick GD: Helicobacter pylori infection causes gastric cancer? A review of the epidemiological, meta-analytic, and experimental evidence. World J Gastroenterol. 12:2991–2999. 2006.PubMed/NCBI View Article : Google Scholar | |
Buti L, Spooner E, van der Veen AG, Rappuoli R, Covacci A and Ploegh HL: Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA. 108:9238–9243. 2011.PubMed/NCBI View Article : Google Scholar | |
Wroblewski LE, Peek RM Jr and Wilson KT: Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev. 23:713–739. 2010.PubMed/NCBI View Article : Google Scholar | |
Marshall BJ and Warren JR: Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1:1311–1315. 1984.PubMed/NCBI View Article : Google Scholar | |
Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al: A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 15:1016–1022. 2009.PubMed/NCBI View Article : Google Scholar | |
Geis AL, Fan H, Wu X, Wu S, Huso DL, Wolfe JL, Sears CL, Pardoll DM and Housseau F: Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov. 5:1098–1109. 2015.PubMed/NCBI View Article : Google Scholar | |
Kim SC, Tonkonogy SL, Albright CA, Tsang J, Balish EJ, Braun J, Huycke MM and Sartor RB: Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 128:891–906. 2005.PubMed/NCBI View Article : Google Scholar | |
Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA and Huycke MM: 4-Hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology. 142:543–551, e7. 2012.PubMed/NCBI View Article : Google Scholar | |
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al: Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14:207–215. 2013.PubMed/NCBI View Article : Google Scholar | |
Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al: Fap2 mediates fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 20:215–225. 2016.PubMed/NCBI View Article : Google Scholar | |
Signat B, Roques C, Poulet P and Duffaut D: Fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol. 13:25–36. 2011.PubMed/NCBI | |
Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, Devinney R, Lynch T and Allen-Vercoe E: Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 17:1971–1978. 2011.PubMed/NCBI View Article : Google Scholar | |
Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J and Furet JP: Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 6(e16393)2011.PubMed/NCBI View Article : Google Scholar | |
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, et al: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22:299–306. 2012.PubMed/NCBI View Article : Google Scholar | |
Rubinstein MR, Wang X, Liu W, Hao Y, Cai G and Han YW: Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 14:195–206. 2013.PubMed/NCBI View Article : Google Scholar | |
Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, et al: Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 42:344–355. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu H, Redline RW and Han YW: Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J Immunol. 179:2501–2508. 2007.PubMed/NCBI View Article : Google Scholar | |
Lee P and Tan KS: Fusobacterium nucleatum activates the immune response through retinoic acid-inducible gene I. J Dent Res. 93:162–168. 2014.PubMed/NCBI View Article : Google Scholar | |
Chaushu S, Wilensky A, Gur C, Shapira L, Elboim M, Halftek G, Polak D, Achdout H, Bachrach G and Mandelboim O: Direct recognition of Fusobacterium nucleatum by the NK cell natural cytotoxicity receptor NKp46 aggravates periodontal disease. PLoS Pathog. 8(e1002601)2012.PubMed/NCBI View Article : Google Scholar | |
Huycke MM and Gaskins HR: Commensal bacteria, redox stress, and colorectal cancer Mechanisms and models. Exp Biol Med (Maywood). 229:586–597. 2004.PubMed/NCBI | |
Rooks MG and Garrett WS: Bacteria, food, and cancer. F1000 Biol Rep 3. 12:2011.PubMed/NCBI View Article : Google Scholar | |
Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, et al: Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 108:15354–15359. 2011.PubMed/NCBI View Article : Google Scholar | |
Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al: Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 338:120–123. 2012.PubMed/NCBI View Article : Google Scholar | |
Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Déchelotte P, Bonnet M, et al: Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 63:1932–1942. 2014.PubMed/NCBI View Article : Google Scholar | |
Mangerich A, Knutson CG, Parry NM, Muthupalani S, Ye W, Prestwich E, Cui L, McFaline JL, Mobley M, Ge Z, et al: Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc Natl Acad Sci USA. 109:E1820–E1829. 2012.PubMed/NCBI View Article : Google Scholar | |
Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW and Huycke MM: Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 68:9909–9917. 2008.PubMed/NCBI View Article : Google Scholar | |
Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D and Bonnet R: High prevalence of mucosa-associated Ecoli producing cyclomodulin and genotoxin in colon cancer. PLoS One. 8(e56964)2013.PubMed/NCBI View Article : Google Scholar | |
Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E and Nougayrède JP: Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA. 107:11537–11542. 2010.PubMed/NCBI View Article : Google Scholar | |
Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B and Chang EB: Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in IL10-/- mice. Nature. 487:104–108. 2012.PubMed/NCBI View Article : Google Scholar | |
Maggio-Price L, Treuting P, Zeng W, Tsang M, Bielefeldt-Ohmann H and Iritani BM: Helicobacter infection is required for inflammation and colon cancer in SMAD3-deficient mice. Cancer Res. 66:828–838. 2006.PubMed/NCBI View Article : Google Scholar | |
Chu F-F, Esworthy RS, Chu PG, Longmate JA, Huycke MM, Wilczynski S and Doroshow JH: Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 64:962–968. 2004.PubMed/NCBI View Article : Google Scholar | |
Ellmerich S, Schöller M, Duranton B, Gossé F, Galluser M, Klein JP and Raul F: Promotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis. 21:753–756. 2000.PubMed/NCBI | |
Sheflin AM, Whitney AK and Weir TL: Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 16(406)2014.PubMed/NCBI View Article : Google Scholar | |
Jobin C: Colorectal cancer: CRC - all about microbial products and barrier function? Nat Rev Gastroenterol Hepatol. 9:694–696. 2012.PubMed/NCBI View Article : Google Scholar | |
Rao VP, Poutahidis T, Ge Z, Nambiar PR, Boussahmain C, Wang YY, Horwitz BH, Fox JG and Erdman SE: Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res. 66:7395–7400. 2006.PubMed/NCBI View Article : Google Scholar | |
Reddy BS, Weisburger JH, Narisawa T and Wynder EL: Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-n'-nitro-N-nitrosoguanidine. Cancer Res. 34:2368–2372. 1974.PubMed/NCBI | |
Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH and Wynder EL: Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res. 35:287–290. 1975.PubMed/NCBI | |
Winter SE, Lopez CA and Bäumler AJ: The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 14:319–327. 2013.PubMed/NCBI View Article : Google Scholar | |
Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C and Ting JP: The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 207:1045–1056. 2010.PubMed/NCBI View Article : Google Scholar | |
Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, et al: NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 145:745–757. 2011.PubMed/NCBI View Article : Google Scholar | |
Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, et al: NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 123:700–711. 2013.PubMed/NCBI View Article : Google Scholar | |
Hu B, Elinav E, Huber S, Strowig T, Hao L, Hafemann A, Jin C, Wunderlich C, Wunderlich T, Eisenbarth SC, et al: Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci USA. 110:9862–9867. 2013.PubMed/NCBI View Article : Google Scholar | |
Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K and Augenlicht L: Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 295:1726–1729. 2002.PubMed/NCBI View Article : Google Scholar | |
Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, Zambirinis CP, Fallon NC, Rehman A, Pylayeva-Gupta Y, et al: MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 209:1671–1687. 2012.PubMed/NCBI View Article : Google Scholar | |
Michaud DS, Joshipura K, Giovannucci E and Fuchs CS: A prospective study of periodontal disease and pancreatic cancer in US male health professionals. J Natl Cancer Inst. 99:171–175. 2007.PubMed/NCBI View Article : Google Scholar | |
Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K and Wong DT: Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 61:582–588. 2012.PubMed/NCBI View Article : Google Scholar | |
Wiest R and Garcia-Tsao G: Bacterial translocation (BT) in cirrhosis. Hepatology. 41:422–433. 2005.PubMed/NCBI View Article : Google Scholar | |
Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007.PubMed/NCBI View Article : Google Scholar | |
Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, Tang L, Lin Y, He YQ, Zou SS, et al: Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology. 52:1322–1333. 2010.PubMed/NCBI View Article : Google Scholar | |
Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA and Lee DJ: Microbial dysbiosis is associated with human breast cancer. PLoS One. 9(e83744)2014.PubMed/NCBI View Article : Google Scholar | |
Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA and Taplin SH: Antibiotic use in relation to the risk of breast cancer. JAMA. 291:827–835. 2004.PubMed/NCBI View Article : Google Scholar | |
Wu S, Powell J, Mathioudakis N, Kane S, Fernandez E and Sears CL: Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect Immun. 72:5832–5839. 2004.PubMed/NCBI View Article : Google Scholar | |
Nougayrède JP, Taieb F, De Rycke J and Oswald E: Cyclomodulins: Bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol. 13:103–110. 2005.PubMed/NCBI View Article : Google Scholar | |
Nesić D, Hsu Y and Stebbins CE: Assembly and function of a bacterial genotoxin. Nature. 429:429–433. 2004.PubMed/NCBI View Article : Google Scholar | |
Oswald E, Nougayrède JP, Taieb F and Sugai M: Bacterial toxins that modulate host cell-cycle progression. Curr Opin Microbiol. 8:83–91. 2005.PubMed/NCBI View Article : Google Scholar | |
Travaglione S, Fabbri A and Fiorentini C: The Rho-activating CNF1 toxin from pathogenic E. coli: A risk factor for human cancer development? Infect Agent Cancer. 3(4)2008.PubMed/NCBI View Article : Google Scholar | |
Fox JG and Wang TC: Inflammation, atrophy, and gastric cancer. J Clin Invest. 117:60–69. 2007.PubMed/NCBI View Article : Google Scholar | |
Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, Higashi H, Musashi M, Iwabuchi K, Suzuki M, et al: Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA. 105:1003–1008. 2008.PubMed/NCBI View Article : Google Scholar | |
Sears CL: Enterotoxigenic Bacteroides fragilis: A rogue among symbiotes. Clin Microbiol Rev. 22:349–369. 2009.PubMed/NCBI View Article : Google Scholar | |
Wu S, Lim KC, Huang J, Saidi RF and Sears CL: Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci USA. 95:14979–14984. 1998.PubMed/NCBI | |
Wu S, Shin J, Zhang G, Cohen M, Franco A and Sears CL: The Bacteroides fragilis toxin binds to a specific intestinal epithelial cell receptor. Infect Immun. 74:5382–5390. 2006.PubMed/NCBI View Article : Google Scholar | |
Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T and Soyletir G: A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 12:782–786. 2006.PubMed/NCBI View Article : Google Scholar | |
Wu S, Morin PJ, Maouyo D and Sears CL: Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 124:392–400. 2003.PubMed/NCBI View Article : Google Scholar | |
Owen RW, Spiegelhalder B and Bartsch H: Generation of reactive oxygen species by the faecal matrix. Gut. 46:225–232. 2000.PubMed/NCBI View Article : Google Scholar | |
Huycke MM, Abrams V and Moore DR: Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 23:529–536. 2002.PubMed/NCBI | |
Wallace JL: Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol Sci. 28:501–505. 2007.PubMed/NCBI View Article : Google Scholar | |
Attene-Ramos MS, Wagner ED, Gaskins HR and Plewa MJ: Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res. 5:455–459. 2007.PubMed/NCBI View Article : Google Scholar | |
Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E and Tenaillon O: Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol. 24:2373–2384. 2007.PubMed/NCBI View Article : Google Scholar | |
Escobar-Páramo P, Grenet K, Le Menac'h A, Rode L, Salgado E, Amorin C, Gouriou S, Picard B, Rahimy MC, Andremont A, et al: Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol. 70:5698–5700. 2004.PubMed/NCBI View Article : Google Scholar | |
Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L and Colombel JF: High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology. 127:412–421. 2004.PubMed/NCBI View Article : Google Scholar | |
Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y, Li M, Sojar HT, Genco RJ, Kuramitsu HK and Deng CX: Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol. 187:5330–5340. 2005.PubMed/NCBI View Article : Google Scholar | |
Prorok-Hamon M, Friswell MK, Alswied A, Roberts CL, Song F, Flanagan PK, Knight P, Codling C, Marchesi JR, Winstanley C, et al: Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut. 63:761–770. 2014.PubMed/NCBI View Article : Google Scholar | |
Morrison DJ and Preston T: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 7:189–200. 2016.PubMed/NCBI View Article : Google Scholar | |
Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H, Rubino S, Moriyama EH, Copeland JK, Surendra A, Kumar S, et al: Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell. 158:288–299. 2014.PubMed/NCBI View Article : Google Scholar | |
LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D and Ventura M: Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr Opin Biotechnol. 24:160–168. 2013.PubMed/NCBI View Article : Google Scholar | |
Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, et al: High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 93:1062–1072. 2011.PubMed/NCBI View Article : Google Scholar | |
Windey K, De Preter V and Verbeke K: Relevance of protein fermentation to gut health. Mol Nutr Food Res. 56:184–196. 2012.PubMed/NCBI View Article : Google Scholar | |
Neis EP, Dejong CH and Rensen SS: The role of microbial amino acid metabolism in host metabolism. Nutrients. 7:2930–2946. 2015.PubMed/NCBI View Article : Google Scholar | |
Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, Raes J, van Tol EA and Tuohy KM: Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev. 28:42–66. 2015.PubMed/NCBI View Article : Google Scholar | |
Louis P, Hold GL and Flint HJ: The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 12:661–672. 2014.PubMed/NCBI View Article : Google Scholar | |
Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK and Bultman SJ: The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13:517–526. 2011.PubMed/NCBI View Article : Google Scholar | |
Roediger WE: Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 21:793–798. 1980.PubMed/NCBI View Article : Google Scholar | |
Roediger WE: Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 83:424–429. 1982.PubMed/NCBI | |
Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE and Frost G: Free fatty acid receptor 2 and nutrient sensing: A proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev. 23:135–145. 2010.PubMed/NCBI View Article : Google Scholar | |
Pessione E: Lactic acid bacteria contribution to gut microbiota complexity: Lights shadows. Front Cell Infect Microbiol. 2(86)2012.PubMed/NCBI View Article : Google Scholar | |
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ and Brummer RJ: Review article: The role of butyrate on colonic function. Aliment Pharmacol Ther. 27:104–119. 2008.PubMed/NCBI View Article : Google Scholar | |
Fung KYC, Cosgrove L, Lockett T, Head R and Topping DL: A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr. 108:820–831. 2012.PubMed/NCBI View Article : Google Scholar | |
Wilson AJ, Chueh AC, Tögel L, Corner GA, Ahmed N, Goel S, Byun DS, Nasser S, Houston MA, Jhawer M, et al: Apoptotic sensitivity of colon cancer cells to histone deacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional program involving immediate-early gene induction. Cancer Res. 70:609–620. 2010.PubMed/NCBI View Article : Google Scholar | |
Chang PV, Hao L, Offermanns S and Medzhitov R: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 111:2247–2252. 2014.PubMed/NCBI View Article : Google Scholar | |
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN and Garrett WS: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 341:569–573. 2013.PubMed/NCBI View Article : Google Scholar | |
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 504:446–450. 2013.PubMed/NCBI View Article : Google Scholar | |
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, et al: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504:451–455. 2013.PubMed/NCBI View Article : Google Scholar | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009.PubMed/NCBI View Article : Google Scholar | |
Donohoe DR, Holley D, Collins LB, Montgomery SA, Whitmore AC, Hillhouse A, Curry KP, Renner SW, Greenwalt A, Ryan EP, et al: A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 4:1387–1397. 2014.PubMed/NCBI View Article : Google Scholar | |
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W and Bultman SJ: The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 48:612–626. 2012.PubMed/NCBI View Article : Google Scholar | |
Sebastián C and Mostoslavsky R: Untangling the fiber yarn: Butyrate feeds Warburg to suppress colorectal cancer. Cancer Discov. 4:1368–1370. 2014.PubMed/NCBI View Article : Google Scholar | |
Davie JR: Inhibition of histone deacetylase activity by butyrate. J Nutr. 133((Suppl 7)): 2485S–2493S. 2003.PubMed/NCBI View Article : Google Scholar | |
Gonçalves P and Martel F: Butyrate and colorectal cancer: The role of butyrate transport. Curr Drug Metab. 14:994–1008. 2013.PubMed/NCBI View Article : Google Scholar | |
Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, et al: GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69:2826–2832. 2009.PubMed/NCBI View Article : Google Scholar | |
Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, et al: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 40:128–139. 2014.PubMed/NCBI View Article : Google Scholar | |
Larrosa M, González-Sarrías A, García-Conesa MT, Tomás-Barberán FA and Espín JC: Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. J Agric Food Chem. 54:1611–1620. 2006.PubMed/NCBI View Article : Google Scholar | |
González-Sarrías A, Larrosa M, Tomás-Barberán FA, Dolara P and Espín JC: NF-kappaB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br J Nutr. 104:503–512. 2010.PubMed/NCBI View Article : Google Scholar | |
Atkinson C, Frankenfeld CL and Lampe JW: Gut bacterial metabolism of the soy isoflavone daidzein: Exploring the relevance to human health. Exp Biol Med (Maywood). 230:155–170. 2005.PubMed/NCBI | |
Bolca S, Possemiers S, Herregat A, Huybrechts I, Heyerick A, De Vriese S, Verbruggen M, Depypere H, De Keukeleire D, Bracke M, et al: Microbial and dietary factors are associated with the equol producer phenotype in healthy postmenopausal women. J Nutr. 137:2242–2246. 2007.PubMed/NCBI View Article : Google Scholar | |
Lampe JW: Emerging research on equol cancer. J Nutr. 140:1369S–1372S. 2010.PubMed/NCBI View Article : Google Scholar | |
Davis CD and Milner JA: Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem. 20:743–752. 2009.PubMed/NCBI View Article : Google Scholar | |
Bode LM, Bunzel D, Huch M, Cho GS, Ruhland D, Bunzel M, Bub A, Franz CM and Kulling SE: In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr. 97:295–309. 2013.PubMed/NCBI View Article : Google Scholar | |
Greer JB and O'Keefe SJ: Microbial induction of immunity, inflammation, and cancer. Front Physiol. 1(168)2011.PubMed/NCBI View Article : Google Scholar | |
Ridlon JM, Kang DJ and Hylemon PB: Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 47:241–259. 2006.PubMed/NCBI View Article : Google Scholar | |
Wells JE, Williams KB, Whitehead TR, Heuman DM and Hylemon PB: Development and application of a polymerase chain reaction assay for the detection and enumeration of bile acid 7alpha-dehydroxylating bacteria in human feces. Clin Chim Acta. 331:127–134. 2003.PubMed/NCBI View Article : Google Scholar | |
Rubin DC, Shaker A and Levin MS: Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Front Immunol. 3(107)2012.PubMed/NCBI View Article : Google Scholar | |
Powolny A, Xu J and Loo G: Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int J Biochem Cell Biol. 33:193–203. 2001.PubMed/NCBI View Article : Google Scholar | |
Imray CH, Radley S, Davis A, Barker G, Hendrickse CW, Donovan IA, Lawson AM, Baker PR and Neoptolemos JP: Faecal unconjugated bile acids in patients with colorectal cancer or polyps. Gut. 33:1239–1245. 1992.PubMed/NCBI View Article : Google Scholar | |
Nagengast FM, Grubben MJ and van Munster IP: Role of bile acids in colorectal carcinogenesis. Eur J Cancer. 31A:1067–1070. 1995.PubMed/NCBI View Article : Google Scholar | |
Carmody RN and Turnbaugh PJ: Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest. 124:4173–4181. 2014.PubMed/NCBI View Article : Google Scholar | |
Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, Bruha J, Neary P, Dezeeuw N, Tommasino M, et al: Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 33:1381–1390. 2014.PubMed/NCBI View Article : Google Scholar | |
McCoy AN, Araújo-Pérez F, Azcárate-Peril A, Yeh JJ, Sandler RS and Keku TO: Fusobacterium is associated with colorectal adenomas. PLoS One. 8(e53653)2013.PubMed/NCBI View Article : Google Scholar | |
Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Júnior U, Nakano V and Avila-Campos MJ: High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J Microbiol. 46:1135–1140. 2015.PubMed/NCBI View Article : Google Scholar | |
Zackular JP, Rogers MAM, Ruffin MT IV and Schloss PD: The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila). 7:1112–1121. 2014.PubMed/NCBI View Article : Google Scholar | |
Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, Yang J, Dou R, Masugi Y, Song M, et al: Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 65:1973–1980. 2016.PubMed/NCBI View Article : Google Scholar | |
Ballal SA, Veiga P, Fenn K, Michaud M, Kim JH, Gallini CA, Glickman JN, Quéré G, Garault P, Béal C, et al: Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc Natl Acad Sci USA. 112:7803–7808. 2015.PubMed/NCBI View Article : Google Scholar | |
Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois A, Khlebnikov A, van Hylckama Vlieg JE, Punit S, Glickman JN, et al: Bifidobacterium animalis subsplactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci USA. 107:18132–18137. 2010.PubMed/NCBI View Article : Google Scholar | |
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al: The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 342:971–976. 2013.PubMed/NCBI View Article : Google Scholar | |
Siddik ZH: Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene. 22:7265–7279. 2003.PubMed/NCBI View Article : Google Scholar | |
Yang J, Liu KX, Qu JM and Wang XD: The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur J Pharmacol. 714:120–124. 2013.PubMed/NCBI View Article : Google Scholar | |
Nam YD, Kim HJ, Seo JG, Kang SW and Bae JW: Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS One. 8(e82659)2013.PubMed/NCBI View Article : Google Scholar | |
Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, Liu C, West ML, Singer NV, Equinda MJ, et al: Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 209:903–911. 2012.PubMed/NCBI View Article : Google Scholar | |
Von Bültzingslöwen I, Adlerberth I, Wold AE, Dahlén G and Jontell M: Oral and intestinal microflora in 5-fluorouracil treated rats, translocation to cervical and mesenteric lymph nodes and effects of probiotic bacteria. Oral Microbiol Immunol. 18:278–284. 2003.PubMed/NCBI View Article : Google Scholar | |
Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S, et al: Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 330:831–835. 2010.PubMed/NCBI View Article : Google Scholar | |
Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, Liu SH and Cheng YC: The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med. 2(45ra59)2010.PubMed/NCBI View Article : Google Scholar | |
Cesaro C, Tiso A, Del Prete A, Cariello R, Tuccillo C, Cotticelli G, Del Vecchio Blanco C and Loguercio C: Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis. 43:431–438. 2011.PubMed/NCBI View Article : Google Scholar | |
Hemarajata P and Versalovic J: Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol. 6:39–51. 2013.PubMed/NCBI View Article : Google Scholar | |
Ekmekciu I, von Klitzing E, Fiebiger U, Neumann C, Bacher P, Scheffold A, Bereswill S and Heimesaat MM: The probiotic compound VSL#3 modulates mucosal, peripheral, and systemic immunity following murine broad-spectrum antibiotic treatment. Front Cell Infect Microbiol. 7(167)2017.PubMed/NCBI View Article : Google Scholar | |
Rao RK and Samak G: Protection and restitution of gut barrier by probiotics Nutritional and clinical implications. Curr Nutr Food Sci. 9:99–107. 2013.PubMed/NCBI | |
Kamada N, Chen GY, Inohara N and Núñez G: Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 14:685–690. 2013.PubMed/NCBI View Article : Google Scholar | |
Jonkers D and Stockbrügger R: Probiotics and inflammatory bowel disease. J R Soc Med. 96:167–171. 2003.PubMed/NCBI | |
Celiberto LS, Bedani R, Rossi EA and Cavallini DC: Probiotics: The scientific evidence in the context of inflammatory bowel disease. Crit Rev Food Sci Nutr. 57:1759–1768. 2017.PubMed/NCBI View Article : Google Scholar | |
Sheil B, Shanahan F and O'Mahony L: Probiotic effects on inflammatory bowel disease. J Nutr. 137:(Suppl 2):819S–824S. 2007.PubMed/NCBI View Article : Google Scholar | |
Tamboli CP, Caucheteux C, Cortot A, Colombel JF and Desreumaux P: Probiotics in inflammatory bowel disease: A critical review. Best Pract Res Clin Gastroenterol. 17:805–820. 2003.PubMed/NCBI View Article : Google Scholar | |
Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, De Simone C and Sartor RB: VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol. 100:1539–1546. 2005.PubMed/NCBI View Article : Google Scholar | |
Kim S, Covington A and Pamer EG: The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 279:90–105. 2017.PubMed/NCBI View Article : Google Scholar | |
Dethlefsen L, Huse S, Sogin ML and Relman DA: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6(e280)2008.PubMed/NCBI View Article : Google Scholar | |
Dethlefsen L and Relman DA: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 108((Suppl 1)): 4554–4561. 2011.PubMed/NCBI View Article : Google Scholar | |
Jernberg C, Löfmark S, Edlund C and Jansson JK: Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1:56–66. 2007.PubMed/NCBI View Article : Google Scholar | |
Lankelma JM, Cranendonk DR, Belzer C, de Vos AF, de Vos WM, van der Poll T and Wiersinga WJ: Antibiotic-induced gut microbiota disruption during human endotoxemia: A randomised controlled study. Gut. 66:1623–1630. 2017.PubMed/NCBI View Article : Google Scholar | |
Lopez J and Grinspan A: Fecal microbiota transplantation for inflammatory bowel disease. Gastroenterol Hepatol (NY). 12:374–379. 2016.PubMed/NCBI | |
McFarland LV: Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Dig Dis. 16:292–307. 1998.PubMed/NCBI View Article : Google Scholar | |
Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, Zur M, Regev-Lehavi D, Ben-Zeev Brik R, Federici S, et al: Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 174:1406–1423, e16. 2018.PubMed/NCBI View Article : Google Scholar | |
Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, et al: Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 28:1368–1379. 2017.PubMed/NCBI View Article : Google Scholar | |
Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP and Koh AY: Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 19:848–855. 2017.PubMed/NCBI View Article : Google Scholar | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018.PubMed/NCBI View Article : Google Scholar | |
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018.PubMed/NCBI View Article : Google Scholar | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018.PubMed/NCBI View Article : Google Scholar | |
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015.PubMed/NCBI View Article : Google Scholar | |
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015.PubMed/NCBI View Article : Google Scholar |