1
|
Amaral LM, Cunningham MW Jr, Cornelius DC
and LaMarca B: Preeclampsia: Long-term consequences for vascular
health. Vasc Health Risk Manag. 11:403–415. 2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Sutton EF, Lob HE, Song J, Xia Y, Butler
S, Liu CC, Redman LM and Sones JL: Adverse metabolic phenotype of
female offspring exposed to preeclampsia in utero: A
characterization of the BPH/5 mouse in postnatal life. Am J Physiol
Regul Integr Comp Physiol. 312:R485–R491. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Weissgerber TL and Mudd LM: Preeclampsia
and diabetes. Curr Diab Rep. 15(9)2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Cheng SB and Sharma S: Preeclampsia and
health risks later in life: An immunological link. Semin
Immunopathol. 38:699–708. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Possomato-Vieira JS and Khalil RA:
Mechanisms of endothelial dysfunction in hypertensive pregnancy and
preeclampsia. Adv Pharmacol. 77:361–431. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Zeisel SH: Epigenetic mechanisms for
nutrition determinants of later health outcomes. Am J Clin Nutr.
89:1488S–1493S. 2009.PubMed/NCBI View Article : Google Scholar
|
7
|
Reynolds CM, Gray C, Li M, Segovia SA and
Vickers MH: Early life nutrition and energy balance disorders in
offspring in later life. Nutrients. 7:8090–8111. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Myatt L, Redman CW, Staff AC, Hansson S,
Wilson ML, Laivuori H, Poston L and Roberts JM; Global Pregnancy
CoLaboratory: Strategy for standardization of preeclampsia research
study design. Hypertension. 63:1293–1301. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Singh HJ: Pre-eclampsia: Is it all in the
placenta? Malays J Med Sci. 16:7–15. 2009.PubMed/NCBI
|
10
|
Levine RJ, Maynard SE, Qian C, Lim KH,
England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein
FH, et al: Circulating angiogenic factors and the risk of
preeclampsia. N Engl J Med. 350:672–683. 2004. View Article : Google Scholar
|
11
|
Herraiz I, Llurba E, Verlohren S and
Galindo A: Spanish Group for the Study of Angiogenic Markers in
Preeclampsia. Update on the diagnosis and prognosis of preeclampsia
with the aid of the sFlt-1/ PlGF ratio in singleton pregnancies.
Fetal Diagn Ther. 43:81–89. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Harmon AC, Cornelius DC, Amaral LM,
Faulkner JL, Cunningham MW Jr, Wallace K and LaMarca B: The role of
inflammation in the pathology of preeclampsia. Clin Sci (Lond).
130:409–419. 2016.PubMed/NCBI View Article : Google Scholar
|
13
|
Bouças AP, de Souza BM, Bauer AC and
Crispim D: Role of innate immunity in preeclampsia: A systematic
review. Reprod Sci. 24:1362–1370. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Hashemi V, Dolati S, Hosseini A, Gharibi
T, Danaii S and Yousefi M: Natural killer T cells in preeclampsia:
An updated review. Biomed Pharmacother. 95:412–418. 2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Mary S, Kulkarni MJ, Malakar D, Joshi SR,
Mehendale SS and Giri AP: Placental proteomics provides insights
into pathophysiology of pre-eclampsia and predicts possible markers
in plasma. J Proteome Res. 16:1050–1060. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Myatt L and Cui X: Oxidative stress in the
placenta. Histochem Cell Biol. 122:369–382. 2004.PubMed/NCBI View Article : Google Scholar
|
17
|
Laresgoiti-Servitje E: A leading role for
the immune system in the pathophysiology of preeclampsia. J Leukoc
Biol. 94:247–257. 2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Robertson SA, Care AS and Moldenhauer LM:
Regulatory T cells in embryo implantation and the immune response
to pregnancy. J Clin Invest. 128:4224–4235. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Fisher SJ: Why is placentation abnormal in
preeclampsia? Am J Obstet Gynecol. 213:(Suppl). S115–S122.
2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Miko E, Szereday L, Barakonyi A, Jarkovich
A, Varga P and Szekeres-Bartho J: Immunoactivation in preeclampsia:
Vdelta2+ and regulatory T cells during the inflammatory stage of
disease. J Reprod Immunol. 80:100–108. 2009.PubMed/NCBI View Article : Google Scholar
|
21
|
Sharkey AM, Xiong S, Kennedy PR, Gardner
L, Farrell LE, Chazara O, Ivarsson MA, Hiby SE, Colucci F and
Moffett A: Tissue-Specific Education of Decidual NK Cells. J
Immunol. 195:3026–3032. 2015.PubMed/NCBI View Article : Google Scholar
|
22
|
Kennedy PR, Chazara O, Gardner L, Ivarsson
MA, Farrell LE, Xiong S, Hiby SE, Colucci F, Sharkey AM and Moffett
A: Activating KIR2DS4 Is Expressed by Uterine NK Cells and
Contributes to Successful Pregnancy. J Immunol. 197:4292–4300.
2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Xiong S, Sharkey AM, Kennedy PR, Gardner
L, Farrell LE, Chazara O, Bauer J, Hiby SE, Colucci F and Moffett
A: Maternal uterine NK cell-activating receptor KIR2DS1 enhances
placentation. J Clin Invest. 123:4264–4272. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Colonna M, Borsellino G, Falco M, Ferrara
GB and Strominger JL: HLA-C is the inhibitory ligand that
determines dominant resistance to lysis by NK1- and NK2-specific
natural killer cells. Proc Natl Acad Sci USA. 90:12000–12004.
1993.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang Y, Wang Y, Wang XH, Zhou WJ, Jin LP
and Li MQ: Crosstalk between human endometrial stromal cells and
decidual NK cells promotes decidualization in vitro by
upregulating IL 25. Mol Med Rep. 17:2869–2878. 2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Faas MM and de Vos P: Uterine NK cells and
macrophages in pregnancy. Placenta. 56:44–52. 2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Moffett A and Colucci F: Uterine NK cells:
Active regulators at the maternal-fetal interface. J Clin Invest.
124:1872–1879. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Lapaire O, Grill S, Lalevee S, Kolla V,
Hösli I and Hahn S: Microarray screening for novel preeclampsia
biomarker candidates. Fetal Diagn Ther. 31:147–153. 2012.PubMed/NCBI View Article : Google Scholar
|
29
|
Nishizawa H, Pryor-Koishi K, Kato T, Kowa
H, Kurahashi H and Udagawa Y: Microarray analysis of differentially
expressed fetal genes in placental tissue derived from early and
late onset severe pre-eclampsia. Placenta. 28:487–497.
2007.PubMed/NCBI View Article : Google Scholar
|
30
|
Leavey K, Bainbridge SA and Cox BJ: Large
scale aggregate microarray analysis reveals three distinct
molecular subclasses of human preeclampsia. PLoS One.
10(e0116508)2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Louwen F, Muschol-Steinmetz C, Reinhard J,
Reitter A and Yuan J: A lesson for cancer research: Placental
microarray gene analysis in preeclampsia. Oncotarget. 3:759–773.
2012.PubMed/NCBI View Article : Google Scholar
|
32
|
Kaartokallio T, Cervera A, Kyllönen A,
Laivuori K, Kere J and Laivuori H: FINNPEC Core Investigator Group.
Gene expression profiling of pre-eclamptic placentae by RNA
sequencing. Sci Rep. 5(14107)2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Tong J, Zhao W, Lv H, Li WP, Chen ZJ and
Zhang C: Transcriptomic Profiling in Human Decidua of Severe
Preeclampsia Detected by RNA Sequencing. J Cell Biochem.
119:607–615. 2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Kukurba KR and Montgomery SB: RNA
Sequencing and analysis. Cold Spring Harb Protoc. 2015:951–969.
2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Kobayashi H: The impact of maternal-fetal
genetic conflict situations on the pathogenesis of preeclampsia.
Biochem Genet. 53:223–234. 2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Kobayashi H: Characterization of the
down-regulated genes identified in preeclampsia placenta. Hypertens
Pregnancy. 35:15–21. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Kleinrouweler CE, van Uitert M, Moerland
PD, Ris-Stalpers C, van der Post JA and Afink GB: Differentially
expressed genes in the pre-eclamptic placenta: A systematic review
and meta-analysis. PLoS One. 8(e68991)2013.PubMed/NCBI View Article : Google Scholar
|
38
|
Vaiman D, Calicchio R and Miralles F:
Landscape of transcriptional deregulations in the preeclamptic
placenta. PLoS One. 8(e65498)2013.PubMed/NCBI View Article : Google Scholar
|
39
|
Masoura S, Kalogiannidis IA, Gitas G,
Goutsioulis A, Koiou E, Athanasiadis A and Vavatsi N: Biomarkers in
pre-eclampsia: A novel approach to early detection of the disease.
J Obstet Gynaecol. 32:609–616. 2012.PubMed/NCBI View Article : Google Scholar
|
40
|
Garrido-Gomez T, Dominguez F, Quiñonero A,
Diaz-Gimeno P, Kapidzic M, Gormley M, Ona K, Padilla-Iserte P,
McMaster M, Genbacev O, et al: Defective decidualization during and
after severe preeclampsia reveals a possible maternal contribution
to the etiology. Proc Natl Acad Sci USA. 114:E8468–E8477.
2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Conrad KP, Rabaglino MB and Post Uiterweer
ED: Emerging role for dysregulated decidualization in the genesis
of preeclampsia. Placenta. 60:119–129. 2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Luo S, Cao N, Tang Y and Gu W:
Identification of key microRNAs and genes in preeclampsia by
bioinformatics analysis. PLoS One. 12(e0178549)2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Tejera E, Cruz-Monteagudo M, Burgos G,
Sánchez ME, Sánchez-Rodríguez A, Pérez-Castillo Y, Borges F,
Cordeiro MNDS, Paz-Y-Miño C and Rebelo I: Consensus strategy in
genes prioritization and combined bioinformatics analysis for
preeclampsia pathogenesis. BMC Med Genomics. 10(50)2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Yeung KR, Chiu CL, Pidsley R, Makris A,
Hennessy A and Lind JM: DNA methylation profiles in preeclampsia
and healthy control placentas. Am J Physiol Heart Circ Physiol.
310:H1295–H1303. 2016.PubMed/NCBI View Article : Google Scholar
|
45
|
Martin E, Ray PD, Smeester L, Grace MR,
Boggess K and Fry RC: Epigenetics and preeclampsia: Defining
functional epimutations in the preeclamptic placenta related to the
TGF-β pathway. PLoS One. 10(e0141294)2015.PubMed/NCBI View Article : Google Scholar
|
46
|
Powers RW, Roberts JM, Plymire DA, Pucci
D, Datwyler SA, Laird DM, Sogin DC, Jeyabalan A, Hubel CA and
Gandley RE: Low placental growth factor across pregnancy identifies
a subset of women with preterm preeclampsia: Type 1 versus type 2
preeclampsia? Hypertension. 60:239–246. 2012.PubMed/NCBI View Article : Google Scholar
|
47
|
Jafri S and Ormiston ML: Immune regulation
of systemic hypertension, pulmonary arterial hypertension, and
preeclampsia: Shared disease mechanisms and translational
opportunities. Am J Physiol Regul Integr Comp Physiol.
313:R693–R705. 2017.PubMed/NCBI View Article : Google Scholar
|
48
|
Rosenblum MD, Way SS and Abbas AK:
Regulatory T cell memory. Nat Rev Immunol. 16:90–101.
2016.PubMed/NCBI View Article : Google Scholar
|
49
|
Moffett A, Chazara O, Colucci F and
Johnson MH: Variation of maternal KIR and fetal HLA-C genes in
reproductive failure: Too early for clinical intervention. Reprod
Biomed Online. 33:763–769. 2016.PubMed/NCBI View Article : Google Scholar
|
50
|
Fu B, Tian Z and Wei H: Subsets of human
natural killer cells and their regulatory effects. Immunology.
141:483–489. 2014.PubMed/NCBI View Article : Google Scholar
|
51
|
Moffett-King A: Natural killer cells
pregnancy. Nat Rev Immunol. 2:656–663. 2002.PubMed/NCBI View
Article : Google Scholar
|
52
|
González A, Rebmann V, LeMaoult J, Horn
PA, Carosella ED and Alegre E: The immunosuppressive molecule HLA-G
and its clinical implications. Crit Rev Clin Lab Sci. 49:63–84.
2012.PubMed/NCBI View Article : Google Scholar
|
53
|
Luo FY, Liu XH, Yang Y, He GL and Chen M:
Expression of NKG2A and NKG2C receptors and their ligand HLA-E in
decidua of preeclampsia patients. Sichuan Da Xue Xue Bao Yi Xue
Ban. 45:582–586. 2014.(In Chinese). PubMed/NCBI
|
54
|
Hiby SE, Apps R, Sharkey AM, Farrell LE,
Gardner L, Mulder A, Claas FH, Walker JJ, Redman CW, Morgan L, et
al: Maternal activating KIRs protect against human reproductive
failure mediated by fetal HLA-C2. J Clin Invest. 120:4102–4110.
2010.PubMed/NCBI View Article : Google Scholar
|
55
|
Kovats S, Main EK, Librach C, Stubblebine
M, Fisher SJ and DeMars R: A class I antigen, HLA-G, expressed in
human trophoblasts. Science. 248:220–223. 1990.PubMed/NCBI View Article : Google Scholar
|
56
|
Chazara O, Xiong S and Moffett A: Maternal
KIR and fetal HLA-C: A fine balance. J Leukoc Biol. 90:703–716.
2011.PubMed/NCBI View Article : Google Scholar
|
57
|
Quach K, Grover SA, Kenigsberg S and
Librach CL: A combination of single nucleotide polymorphisms in the
3'untranslated region of HLA-G is associated with preeclampsia. Hum
Immunol. 75:1163–1170. 2014.PubMed/NCBI View Article : Google Scholar
|
58
|
Rojas JM, Avia M, Martín V and Sevilla N:
IL-10: A multifunctional cytokine in viral infections. J Immunol
Res. 2017(6104054)2017.PubMed/NCBI View Article : Google Scholar
|
59
|
Cheng SB and Sharma S: Interleukin-10: A
pleiotropic regulator in pregnancy. Am J Reprod Immunol.
73:487–500. 2015.PubMed/NCBI View Article : Google Scholar
|
60
|
Hennessy A, Pilmore HL, Simmons LA and
Painter DM: A deficiency of placental IL-10 in preeclampsia. J
Immunol. 163:3491–3495. 1999.PubMed/NCBI
|
61
|
Tang Y, Liu H, Li H, Peng T, Gu W and Li
X: Hypermethylation of the HLA-G promoter is associated with
preeclampsia. Mol Hum Reprod. 21:736–744. 2015.PubMed/NCBI View Article : Google Scholar
|
62
|
Djurisic S and Hviid TV: HLA Class Ib
Molecules and Immune Cells in Pregnancy and Preeclampsia. Front
Immunol. 5(652)2014.PubMed/NCBI View Article : Google Scholar
|
63
|
Heinrichs H and Orr HT: HLA non-A,B,C
class I genes: Their structure and expression. Immunol Res.
9:265–274. 1990.PubMed/NCBI
|
64
|
Graff-Baker AN, Orozco JIJ, Marzese DM,
Salomon MP, Hoon DSB and Goldfarb M: Epigenomic and transcriptomic
characterization of secondary breast cancers. Ann Surg Oncol.
25:3082–3087. 2018.PubMed/NCBI View Article : Google Scholar
|
65
|
Hakam MS, Miranda-Sayago JM, Hayrabedyan
S, Todorova K, Spencer PS, Jabeen A, Barnea ER and Fernandez N:
Preimplantation factor (PIF) promotes HLA-G, -E, -F, -C expression
in JEG-3 choriocarcinoma cells and endogenous progesterone
activity. Cell Physiol Biochem. 43:2277–2296. 2017.PubMed/NCBI View Article : Google Scholar
|
66
|
Uhrberg M, Valiante NM, Shum BP, Shilling
HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL and Parham
P: Human diversity in killer cell inhibitory receptor genes.
Immunity. 7:753–763. 1997.PubMed/NCBI View Article : Google Scholar
|
67
|
Small HY, Akehurst C, Sharafetdinova L,
McBride MW, McClure JD, Robinson SW, Carty DM, Freeman DJ and
Delles C: HLA gene expression is altered in whole blood and
placenta from women who later developed preeclampsia. Physiol
Genomics. 49:193–200. 2017.PubMed/NCBI View Article : Google Scholar
|
68
|
Hara N, Fujii T, Yamashita T, Kozuma S,
Okai T and Taketani Y: Altered expression of human leukocyte
antigen G (HLA-G) on extravillous trophoblasts in preeclampsia:
Immunohistological demonstration with anti-HLA-G specific antibody
‘87G’ and anti-cytokeratin antibody ‘CAM5.2’. Am J Reprod Immunol.
36:349–358. 1996.PubMed/NCBI View Article : Google Scholar
|
69
|
Yie SM, Li LH, Li YM and Librach C: HLA-G
protein concentrations in maternal serum and placental tissue are
decreased in preeclampsia. Am J Obstet Gynecol. 191:525–529.
2004.PubMed/NCBI View Article : Google Scholar
|
70
|
Loisel DA, Billstrand C, Murray K,
Patterson K, Chaiworapongsa T, Romero R and Ober C: The maternal
HLA-G 1597ΔC null mutation is associated with increased risk of
pre-eclampsia and reduced HLA-G expression during pregnancy in
African-American women. Mol Hum Reprod. 19:144–152. 2013.PubMed/NCBI View Article : Google Scholar
|
71
|
López AS, Alegre E, LeMaoult J, Carosella
E and González A: Regulatory role of tryptophan degradation pathway
in HLA-G expression by human monocyte-derived dendritic cells. Mol
Immunol. 43:2151–2160. 2006.PubMed/NCBI View Article : Google Scholar
|
72
|
Lefebvre S, Berrih-Aknin S, Adrian F,
Moreau P, Poea S, Gourand L, Dausset J, Carosella ED and Paul P: A
specific interferon (IFN)-stimulated response element of the distal
HLA-G promoter binds IFN-regulatory factor 1 and mediates
enhancement of this nonclassical class I gene by IFN-beta. J Biol
Chem. 276:6133–6139. 2001.PubMed/NCBI View Article : Google Scholar
|
73
|
Guan Z, Song B, Liu F, Sun D, Wang K and
Qu H: TGF-β induces HLA-G expression through inhibiting miR-152 in
gastric cancer cells. J Biomed Sci. 22(107)2015.PubMed/NCBI View Article : Google Scholar
|
74
|
Jabeen A, Miranda-Sayago JM, Obara B,
Spencer PS, Dealtry GB, Hayrabedyan S, Shaikly V, Laissue PP and
Fernández N: Quantified colocalization reveals heterotypic
histocompatibility class I antigen associations on trophoblast cell
membranes: Relevance for human pregnancy. Biol Reprod.
89(94)2013.PubMed/NCBI View Article : Google Scholar
|
75
|
Tilburgs T, Meissner TB, Ferreira LMR,
Mulder A, Musunuru K, Ye J and Strominger JL: NLRP2 is a suppressor
of NF-κB signaling and HLA-C expression in human trophoblasts. Biol
Reprod. 96:831–842. 2017.PubMed/NCBI View Article : Google Scholar
|
76
|
Sun M, Song MM, Wei B, Gao Q, Li L, Yao B,
Chen L, Lin L, Dai Q, Zhou X, et al:
5-Hydroxymethylcytosine-mediated alteration of transposon activity
associated with the exposure to adverse in utero environments in
human. Hum Mol Genet. 25:2208–2219. 2016.PubMed/NCBI View Article : Google Scholar
|
77
|
Li X, Wu C, Shen Y, Wang K, Tang L, Zhou
M, Yang M, Pan T, Liu X and Xu W: Ten-eleven translocation 2
demethylates the MMP9 promoter, and its down-regulation in
preeclampsia impairs trophoblast migration and invasion. J Biol
Chem. 293:10059–10070. 2018.PubMed/NCBI View Article : Google Scholar
|
78
|
Verloes A, Spits C, Vercammen M, Geens M,
LeMaoult J, Sermon K, Coucke W and Van de Velde H: The role of
methylation, DNA polymorphisms and microRNAs on HLA-G expression in
human embryonic stem cells. Stem Cell Res (Amst). 19:118–127.
2017.PubMed/NCBI View Article : Google Scholar
|
79
|
Castelli EC, Veiga-Castelli LC, Yaghi L,
Moreau P and Donadi EA: Transcriptional and posttranscriptional
regulations of the HLA-G gene. J Immunol Res.
2014(734068)2014.PubMed/NCBI View Article : Google Scholar
|
80
|
van den Elsen PJ, van der Stoep N, Viëtor
HE, Wilson L, van Zutphen M and Gobin SJ: Lack of CIITA expression
is central to the absence of antigen presentation functions of
trophoblast cells and is caused by methylation of the IFN-gamma
inducible promoter (PIV) of CIITA. Hum Immunol. 61:850–862.
2000.PubMed/NCBI View Article : Google Scholar
|
81
|
Ye Q, Shen Y, Wang X, Yang J, Miao F, Shen
C and Zhang J: Hypermethylation of HLA class I gene is associated
with HLA class I down-regulation in human gastric cancer. Tissue
Antigens. 75:30–39. 2010.PubMed/NCBI View Article : Google Scholar
|
82
|
McKelvey KJ, Ariyakumar G and McCracken
SA: Inflammatory and Immune System Markers. Methods Mol Biol.
1710:85–101. 2018.PubMed/NCBI View Article : Google Scholar
|
83
|
Martinez-Jimenez CP and Sandoval J:
Epigenetic crosstalk: A molecular language in human metabolic
disorders. Front Biosci (Schol Ed). 7:46–57. 2015.PubMed/NCBI
|