1
|
Giudice LC: Clinical practice.
Endometriosis. N Engl J Med. 362:2389–2398. 2010.PubMed/NCBI View Article : Google Scholar
|
2
|
Anglesio MS and Yong PJ:
Endometriosis-associated Ovarian Cancers. Clin Obstet Gynecol.
60:711–727. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Guo SW: Cancer driver mutations in
endometriosis: Variations on the major theme of fibrogenesis.
Reprod Med Biol. 17:369–397. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Anglesio MS, Papadopoulos N, Ayhan A,
Nazeran TM, Noë M, Horlings HM, Lum A, Jones S, Senz J, Seckin T,
et al: Cancer-associated mutations in endometriosis without cancer.
N Engl J Med. 376:1835–1848. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Kobayashi H, Yamada Y, Kanayama S,
Furukawa N, Noguchi T, Haruta S, Yoshida S, Sakata M, Sado T and Oi
H: The role of iron in the pathogenesis of endometriosis. Gynecol
Endocrinol. 25:39–52. 2009.PubMed/NCBI View Article : Google Scholar
|
6
|
Kurman RJ and Shih IeM: Molecular
pathogenesis and extraovarian origin of epithelial ovarian cancer -
shifting the paradigm. Hum Pathol. 42:918–931. 2011.PubMed/NCBI View Article : Google Scholar
|
7
|
Xie H, Chen P, Huang HW, Liu LP and Zhao
F: Reactive oxygen species downregulate ARID1A expression via its
promoter methylation during the pathogenesis of endometriosis. Eur
Rev Med Pharmacol Sci. 21:4509–4515. 2017.PubMed/NCBI
|
8
|
Suda K, Nakaoka H, Yoshihara K, Ishiguro
T, Tamura R, Mori Y, Yamawaki K, Adachi S, Takahashi T, Kase H, et
al: Clonal expansion and diversification of cancer-associated
mutations in endometriosis and normal endometrium. Cell Rep.
24:1777–1789. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Iwaisako K, Brenner DA and Kisseleva T:
What's new in liver fibrosis? The origin of myofibroblasts in liver
fibrosis. J Gastroenterol Hepatol. 27 (Suppl 2):65–68.
2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Seki E and Brenner DA: Recent advancement
of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat
Sci. 22:512–518. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Wight TN and Potter-Perigo S: The
extracellular matrix: An active or passive player in fibrosis? Am J
Physiol Gastrointest Liver Physiol. 301:G950–G955. 2011.PubMed/NCBI View Article : Google Scholar
|
12
|
Guo J and Friedman SL: Hepatic
fibrogenesis. Semin Liver Dis. 27:413–426. 2007.PubMed/NCBI View Article : Google Scholar
|
13
|
Ghatak S, Biswas A, Dhali GK, Chowdhury A,
Boyer JL and Santra A: Oxidative stress and hepatic stellate cell
activation are key events in arsenic induced liver fibrosis in
mice. Toxicol Appl Pharmacol. 251:59–69. 2011.PubMed/NCBI View Article : Google Scholar
|
14
|
Song IJ, Yang YM, Inokuchi-Shimizu S, Roh
YS, Yang L and Seki E: The contribution of toll-like receptor
signaling to the development of liver fibrosis and cancer in
hepatocyte-specific TAK1-deleted mice. Int J Cancer. 142:81–91.
2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Abe H, Hayashi A, Kunita A, Sakamoto Y,
Hasegawa K, Shibahara J, Kokudo N and Fukayama M: Altered
expression of AT-rich interactive domain 1A in hepatocellular
carcinoma. Int J Clin Exp Pathol. 8:2763–2770. 2015.PubMed/NCBI
|
16
|
Khemlina G, Ikeda S and Kurzrock R: The
biology of hepatocellular carcinoma: Implications for genomic and
immune therapies. Mol Cancer. 16(149)2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Sun X, Chuang JC, Kanchwala M, Wu L, Celen
C, Li L, Liang H, Zhang S, Maples T, Nguyen LH, et al: Suppression
of the SWI/SNF component Arid1a promotes mammalian regeneration.
Cell Stem Cell. 18:456–466. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Guigon CJ, Zhao L, Willingham MC and Cheng
SY: PTEN deficiency accelerates tumour progression in a mouse model
of thyroid cancer. Oncogene. 28:509–517. 2009.PubMed/NCBI View Article : Google Scholar
|
19
|
Yu F, Chen B, Dong P and Zheng J: HOTAIR
epigenetically modulates PTEN expression via microRNA-29b: A novel
mechanism in regulation of liver fibrosis. Mol Ther. 25:205–217.
2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Son MK, Ryu YL, Jung KH, Lee H, Lee HS,
Yan HH, Park HJ, Ryu JK, Suh JK, Hong S, et al: HS-173, a novel
PI3K inhibitor, attenuates the activation of hepatic stellate cells
in liver fibrosis. Sci Rep. 3(3470)2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Makino Y, Hikita H, Kodama T, Shigekawa M,
Yamada R, Sakamori R, Eguchi H, Morii E, Yokoi H, Mukoyama M, et
al: CTGF mediates tumor-stroma interactions between hepatoma cells
and hepatic stellate cells to accelerate HCC progression. Cancer
Res. 78:4902–4914. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Kodama T, Takehara T, Hikita H, Shimizu S,
Shigekawa M, Tsunematsu H, Li W, Miyagi T, Hosui A, Tatsumi T, et
al: Increases in p53 expression induce CTGF synthesis by mouse and
human hepatocytes and result in liver fibrosis in mice. J Clin
Invest. 121:3343–3356. 2011.PubMed/NCBI View Article : Google Scholar
|
23
|
Guo X, Cen Y, Wang J and Jiang H:
CXCL10-induced IL-9 promotes liver fibrosis via Raf/MEK/ERK
signaling pathway. Biomed Pharmacother. 105:282–289.
2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Portilla D: Apoptosis, fibrosis and
senescence. Nephron Clin Pract. 127:65–69. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Liu M, Ning X, Li R, Yang Z, Yang X, Sun S
and Qian Q: Signalling pathways involved in hypoxia-induced renal
fibrosis. J Cell Mol Med. 21:1248–1259. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Lan R, Geng H, Polichnowski AJ, Singha PK,
Saikumar P, McEwen DG, Griffin KA, Koesters R, Weinberg JM, Bidani
AK, et al: PTEN loss defines a TGF-β-induced tubule phenotype of
failed differentiation and JNK signaling during renal fibrosis. Am
J Physiol Renal Physiol. 302:F1210–F1223. 2012.PubMed/NCBI View Article : Google Scholar
|
27
|
Bielesz B, Sirin Y, Si H, Niranjan T,
Gruenwald A, Ahn S, Kato H, Pullman J, Gessler M, Haase VH, et al:
Epithelial Notch signaling regulates interstitial fibrosis
development in the kidneys of mice and humans. J Clin Invest.
120:4040–4054. 2010.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhou T, Luo M, Cai W, Zhou S, Feng D, Xu C
and Wang H: Runt-related transcription factor 1 (RUNX1) promotes
TGF-β-induced renal tubular epithelial-to-mesenchymal transition
(EMT) and renal fibrosis through the PI3K subunit p110δ.
EBioMedicine. 31:217–225. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Rodríguez-Peña AB, Santos E, Arévalo M and
López-Novoa JM: Activation of small GTPase Ras and renal fibrosis.
J Nephrol. 18:341–349. 2005.PubMed/NCBI
|
30
|
Liu L, Zhang P, Bai M, He L, Zhang L, Liu
T, Yang Z, Duan M, Liu M, Liu B, et al: p53 upregulated by HIF-1α
promotes hypoxia-induced G2/M arrest and renal fibrosis in vitro
and in vivo. J Mol Cell Biol. Jul 18. 2018.(Epub ahead of print).
PubMed/NCBI View Article : Google Scholar
|
31
|
Buchholz B, Klanke B, Schley G, Bollag G,
Tsai J, Kroening S, Yoshihara D, Wallace DP, Kraenzlin B, Gretz N,
et al: The Raf kinase inhibitor PLX5568 slows cyst proliferation in
rat polycystic kidney disease but promotes renal and hepatic
fibrosis. Nephrol Dial Transplant. 26:3458–3465. 2011.PubMed/NCBI View Article : Google Scholar
|
32
|
Adijiang A, Shimizu H, Higuchi Y,
Nishijima F and Niwa T: Indoxyl sulfate reduces klotho expression
and promotes senescence in the kidneys of hypertensive rats. J Ren
Nutr. 21:105–109. 2011.PubMed/NCBI View Article : Google Scholar
|
33
|
Melk A, Schmidt BM, Takeuchi O, Sawitzki
B, Rayner DC and Halloran PF: Expression of p16INK4a and other cell
cycle regulator and senescence associated genes in aging human
kidney. Kidney Int. 65:510–520. 2004.PubMed/NCBI View Article : Google Scholar
|
34
|
Jain M, Rivera S, Monclus EA, Synenki L,
Zirk A, Eisenbart J, Feghali-Bostwick C, Mutlu GM, Budinger GR and
Chandel NS: Mitochondrial reactive oxygen species regulate
transforming growth factor-β signaling. J Biol Chem. 288:770–777.
2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Leask A and Abraham DJ: TGF-beta signaling
and the fibrotic response. FASEB J. 18:816–827. 2004.PubMed/NCBI View Article : Google Scholar
|
36
|
Xie B, Zheng G, Li H, Yao X, Hong R, Li R,
Yue W and Chen Y: Effects of the tumor suppressor PTEN on the
pathogenesis of idiopathic pulmonary fibrosis in Chinese patients.
Mol Med Rep. 13:2715–2723. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Tian Y, Li H, Qiu T, Dai J, Zhang Y, Chen
J and Cai H: Loss of PTEN induces lung fibrosis via alveolar
epithelial cell senescence depending on NF-κB activation. Aging
Cell. 18(e12858)2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Hsu HS, Liu CC, Lin JH, Hsu TW, Hsu JW, Su
K and Hung SC: Involvement of ER stress, PI3K/AKT activation, and
lung fibroblast proliferation in bleomycin-induced pulmonary
fibrosis. Sci Rep. 7(14272)2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Takahashi T, Munakata M, Ohtsuka Y,
Nisihara H, Nasuhara Y, Kamachi-Satoh A, Dosaka-Akita H, Homma Y
and Kawakami Y: Expression and alteration of ras and p53 proteins
in patients with lung carcinoma accompanied by idiopathic pulmonary
fibrosis. Cancer. 95:624–633. 2002.PubMed/NCBI View Article : Google Scholar
|
40
|
Álvarez D, Cárdenes N, Sellarés J, Bueno
M, Corey C, Hanumanthu VS, Peng Y, D'Cunha H, Sembrat J, Nouraie M,
et al: IPF lung fibroblasts have a senescent phenotype. Am J
Physiol Lung Cell Mol Physiol. 313:L1164–L1173. 2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Higgins SP, Tang Y, Higgins CE, Mian B,
Zhang W, Czekay RP, Samarakoon R, Conti DJ and Higgins PJ:
TGF-β1/p53 signaling in renal fibrogenesis. Cell Signal. 43:1–10.
2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Kuwano K, Kunitake R, Kawasaki M, Nomoto
Y, Hagimoto N, Nakanishi Y and Hara N: P21Waf1/Cip1/Sdi1 and p53
expression in association with DNA strand breaks in idiopathic
pulmonary fibrosis. Am J Respir Crit Care Med. 154:477–483.
1996.PubMed/NCBI View Article : Google Scholar
|
43
|
Hwang JA, Kim D, Chun SM, Bae S, Song JS,
Kim MY, Koo HJ, Song JW, Kim WS, Lee JC, et al: Genomic profiles of
lung cancer associated with idiopathic pulmonary fibrosis. J
Pathol. 244:25–35. 2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Hu B, Wu Z, Bai D, Liu T, Ullenbruch MR
and Phan SH: Mesenchymal deficiency of Notch1 attenuates
bleomycin-induced pulmonary fibrosis. Am J Pathol. 185:3066–3075.
2015.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhang Q, Duan J, Olson M, Fazleabas A and
Guo SW: Cellular changes consistent with epithelial-mesenchymal
transition and fibroblast-to-myofibroblast transdifferentiation in
the progression of experimental endometriosis in baboons. Reprod
Sci. 23:1409–1421. 2016.PubMed/NCBI View Article : Google Scholar
|
46
|
Vigano P, Candiani M, Monno A, Giacomini
E, Vercellini P and Somigliana E: Time to redefine endometriosis
including its pro-fibrotic nature. Hum Reprod. 33:347–352.
2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Guo SW, Ding D, Shen M and Liu X: Dating
endometriotic ovarian cysts based on the content of cyst fluid and
its potential clinical implications. Reprod Sci. 22:873–883.
2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Kim HS, Yoon G, Ha SY and Song SY: Nodular
smooth muscle metaplasia in multiple peritoneal endometriosis. Int
J Clin Exp Pathol. 8:3370–3373. 2015.PubMed/NCBI
|
49
|
Yan D, Liu X and Guo SW: Neuropeptides
substance P and calcitonin gene related peptide accelerate the
development and fibrogenesis of endometriosis. Sci Rep.
9(2698)2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Marcellin L, Santulli P, Chouzenoux S,
Cerles O, Nicco C, Dousset B, Pallardy M, Kerdine-Römer S, Just PA,
Chapron C, et al: Alteration of Nrf2 and Glutamate Cysteine Ligase
expression contribute to lesions growth and fibrogenesis in ectopic
endometriosis. Free Radic Biol Med. 110:1–10. 2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Gonzalez-Gonzalez FJ, Chandel NS, Jain M
and Budinger GRS: Reactive oxygen species as signaling molecules in
the development of lung fibrosis. Transl Res. 190:61–68.
2017.PubMed/NCBI View Article : Google Scholar
|
52
|
Zhang Q, Liu X and Guo SW: Progressive
development of endometriosis and its hindrance by anti-platelet
treatment in mice with induced endometriosis. Reprod Biomed Online.
34:124–136. 2017.PubMed/NCBI View Article : Google Scholar
|
53
|
Liu X, Yan D and Guo SW: Sensory
nerve-derived neuropeptides accelerate the development and
fibrogenesis of endometriosis. Hum Reprod. 34:452–468.
2019.PubMed/NCBI View Article : Google Scholar
|
54
|
van Deursen JM: The role of senescent
cells in ageing. Nature. 509:439–446. 2014.PubMed/NCBI View Article : Google Scholar
|
55
|
Kato N, Sasou S and Motoyama T: Expression
of hepatocyte nuclear factor-1beta (HNF-1beta) in clear cell tumors
and endometriosis of the ovary. Mod Pathol. 19:83–89.
2006.PubMed/NCBI View Article : Google Scholar
|
56
|
Ito F, Yoshimoto C, Yamada Y, Sudo T and
Kobayashi H: The HNF-1β-USP28-Claspin pathway upregulates DNA
damage-induced Chk1 activation in ovarian clear cell carcinoma.
Oncotarget. 9:17512–17522. 2018.PubMed/NCBI View Article : Google Scholar
|
57
|
Kadota T, Fujita Y, Yoshioka Y, Araya J,
Kuwano K and Ochiya T: Emerging role of extracellular vesicles as a
senescence-associated secretory phenotype: Insights into the
pathophysiology of lung diseases. Mol Aspects Med. 60:92–103.
2018.PubMed/NCBI View Article : Google Scholar
|
58
|
Regulski MJ: Cellular senescence: What,
why, and how. Wounds. 29:168–174. 2017.PubMed/NCBI
|
59
|
Watanabe S, Kawamoto S, Ohtani N and Hara
E: Impact of senescence-associated secretory phenotype and its
potential as a therapeutic target for senescence-associated
diseases. Cancer Sci. 108:563–569. 2017.PubMed/NCBI View Article : Google Scholar
|
60
|
Iwabuchi T, Yoshimoto C, Shigetomi H and
Kobayashi H: Oxidative stress and antioxidant defense in
endometriosis and its malignant transformation. Oxid Med Cell
Longev. 2015(848595)2015.PubMed/NCBI View Article : Google Scholar
|
61
|
Ito F, Yamada Y, Shigemitsu A, Akinishi M,
Kaniwa H, Miyake R, Yamanaka S and Kobayashi H: Role of oxidative
stress in epigenetic modification in endometriosis. Reprod Sci.
24:1493–1502. 2017.PubMed/NCBI View Article : Google Scholar
|
62
|
Di Emidio G, D'Alfonso A, Leocata P,
Parisse V, Di Fonso A, Artini PG, Patacchiola F, Tatone C and Carta
G: Increased levels of oxidative and carbonyl stress markers in
normal ovarian cortex surrounding endometriotic cysts. Gynecol
Endocrinol. 30:808–812. 2014.PubMed/NCBI View Article : Google Scholar
|
63
|
Baker DJ, Alimirah F, van Deursen JM,
Campisi J and Hildesheim J: Oncogenic senescence: A
multi-functional perspective. Oncotarget. 8:27661–27672.
2017.PubMed/NCBI View Article : Google Scholar
|
64
|
Painter JN, O'Mara TA, Morris AP, Cheng
THT, Gorman M, Martin L, Hodson S, Jones A, Martin NG, Gordon S, et
al: Genetic overlap between endometriosis and endometrial cancer:
Evidence from cross-disease genetic correlation and GWAS
meta-analyses. Cancer Med. 7:1978–1987. 2018.PubMed/NCBI View Article : Google Scholar
|
65
|
Ramalingam P: Morphologic,
immunophenotypic, and molecular features of epithelial ovarian
cancer. Oncology (Williston Park). 30:166–176. 2016.PubMed/NCBI
|
66
|
Lac V, Verhoef L, Aguirre-Hernandez R,
Nazeran TM, Tessier-Cloutier B, Praetorius T, Orr NL, Noga H, Lum
A, Khattra J, et al: Iatrogenic endometriosis harbors somatic
cancer-driver mutations. Hum Reprod. 34:69–78. 2019.PubMed/NCBI View Article : Google Scholar
|
67
|
Siufi Neto J, Kho RM, Siufi DF, Baracat
EC, Anderson KS and Abrão MS: Cellular, histologic, and molecular
changes associated with endometriosis and ovarian cancer. J Minim
Invasive Gynecol. 21:55–63. 2014.PubMed/NCBI View Article : Google Scholar
|
68
|
Petersen DR: Alcohol, iron-associated
oxidative stress, and cancer. Alcohol. 35:243–249. 2005.PubMed/NCBI View Article : Google Scholar
|
69
|
Gilsing AM, Fransen F, de Kok TM, Goldbohm
AR, Schouten LJ, de Bruïne AP, van Engeland M, van den Brandt PA,
de Goeij AF and Weijenberg MP: Dietary heme iron and the risk of
colorectal cancer with specific mutations in KRAS and APC.
Carcinogenesis. 34:2757–2766. 2013.PubMed/NCBI View Article : Google Scholar
|
70
|
Valko M, Izakovic M, Mazur M, Rhodes CJ
and Telser J: Role of oxygen radicals in DNA damage and cancer
incidence. Mol Cell Biochem. 266:37–56. 2004.PubMed/NCBI
|