The promising role of epigenetic mediators and microRNAs in the early diagnosis of cholangiocarcinoma (Review)
- Authors:
- Vikrant Rai
- Chandra S. Boosani
- Devendra K. Agrawal
-
Affiliations: Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA, Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA - Published online on: August 9, 2019 https://doi.org/10.3892/wasj.2019.18
- Pages: 165-176
This article is mentioned in:
Abstract
Vauthey JN and Blumgart LH: Recent advances in the management of cholangiocarcinomas. Semin Liver Dis. 14:109–114. 1994.PubMed/NCBI View Article : Google Scholar | |
Lazaridis KN and Gores GJ: Cholangiocarcinoma. Gastroenterology. 128:1655–1667. 2005.PubMed/NCBI View Article : Google Scholar | |
Khan SA, Davidson BR, Goldin R, Pereira SP, Rosenberg WM, Taylor-Robinson SD, Thillainayagam AV, Thomas HC, Thursz MR and Wasan H: British Society of Gastroenterology: Guidelines for the diagnosis and treatment of cholangiocarcinoma: Consensus document. Gut ٦. (Suppl 51):VI1–9. 2002.PubMed/NCBI View Article : Google Scholar | |
Sandhu DS, Shire AM and Roberts LR: Epigenetic DNA hypermethylation in cholangiocarcinoma: Potential roles in pathogenesis, diagnosis and identification of treatment targets. Liver Int. 28:12–27. 2008.PubMed/NCBI View Article : Google Scholar | |
Shaib Y and El-Serag HB: The epidemiology of cholangiocarcinoma. Semin Liver Dis. 24:115–125. 2004.PubMed/NCBI View Article : Google Scholar | |
Limpaiboon T: Epigenetic aberrations in cholangiocarcinoma: Potential biomarkers and promising target for novel therapeutic strategies. Asian Pac J Cancer Prev. 13 (Suppl):S41–S45. 2012.PubMed/NCBI | |
Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P and Thomas HC: Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol. 37:806–813. 2002.PubMed/NCBI View Article : Google Scholar | |
Patel T: Worldwide trends in mortality from biliary tract malignancies. BMC Cancer. 2(10)2002.PubMed/NCBI View Article : Google Scholar | |
Shaib YH, Davila JA, McGlynn K and El-Serag HB: Rising incidence of intrahepatic cholangiocarcinoma in the United States: A true increase? J Hepatol. 40:472–477. 2004.PubMed/NCBI View Article : Google Scholar | |
Rosai J: Ackerman's Surgical Pathology. Vol 2. 8th edition. Mosby. pp982–989. 1996. | |
Rea DJ, Heimbach JK, Rosen CB, Haddock MG, Alberts SR, Kremers WK, Gores GJ and Nagorney DM: Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. Ann Surg. 242:451–458; discussion 458-461. 2005.PubMed/NCBI View Article : Google Scholar | |
Patel AH, Harnois DM, Klee GG, LaRusso NF and Gores GJ: The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol. 95:204–207. 2000.PubMed/NCBI View Article : Google Scholar | |
Maroni L, Pierantonelli I, Banales JM, Benedetti A and Marzioni M: The significance of genetics for cholangiocarcinoma development. Ann Transl Med. 1(28)2013.PubMed/NCBI View Article : Google Scholar | |
Sheffield BS, Tessier-Cloutier B, Li-Chang H, Shen Y, Pleasance E, Kasaian K, Li Y, Jones SJ, Lim HJ, Renouf DJ, et al: Personalized oncogenomics in the management of gastrointestinal carcinomas-early experiences from a pilot study. Curr Oncol. 23:e571–e575. 2016.PubMed/NCBI View Article : Google Scholar | |
Ashkenazi R, Gentry SN and Jackson TL: Pathways to tumorigenesis-modeling mutation acquisition in stem cells and their progeny. Neoplasia. 10:1170–1182. 2008.PubMed/NCBI View Article : Google Scholar | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000.PubMed/NCBI View Article : Google Scholar | |
Berretta M, Cavaliere C, Alessandrini L, Stanzione B, Facchini G, Balestreri L, Perin T and Canzonieri V: Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: Clinical and prognostic implications. Oncotarget. 8:14192–14220. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Liu Z, Yang S and Li X: Identification of microRNAs as biomarkers for cholangiocarcinoma detection: A diagnostic meta-analysis. Clin Res Hepatol Gastroenterol. 41:156–162. 2017.PubMed/NCBI View Article : Google Scholar | |
Rashid A: Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am. 11:995–1009. 2002.PubMed/NCBI | |
Lee S, Kim WH, Jung HY, Yang MH and Kang GH: Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. Am J Pathol. 161:1015–1022. 2002.PubMed/NCBI View Article : Google Scholar | |
Herman JG and Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 349:2042–2054. 2003.PubMed/NCBI View Article : Google Scholar | |
Goeppert B, Konermann C, Schmidt CR, Bogatyrova O, Geiselhart L, Ernst C, Gu L, Becker N, Zucknick M, Mehrabi A, et al: Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway. Hepatology. 59:544–554. 2014.PubMed/NCBI View Article : Google Scholar | |
Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD and Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 130:2113–2129. 2006.PubMed/NCBI View Article : Google Scholar | |
Kang YK, Kim WH, Lee HW, Lee HK and Kim YI: Mutation of p53 and K-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest. 79:477–483. 1999.PubMed/NCBI | |
Sturm PD, Baas IO, Clement MJ, Nakeeb A, Johan G, Offerhaus A, Hruban RH and Pitt HA: Alterations of the p53 tumor-suppressor gene and K-ras oncogene in perihilar cholangiocarcinomas from a high-incidence area. Int J Cancer. 78:695–698. 1998.PubMed/NCBI View Article : Google Scholar | |
Kiba T, Tsuda H, Pairojkul C, Inoue S, Sugimura T and Hirohashi S: Mutations of the p53 tumor suppressor gene and the ras gene family in intrahepatic cholangiocellular carcinomas in Japan and Thailand. Mol Carcinog. 8:312–318. 1993.PubMed/NCBI View Article : Google Scholar | |
Wattanasirichaigoon S, Tasanakhajorn U and Jesadapatarakul S: The incidence of K-ras codon 12 mutations in cholangiocarcinoma detected by polymerase chain reaction technique. J Med Assoc Thai. 81:316–323. 1998.PubMed/NCBI | |
Ahrendt SA, Eisenberger CF, Yip L, Rashid A, Chow JT, Pitt HA and Sidransky D: Chromosome 9p21 loss and p16 inactivation in primary sclerosing cholangitis-associated cholangiocarcinoma. J Surg Res. 84:88–93. 1999.PubMed/NCBI View Article : Google Scholar | |
Tannapfel A, Benicke M, Katalinic A, Uhlmann D, Köckerling F, Hauss J and Wittekind C: Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut. 47:721–727. 2000.PubMed/NCBI View Article : Google Scholar | |
Sugimachi K, Taguchi K, Aishima S, Tanaka S, Shimada M, Kajiyama K, Sugimachi K and Tsuneyoshi M: Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol. 14:900–905. 2001.PubMed/NCBI View Article : Google Scholar | |
Serrano M, Hannon GJ and Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 366:704–707. 1993.PubMed/NCBI View Article : Google Scholar | |
Yang B, House MG, Guo M, Herman JG and Clark DP: Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. Mod Pathol. 18:412–420. 2005.PubMed/NCBI View Article : Google Scholar | |
Ueki T, Hsing AW, Gao YT, Wang BS, Shen MC, Cheng J, Deng J, Fraumeni JF Jr and Rashid A: Alterations of p16 and prognosis in biliary tract cancers from a population-based study in China. Clin Cancer Res. 10:1717–1725. 2004.PubMed/NCBI View Article : Google Scholar | |
Tozawa T, Tamura G, Honda T, Nawata S, Kimura W, Makino N, Kawata S, Sugai T, Suto T and Motoyama T: Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci. 95:736–740. 2004.PubMed/NCBI View Article : Google Scholar | |
Tannapfel A, Sommerer F, Benicke M, Weinans L, Katalinic A, Geissler F, Uhlmann D, Hauss J and Wittekind C: Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J Pathol. 197:624–631. 2002.PubMed/NCBI View Article : Google Scholar | |
Sasaki M, Yamaguchi J, Itatsu K, Ikeda H and Nakanuma Y: Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J Pathol. 215:175–183. 2008.PubMed/NCBI View Article : Google Scholar | |
Chinnasri P, Pairojkul C, Jearanaikoon P, Sripa B, Bhudhisawasdi V, Tantimavanich S and Limpaiboon T: Preferentially different mechanisms of inactivation of 9p21 gene cluster in liver fluke-related cholangiocarcinoma. Hum Pathol. 40:817–826. 2009.PubMed/NCBI View Article : Google Scholar | |
Hong SM, Choi J, Ryu K, Ro JY and Yu E: Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch Pathol Lab Med. 130:33–38. 2006.PubMed/NCBI View Article : Google Scholar | |
Wong N, Li L, Tsang K, Lai PB, To KF and Johnson PJ: Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma. J Hepatol. 37:633–639. 2002.PubMed/NCBI View Article : Google Scholar | |
Abraham SC, Lee JH, Boitnott JK, Argani P, Furth EE and Wu TT: Microsatellite instability in intraductal papillary neoplasms of the biliary tract. Mod Pathol. 15:1309–1317. 2002.PubMed/NCBI View Article : Google Scholar | |
Limpaiboon T, Khaenam P, Chinnasri P, Soonklang M, Jearanaikoon P, Sripa B, Pairojkul C and Bhudhisawasdi V: Promoter hypermethylation is a major event of hMLH1 gene inactivation in liver fluke related cholangiocarcinoma. Cancer Lett. 217:213–219. 2005.PubMed/NCBI View Article : Google Scholar | |
Foja S, Goldberg M, Schagdarsurengin U, Dammann R, Tannapfel A and Ballhausen WG: Promoter methylation and loss of coding exons of the fragile histidine triad (FHIT) gene in intrahepatic cholangiocarcinomas. Liver Int. 25:1202–1208. 2005.PubMed/NCBI View Article : Google Scholar | |
Liu XF, Zhu SG, Zhang H, Xu Z, Su HL, Li SJ and Zhou XT: The methylation status of the TMS1/ASC gene in cholangiocarcinoma and its clinical significance. Hepatobiliary Pancreat Dis Int. 5:449–453. 2006.PubMed/NCBI | |
Koga Y, Kitajima Y, Miyoshi A, Sato K, Kitahara K, Soejima H and Miyazaki K: Tumor progression through epigenetic gene silencing of O(6)-methylguanine-DNA methyltransferase in human biliary tract cancers. Ann Surg Oncol. 12:354–363. 2005.PubMed/NCBI View Article : Google Scholar | |
Tischoff I, Markwarth A, Witzigmann H, Uhlmann D, Hauss J, Mirmohammadsadegh A, Wittekind C, Hengge UR and Tannapfel A: Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors. Int J Cancer. 115:684–689. 2005.PubMed/NCBI View Article : Google Scholar | |
Sriraksa R, Zeller C, El-Bahrawy MA, Dai W, Daduang J, Jearanaikoon P, Chau-In S, Brown R and Limpaiboon T: CpG-island methylation study of liver fluke-related cholangiocarcinoma. Br J Cancer. 104:1313–1318. 2011.PubMed/NCBI View Article : Google Scholar | |
Khaenam P, Jearanaikoon P, Pairojkul C, Bhudhisawasdi V and Limpaiboon T: Genetic and epigenetic alterations of RIZ1 and the correlation to clinicopathological parameters in liver fluke-related cholangiocarcinoma. Exp Ther Med. 1:385–390. 2010.PubMed/NCBI View Article : Google Scholar | |
Khaenam P, Niibori A, Okada S, Jearanaikoon P, Araki N and Limpaiboon T: Contribution of RIZ1 to regulation of proliferation and migration of a liver fluke-related cholangiocarcinoma cell. Asian Pac J Cancer Prev. 13:4007–4011. 2012.PubMed/NCBI View Article : Google Scholar | |
Nakanuma Y, Uchida T, Sato Y and Uesaka K: An S100P-positive biliary epithelial field is a preinvasive intraepithelial neoplasm in nodular-sclerosing cholangiocarcinoma. Hum Pathol. 60:46–57. 2017.PubMed/NCBI View Article : Google Scholar | |
Khorasanizadeh S: The nucleosome: From genomic organization to genomic regulation. Cell. 116:259–272. 2004.PubMed/NCBI View Article : Google Scholar | |
Berger SL: Histone modifications in transcriptional regulation. Curr Opin Genet Dev. 12:142–148. 2002.PubMed/NCBI View Article : Google Scholar | |
Grant PA: A tale of histone modifications. Genome Biol. 2(Reviews0003)2001.PubMed/NCBI View Article : Google Scholar | |
Taby R and Issa JP: Cancer epigenetics. CA Cancer J Clin. 60:376–392. 2010.PubMed/NCBI View Article : Google Scholar | |
Shukla V, Vaissiere T and Herceg Z: Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res. 637:1–15. 2008.PubMed/NCBI View Article : Google Scholar | |
Esteller M: Epigenetics in cancer. N Engl J Med. 358:1148–1159. 2008.PubMed/NCBI View Article : Google Scholar | |
Cheung P and Lau P: Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol. 19:563–573. 2005.PubMed/NCBI View Article : Google Scholar | |
Morine Y, Shimada M, Iwahashi S, Utsunomiya T, Imura S, Ikemoto T, Mori H, Hanaoka J and Miyake H: Role of histone deacetylase expression in intrahepatic cholangiocarcinoma. Surgery. 151:412–419. 2012.PubMed/NCBI View Article : Google Scholar | |
Baradari V, Höpfner M, Huether A, Schuppan D and Scherübl H: Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J Gastroenterol. 13:4458–4466. 2007.PubMed/NCBI View Article : Google Scholar | |
Xu LN, Wang X and Zou SQ: Effect of histone deacetylase inhibitor on proliferation of biliary tract cancer cell lines. World J Gastroenterol. 14:2578–2581. 2008.PubMed/NCBI View Article : Google Scholar | |
Bluethner T, Niederhagen M, Caca K, Serr F, Witzigmann H, Moebius C, Mossner J and Wiedmann M: Inhibition of histone deacetylase for the treatment of biliary tract cancer: A new effective pharmacological approach. World J Gastroenterol. 13:4761–4770. 2007.PubMed/NCBI View Article : Google Scholar | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004.PubMed/NCBI View Article : Google Scholar | |
Brennecke J, Stark A, Russell RB and Cohen SM: Principles of microRNA-target recognition. PLoS Biol. 3(e85)2005.PubMed/NCBI View Article : Google Scholar | |
Chuang JC and Jones PA: Epigenetics and microRNAs. Pediatr Res. 61:24R–29R. 2007.PubMed/NCBI View Article : Google Scholar | |
Ehrlich L, Hall C, Venter J, Dostal D, Bernuzzi F, Invernizzi P, Meng F, Trzeciakowski JP, Zhou T, Standeford H, et al: miR-24 inhibition increases menin expression and decreases cholangiocarcinoma proliferation. Am J Pathol. 187:570–580. 2017.PubMed/NCBI View Article : Google Scholar | |
Stutes M, Tran S and DeMorrow S: Genetic and epigenetic changes associated with cholangiocarcinoma: From DNA methylation to microRNAs. World J Gastroenterol. 13:6465–6469. 2007.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Han C and Wu T: MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology. 143:246–256, e8. 2012.PubMed/NCBI View Article : Google Scholar | |
Goeppert B, Ernst C, Baer C, Roessler S, Renner M, Mehrabi A, Hafezi M, Pathil A, Warth A, Stenzinger A, et al: Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma. Epigenetics. 11:780–790. 2016.PubMed/NCBI View Article : Google Scholar | |
Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G and Voros D: Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 52:297–303. 2013.PubMed/NCBI View Article : Google Scholar | |
Braconi C, Huang N and Patel T: MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 51:881–890. 2010.PubMed/NCBI View Article : Google Scholar | |
Zeng B, Li Z, Chen R, Guo N, Zhou J, Zhou Q, Lin Q, Cheng D, Liao Q, Zheng L and Gong Y: Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3. FEBS Lett. 586:3271–3278. 2012.PubMed/NCBI View Article : Google Scholar | |
Li B, Han Q, Zhu Y, Yu Y, Wang J and Jiang X: Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J. 279:2393–2398. 2012.PubMed/NCBI View Article : Google Scholar | |
Scott GK, Mattie MD, Berger CE, Benz SC and Benz CC: Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 66:1277–1281. 2006.PubMed/NCBI View Article : Google Scholar | |
Valeri N, Vannini I, Fanini F, Calore F, Adair B and Fabbri M: Epigenetics, miRNAs, and human cancer: A new chapter in human gene regulation. Mamm Genome. 20:573–580. 2009.PubMed/NCBI View Article : Google Scholar | |
Han L, Witmer PD, Casey E, Valle D and Sukumar S: DNA methylation regulates MicroRNA expression. Cancer Biol Ther. 6:1284–1288. 2007.PubMed/NCBI View Article : Google Scholar | |
Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang WT, Ye H, Wei PP, Han BW, He B, Chen ZH and Chen YQ: LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 9(117)2016.PubMed/NCBI View Article : Google Scholar | |
Yang W, Li Y, Song X, Xu J and Xie J: Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing. Oncotarget. 8:26591–26599. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang J, Xie H, Ling Q, Lu D, Lv Z, Zhuang R, Liu Z, Wei X, Zhou L, Xu X and Zheng S: Coding-noncoding gene expression in intrahepatic cholangiocarcinoma. Transl Res. 168:107–121. 2016.PubMed/NCBI View Article : Google Scholar | |
Jiang XM, Li ZL, Li JL, Zheng WY, Li XH, Cui YF and Sun DJ: LncRNA CCAT1 as the unfavorable prognostic biomarker for cholangiocarcinoma. Eur Rev Med Pharmacol Sci. 21:1242–1247. 2017.PubMed/NCBI | |
Shi X, Zhang H, Wang M, Xu X, Zhao Y, He R, Zhang M, Zhou M, Li X, Peng F, et al: LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells. Oncotarget. 8:58394–58404. 2017.PubMed/NCBI View Article : Google Scholar | |
Wan M, Zhang FM, Li ZL, Kang PC, Jiang PM, Wang YM, Wang ZD, Zhong XY, Li CL, Wang H, et al: Identifying survival-associated ceRNA clusters in cholangiocarcinoma. Oncol Rep. 36:1542–1550. 2016.PubMed/NCBI View Article : Google Scholar | |
Tan X, Huang Z and Li X: Long non-coding RNA MALAT1 interacted with miR-204 to modulates human hilar cholangiocarcinoma proliferation, migration and invasion by targeting CXCR4. J Cell Biochem. 118:3643–3653. 2017.PubMed/NCBI View Article : Google Scholar | |
Ma SL, Li AJ, Hu ZY, Shang FS and Wu MC: Coexpression of the carbamoylphosphate synthase 1 gene and its long noncoding RNA correlates with poor prognosis of patients with intrahepatic cholangiocarcinoma. Mol Med Rep. 12:7915–7926. 2015.PubMed/NCBI View Article : Google Scholar | |
Parasramka M, Yan IK, Wang X, Nguyen P, Matsuda A, Maji S, Foye C, Asmann Y and Patel T: BAP1 dependent expression of long non-coding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma. Mol Cancer. 16(22)2017.PubMed/NCBI View Article : Google Scholar | |
Davaadorj M, Saito Y, Morine Y, Ikemoto T, Imura S, Takasu C, Yamada S, Hiroki T, Yoshikawa M and Shimada M: Loss of secreted frizzled-related protein-1 expression is associated with poor prognosis in intrahepatic cholangiocarcinoma. Eur J Surg Oncol. 43:344–350. 2017.PubMed/NCBI View Article : Google Scholar | |
Davaadorj M, Imura S, Saito YU, Morine Y, Ikemoto T, Yamada S, Takasu C, Hiroki T, Yoshikawa M and Shimada M: Loss of SFRP1 expression is associated with poor prognosis in hepatocellular carcinoma. Anticancer Res. 36:659–664. 2016.PubMed/NCBI | |
Khoontawad J, Pairojkul C, Rucksaken R, Pinlaor P, Wongkham C, Yongvanit P, Pugkhem A, Jones A, Plieskatt J, Potriquet J, et al: Differential protein expression marks the transition from infection with Opisthorchis viverrini to cholangiocarcinoma. Mol Cell Proteomics. 16:911–923. 2017.PubMed/NCBI View Article : Google Scholar | |
Sempoux C, Jibara G, Ward SC, Fan C, Qin L, Roayaie S, Fiel MI, Schwartz M and Thung SN: Intrahepatic cholangiocarcinoma: New insights in pathology. Semin Liver Dis. 31:49–60. 2011.PubMed/NCBI View Article : Google Scholar | |
Lok T, Chen L, Lin F and Wang HL: Immunohistochemical distinction between intrahepatic cholangiocarcinoma and pancreatic ductal adenocarcinoma. Hum Pathol. 45:394–400. 2014.PubMed/NCBI View Article : Google Scholar | |
Kanzawa M, Sanuki T, Onodera M, Fujikura K, Itoh T and Zen Y: Double immunostaining for maspin and p53 on cell blocks increases the diagnostic value of biliary brushing cytology. Pathol Int. 67:91–98. 2017.PubMed/NCBI View Article : Google Scholar | |
Zen Y, Britton D, Mitra V, Pike I, Sarker D, Itoh T, Heaton N and Quaglia A: Tubulin β-III: A novel immunohistochemical marker for intrahepatic peripheral cholangiocarcinoma. Histopathology. 65:784–792. 2014.PubMed/NCBI View Article : Google Scholar | |
Mustafa MZ, Nguyen VH, Le Naour F, De Martin E, Beleoken E, Guettier C, Johanet C, Samuel D, Duclos-Vallee JC and Ballot E: Autoantibody signatures defined by serological proteome analysis in sera from patients with cholangiocarcinoma. J Transl Med. 14(17)2016.PubMed/NCBI View Article : Google Scholar | |
Rucksaken R, Pairojkul C, Pinlaor P, Khuntikeo N, Roytrakul S, Selmi C and Pinlaor S: Plasma autoantibodies against heat shock protein 70, enolase 1 and ribonuclease/angiogenin inhibitor 1 as potential biomarkers for cholangiocarcinoma. PLoS One. 9(e103259)2014.PubMed/NCBI View Article : Google Scholar | |
Le Faouder J, Laouirem S, Alexandrov T, Ben-Harzallah S, Léger T, Albuquerque M, Bedossa P and Paradis V: Tumoral heterogeneity of hepatic cholangiocarcinomas revealed by MALDI imaging mass spectrometry. Proteomics. 14:965–972. 2014.PubMed/NCBI View Article : Google Scholar | |
Maeda S, Morikawa T, Takadate T, Suzuki T, Minowa T, Hanagata N, Onogawa T, Motoi F, Nishimura T and Unno M: Mass spectrometry-based proteomic analysis of formalin-fixed paraffin-embedded extrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 22:683–691. 2015.PubMed/NCBI View Article : Google Scholar | |
Stephenson B, Shimwell N, Humphreys E, Ward D, Adams D, Martin A and Afford S: Quantitative assessment of the cell surface proteome to identify novel therapeutic targets in cholangiocarcinoma. Lancet. ١ (Suppl 385)(S94)2015.PubMed/NCBI View Article : Google Scholar | |
Janvilisri T, Leelawat K, Roytrakul S, Paemanee A and Tohtong R: Novel serum biomarkers to differentiate cholangiocarcinoma from benign biliary tract diseases using a proteomic approach. Dis Markers. 2015(105358)2015.PubMed/NCBI View Article : Google Scholar | |
Adisakwattana P, Suwandittakul N, Petmitr S, Wongkham S, Sangvanich P and Reamtong O: ALCAM is a novel cytoplasmic membrane protein in TNF-α stimulated invasive cholangiocarcinoma cells. Asian Pac J Cancer Prev. 16:3849–3856. 2015.PubMed/NCBI View Article : Google Scholar | |
Wasuworawong K, Roytrakul S, Paemanee A, Jindapornprasert K and Komyod W: Comparative proteomic analysis of human cholangiocarcinoma cell lines: S100A2 as a potential candidate protein inducer of invasion. Dis Markers. 2015(629367)2015.PubMed/NCBI View Article : Google Scholar | |
Haonon O, Rucksaken R, Pinlaor P, Pairojkul C, Chamgramol Y, Intuyod K, Onsurathum S, Khuntikeo N and Pinlaor S: Upregulation of 14-3-3 eta in chronic liver fluke infection is a potential diagnostic marker of cholangiocarcinoma. Proteomics Clin Appl. 10:248–256. 2016.PubMed/NCBI View Article : Google Scholar | |
Seol MA, Chu IS, Lee MJ, Yu GR, Cui XD, Cho BH, Ahn EK, Leem SH, Kim IH and Kim DG: Genome-wide expression patterns associated with oncogenesis and sarcomatous transdifferentation of cholangiocarcinoma. BMC Cancer. 11(78)2011.PubMed/NCBI View Article : Google Scholar | |
Yang XW, Li L, Hou GJ, Yan XZ, Xu QG, Chen L, Zhang BH and Shen F: STAT3 overexpression promotes metastasis in intrahepatic cholangiocarcinoma and correlates negatively with surgical outcome. Oncotarget. 8:7710–7721. 2017.PubMed/NCBI View Article : Google Scholar | |
Braconi C, Swenson E, Kogure T, Huang N and Patel T: Targeting the IL-6 dependent phenotype can identify novel therapies for cholangiocarcinoma. PLoS One. 5(e15195)2010.PubMed/NCBI View Article : Google Scholar | |
Yoo CB and Jones PA: Epigenetic therapy of cancer: Past, present and future. Nat Rev Drug Discov. 5:37–50. 2006.PubMed/NCBI View Article : Google Scholar | |
Beisler JA: Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem. 21:204–208. 1978.PubMed/NCBI View Article : Google Scholar | |
Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, Hu YG, Marquez VE and Jones PA: Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol. 24:1270–1278. 2004.PubMed/NCBI View Article : Google Scholar | |
Marquez VE, Barchi JJ Jr, Kelley JA, Rao KV, Agbaria R, Ben-Kasus T, Cheng JC, Yoo CB and Jones PA: Zebularine: A unique molecule for an epigenetically based strategy in cancer chemotherapy. The magic of its chemistry and biology. Nucleosides Nucleotides Nucleic Acids. 24:305–318. 2005.PubMed/NCBI | |
Nakamura K, Nakabayashi K, Htet Aung K, Aizawa K, Hori N, Yamauchi J, Hata K and Tanoue A: DNA methyltransferase inhibitor zebularine induces human cholangiocarcinoma cell death through alteration of DNA methylation status. PLoS One. 10(e0120545)2015.PubMed/NCBI View Article : Google Scholar | |
Kelly WK and Marks PA: Drug insight: Histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol. 2:150–157. 2005.PubMed/NCBI View Article : Google Scholar | |
Sharma S, Kelly TK and Jones PA: Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010.PubMed/NCBI View Article : Google Scholar | |
Sriraksa R and Limpaiboon T: Histone deacetylases and their inhibitors as potential therapeutic drugs for cholangiocarcinoma-cell line findings. Asian Pac J Cancer Prev. 14:2503–2508. 2013.PubMed/NCBI View Article : Google Scholar | |
Nakagawa S, Sakamoto Y, Okabe H, Hayashi H, Hashimoto D, Yokoyama N, Tokunaga R, Sakamoto K, Kuroki H, Mima K, et al: Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells. Oncol Rep. 31:983–988. 2014.PubMed/NCBI View Article : Google Scholar | |
Gores GJ: Early detection and treatment of cholangiocarcinoma. Liver Transpl. 6 (6 Suppl 2):S30–S34. 2000.PubMed/NCBI View Article : Google Scholar | |
Nakaoka T, Saito Y and Saito H: Aberrant DNA methylation as a biomarker and a therapeutic target of cholangiocarcinoma. Int J Mol Sci. 18(E1111)2017.PubMed/NCBI View Article : Google Scholar | |
Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, Nellore V, Kongpetch S, Ng AWT, Ng LM, et al: Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7:1116–1135. 2017.PubMed/NCBI View Article : Google Scholar | |
Ettel M, Eze O and Xu R: Clinical and biological significance of precursor lesions of intrahepatic cholangiocarcinoma. World J Hepatol. 7:2563–2570. 2015.PubMed/NCBI View Article : Google Scholar | |
Fujimoto A, Furuta M, Shiraishi Y, Gotoh K, Kawakami Y, Arihiro K, Nakamura T, Ueno M, Ariizumi S, Nguyen HH, et al: Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun. 6(6120)2015.PubMed/NCBI View Article : Google Scholar | |
Komuta M, Govaere O, Vandecaveye V, Akiba J, Van Steenbergen W, Verslype C, Laleman W, Pirenne J, Aerts R, Yano H, et al: Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology. 55:1876–1888. 2012.PubMed/NCBI View Article : Google Scholar | |
Rizvi S and Gores GJ: Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 145:1215–1229. 2013.PubMed/NCBI View Article : Google Scholar |