Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review)
- Authors:
- Hossein Jahedi
- Aminath Luveysa Fahud
- Chooi Ling Lim
-
Affiliations: School of Health Sciences, Department of Applied Biomedical Science and Biotechnology, International Medical University, 126, Jalan Jalil Perkasa 19, Kuala Lumpur 57000, Malaysia - Published online on: September 10, 2019 https://doi.org/10.3892/wasj.2019.23
- Pages: 236-246
-
Copyright: © Jahedi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar | |
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 74:2913–2921. 2014.PubMed/NCBI View Article : Google Scholar | |
Siegel R, Miller K and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015.PubMed/NCBI View Article : Google Scholar | |
What is pancreatic cancer? The American Cancer Society Atlanta GA 2016. https://www.cancer.org/cancer/pancreatic-cancer/about/what-is-pancreatic-cancer.html. Accessed February 11, 2019. | |
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH and Neoptolemos JP: Pancreatic cancer. Nat Rev Dis Primers. 2(16022)2016.PubMed/NCBI View Article : Google Scholar | |
Survival Rates for Pancreatic Cancer. The American Cancer Society, Atlanta, GA, 2016. https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html. Accessed March 14, 2016. | |
Can pancreatic cancer be found early? The American Cancer Society Atlanta GA , 2016. https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/detection.html. Accessed February 11, 2019. | |
Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, Andrews NC, Caput D and McKeon F: P63, a P53 homolog at 3Q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 2:305–316. 1998.PubMed/NCBI View Article : Google Scholar | |
Hanel W, Marchenko N, Xu S, Yu SX, Weng W and Moll U: Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ. 20:898–909. 2013.PubMed/NCBI View Article : Google Scholar | |
Ferraiuolo M, Di Agostino S, Blandino G and Strano S: Oncogenic intra-p53 family member interactions in human cancers. Front Oncol. 6(77)2016.PubMed/NCBI View Article : Google Scholar | |
Jost C, Marin M and Kaelin W Jr: p73 is a human p53-related protein that can induce apoptosis. Nature. 389:191–194. 1997.PubMed/NCBI View Article : Google Scholar | |
Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, et al: Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 90:809–819. 1997.PubMed/NCBI View Article : Google Scholar | |
Vanbokhoven H, Melino G, Candi E and Declercq W: P63, a story of mice and men. J Invest Dermatol. 131:1196–1207. 2011.PubMed/NCBI View Article : Google Scholar | |
Monti P, Russo D, Bocciardi R, Foggetti G, Menichini P, Divizia MT, Lerone M, Graziano C, Wischmeijer A, Viadiu H, et al: EEC- and ADULT-associated TP63 mutations exhibit functional heterogeneity toward P63 responsive sequences. Hum Mutat. 34:894–904. 2013.PubMed/NCBI View Article : Google Scholar | |
Lane DP: Cancer. p53, guardian of the genome. Nature. 358:15–16. 1992.PubMed/NCBI View Article : Google Scholar | |
Allocati N, Di Ilio C and De Laurenzi V: p63/p73 in the control of cell cycle and cell death. Exp Cell Res. 318:1285–1290. 2012.PubMed/NCBI View Article : Google Scholar | |
Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F and Jacks T: p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 416:560–564. 2002.PubMed/NCBI View Article : Google Scholar | |
Danilov AV, Neupane D, Nagaraja AS, Feofanova EV, Humphries LA, DiRenzo J and Korc M: DeltaNp63alpha-mediated induction of epidermal growth factor receptor promotes pancreatic cancer cell growth and chemoresistance. PLoS One. 6(e26815)2011.PubMed/NCBI View Article : Google Scholar | |
Thakur AK, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, Bartholin L, Chan P, Calvo E, Iovanna JL, et al: TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 23:1358–1370. 2016.PubMed/NCBI View Article : Google Scholar | |
Nakamura M, Sugimoto H, Ogata T, Hiraoka K, Yoda H, Sang M, Sang M, Zhu Y, Yu M, Shimozato O and Ozaki T: Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death. Oncogenesis. 5:e233. 2016.PubMed/NCBI View Article : Google Scholar | |
Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY and Melino G: The p53/p63/p73 family of transcription factors: Overlapping and distinct functions. J Cell Sci. 113:1661–1670. 2000.PubMed/NCBI | |
Murray-Zmijewski F, Lane DP and Bourdon JC: p53/p63/p73 isoforms: An orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13:962–972. 2006.PubMed/NCBI View Article : Google Scholar | |
Enthart A, Klein C, Dehner A, Coles M, Gemmecker G, Kessler H and Hagn F: Solution structure and binding specificity of the p63 DNA binding domain. Sci Rep. 6(26707)2016.PubMed/NCBI View Article : Google Scholar | |
Chen TH, Wu YJ, Hou JN, Chiu CH and Chen WJ: The p53 gene with emphasis on its paralogues in mosquitoes. J Microbiol Immunol Infect. 50:747–754. 2017.PubMed/NCBI View Article : Google Scholar | |
Heering J, Jonker HR, Löhr F, Schwalbe H and Dötsch V: Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain. Protein Sci. 25:410–422. 2016.PubMed/NCBI View Article : Google Scholar | |
Dos Santos HG, Nunez-Castilla J and Siltberg-Liberles J: Functional diversification after gene duplication: Paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS One. 11(e0151961)2016.PubMed/NCBI View Article : Google Scholar | |
Yoon MK, Ha JH, Lee MS and Chi SW: Structure and apoptotic function of p73. BMB Rep. 48:81–90. 2015.PubMed/NCBI View Article : Google Scholar | |
Shin JS, Ha JH, Lee DH, Ryu KS, Bae KH, Park BC, Park SG, Yi GS and Chi SW: Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition. Cell Cycle. 14:533–543. 2015.PubMed/NCBI View Article : Google Scholar | |
Walker CW, Van Beneden RJ, Muttray AF, Böttger SA, Kelley ML, Tucker AE and Thomas WK: P53 superfamily proteins in marine bivalve cancer and stress biology. Adv Mar Biol. 59:1–36. 2011.PubMed/NCBI View Article : Google Scholar | |
Neira JL and Cámara-Artigas A: Trifluoroethanol-induced conformational transition of the C-terminal sterile alpha motif (SAM) of human p73. Arch Biochem Biophys. 619:1–9. 2017.PubMed/NCBI View Article : Google Scholar | |
Brandt T, Kaar JL, Fersht AR and Veprintsev DB: Stability of p53 homologs. PLoS One. 7(e47889)2012.PubMed/NCBI View Article : Google Scholar | |
Swiatkowska A, Żydowicz P, Sroka J and Ciesiołka J: The role of the 5' terminal region of p53 mRNA in the p53 gene expression. Acta Biochim Pol. 63:645–651. 2016.PubMed/NCBI View Article : Google Scholar | |
Vousden KH and Prives C: Blinded by the light: The growing complexity of p53. Cell. 137:413–431. 2009.PubMed/NCBI View Article : Google Scholar | |
Luh LM, Kehrloesser S, Deutsch GB, Gebel J, Coutandin D, Schäfer B, Agostini M, Melino G and Dötsch V: Analysis of the oligomeric state and transactivation potential of TAp73α. Cell Death Differ. 20:1008–1016. 2013. View Article : Google Scholar | |
Billant O, Léon A, Le Guellec S, Friocourt G, Blondel M and Voisset C: The dominant-negative interplay between p53, p63 and p73: A family affair. Oncotarget. 7:69549–69564. 2016.PubMed/NCBI View Article : Google Scholar | |
Muller PA and Vousden KH: P53 mutations in cancer. Nat Cell Biol. 15:2–8. 2013.PubMed/NCBI View Article : Google Scholar | |
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 503:333–339. 2013.PubMed/NCBI View Article : Google Scholar | |
Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res. 97:1–23. 2007.PubMed/NCBI View Article : Google Scholar | |
Leroy B, Fournier JL, Ishioka C, Monti P, Inga A, Fronza G and Soussi T: The TP53 website: An integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res. 41 (Database issue):D962–D969. 2013.PubMed/NCBI View Article : Google Scholar | |
Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007.PubMed/NCBI View Article : Google Scholar | |
Zerdoumi Y, Aury-Landas J, Bonaïti-Pellié C, Derambure C, Sesboüé R, Renaux-Petel M, Frebourg T, Bougeard G and Flaman JM: Drastic effect of germline TP53 missense mutations in Li-Fraumeni patients. Hum Mutat. 34:453–461. 2013.PubMed/NCBI View Article : Google Scholar | |
Olivier M, Hollstein M and Hainaut P: TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2(a001008)2010.PubMed/NCBI View Article : Google Scholar | |
Lehmann BD, Ding Y, Viox DJ, Jiang M, Zheng Y, Liao W, Chen X, Xiang W and Yi Y: Evaluation of public cancer datasets and signatures identifies TP53 mutant signatures with robust prognostic and predictive value. BMC Cancer. 15(179)2015.PubMed/NCBI View Article : Google Scholar | |
Inga A, Cresta S, Monti P, Aprile A, Scott G, Abbondandolo A, Iggo R and Fronza G: Simple identification of dominant p53 mutants by a yeast functional assay. Carcinogenesis. 18:2019–2021. 1997. View Article : Google Scholar | |
Monti P, Campomenosi P, Ciribilli Y, Iannone R, Inga A, Abbondandolo A, Resnick MA and Fronza G: Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene. 21:1641–1648. 2002.PubMed/NCBI View Article : Google Scholar | |
Monti P, Perfumo C, Bisio A, Ciribilli Y, Menichini P, Russo D, Umbach DM, Resnick MA, Inga A and Fronza G: Dominant-negative features of mutant p53 in germline carriers have limited impact on cancer outcomes. Mol Cancer Res. 9:271–279. 2011.PubMed/NCBI View Article : Google Scholar | |
Di Como CJ, Gaiddon C and Prives C: p73 function is inhibited by tumor- derived p53 mutants in mammalian cells. Mol Cell Biol. 19:1438–1449. 1999.PubMed/NCBI View Article : Google Scholar | |
Gaiddon C, Lokshin M, Ahn J, Zhang T and Prives C: A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 21:1874–1887. 2001.PubMed/NCBI View Article : Google Scholar | |
Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A, Del Sal G, Levrero M, Sacchi A, Oren M and Blandino G: Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem. 277:18817–18826. 2002.PubMed/NCBI View Article : Google Scholar | |
Monti P, Campomenosi P, Ciribilli Y, Iannone R, Aprile A, Inga A, Tada M, Menichini P, Abbondandolo A and Fronza G: Characterization of the p53 mutants ability to inhibit p73 beta transactivation using a yeast-based functional assay. Oncogene. 22:5252–5260. 2003.PubMed/NCBI View Article : Google Scholar | |
Melino G: P63 is a suppressor of tumorigenesis and metastasis interacting with mutant P53. Cell Death Differ. 18:1487–1499. 2011.PubMed/NCBI View Article : Google Scholar | |
Oren M and Rotter V: Mutant p53 gain-of-function in cancer. Cold Spring Harbor perspectives in biology. 2(a001107)2010.PubMed/NCBI View Article : Google Scholar | |
Li DH, Xie KP, Wolff R and Abbruzzese JL: Pancreatic cancer. Lancet. 363:1049–1057. 2004.PubMed/NCBI View Article : Google Scholar | |
Brody JR, Costantino CL, Potoczek M, Cozzitorto J, McCue P, Yeo CJ, Hruban RH and Witkiewicz AK: Adenosquamous carcinoma of the pancreas harbors KRAS2, DPC4 and TP53 molecular alterations similar to pancreatic ductal adenocarcinoma. Mod Pathol. 22:651–659. 2009.PubMed/NCBI View Article : Google Scholar | |
Simtniece Z, Vanags A, Strumfa I, Sperga M, Vasko E, Prieditis P, Trapencieris P and Gardovskis J: Morphological and immunohistochemical profile of pancreatic neuroendocrine neoplasms. Pol J Pathol. 66:176–194. 2015.PubMed/NCBI View Article : Google Scholar | |
Weissmueller S, Manchado E, Saborowski M, Morris JP IV, Wagenblast E, Davis CA, Moon SH, Pfister NT, Tschaharganeh DF, Kitzing T, et al: Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell. 157:382–394. 2014.PubMed/NCBI View Article : Google Scholar | |
Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B, Jamieson NB, Oien KA, Lowy AM, Brunton VG, et al: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA. 107:246–251. 2010.PubMed/NCBI View Article : Google Scholar | |
Wolf D, Harris N and Rotter V: Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell. 38:119–126. 1984.PubMed/NCBI View Article : Google Scholar | |
Muller PA, Vousden KH and Norman JC: p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 192:209–218. 2011.PubMed/NCBI View Article : Google Scholar | |
Freed-Pastor WA and Prives C: Mutant p53: One name, many proteins. Genes Dev. 26:1268–1286. 2012.PubMed/NCBI View Article : Google Scholar | |
Brosh R and Rotter V: When mutants gain new powers: News from the mutant p53 field. Nat Rev Cancer. 9:701–713. 2009.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ, et al: Tumour-associated mutant p53 drives the Warburg effect. Nat Commun. 4(2935)2013.PubMed/NCBI View Article : Google Scholar | |
Yan W, Liu G, Scoumanne A and Chen X: Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations. Cancer Res. 68:6789–6796. 2008.PubMed/NCBI View Article : Google Scholar | |
Do PM, Varanasi L, Fan S, Li C, Kubacka I, Newman V, Chauhan K, Daniels SR, Boccetta M, Garrett MR, et al: Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev. 26:830–845. 2012.PubMed/NCBI View Article : Google Scholar | |
Yan W and Chen X: Identification of GRO1 as a critical determinant for mutant p53 gain of function. J Biol Chem. 284:12178–12187. 2009.PubMed/NCBI View Article : Google Scholar | |
Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, et al: P53 status determines the role of autophagy in pancreatic tumour development. Nature. 504:296–300. 2013.PubMed/NCBI View Article : Google Scholar | |
Li Y and Prives C: Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene. 26:2220–2225. 2007.PubMed/NCBI View Article : Google Scholar | |
Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G and Piaggio G: Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell. 10:191–202. 2006.PubMed/NCBI View Article : Google Scholar | |
Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S and Donadelli M: Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta. 1853:89–100. 2015.PubMed/NCBI View Article : Google Scholar | |
Song H, Hollstein M and Xu Y: p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol. 9:573–580. 2007.PubMed/NCBI View Article : Google Scholar | |
Restle A, Färber M, Baumann C, Böhringer M, Scheidtmann KH, Müller-Tidow C and Wiesmüller L: Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res. 36:5362–5375. 2008.PubMed/NCBI View Article : Google Scholar | |
Liu DP, Song H and Xu Y: A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene. 29:949–956. 2010.PubMed/NCBI View Article : Google Scholar | |
Müller BF, Paulsen D and Deppert W: Specific binding of MAR/SAR DNA-elements by mutant p53. Oncogene. 12:1941–1952. 1996.PubMed/NCBI | |
Will K, Warnecke G, Wiesmüller L and Deppert W: Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc Natl Acad Sci USA. 95:13681–13686. 1998. View Article : Google Scholar | |
Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB, Lim SP, Kumar R, Suetani RJ, Goodall GJ and Callen DF: Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene. 32:2992–3000. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang W, Cheng B, Miao L, Mei Y and Wu M: Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis. 4(e574)2013.PubMed/NCBI View Article : Google Scholar | |
Gonfloni S, Caputo V and Iannizzotto V: P63 in health and cancer. Int J Dev Biol. 59:87–93. 2015.PubMed/NCBI View Article : Google Scholar | |
Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F and Jacks T: Tumor predisposition in mice mutant for p63 and p73: Evidence for broader tumor suppressor functions for the p53 family. Cancer Cell. 7:363–373. 2005.PubMed/NCBI View Article : Google Scholar | |
Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM, Roop DR, Bradley A and Mills AA: P63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci USA. 103:8435–8440. 2006.PubMed/NCBI View Article : Google Scholar | |
Su X, Gi YJ, Chakravarti D, Chan IL, Zhang A, Xia X, Tsai KY and Flores ER: TAp63 is a master transcriptional regulator of lipid and glucose metabolism. Cell Metab. 16:511–525. 2012.PubMed/NCBI View Article : Google Scholar | |
Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ, Feng Z, Agostini M, Zolla L, Agrò AF, et al: P63 regulates glutaminase 2 expression. Cell Cycle. 12:1395–1405. 2013.PubMed/NCBI View Article : Google Scholar | |
Liu G and Chen X: The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene. 21:7195–7204. 2002.PubMed/NCBI View Article : Google Scholar | |
Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z, Elvin JA, Bronson RT, Crum CP and McKeon F: P63 protects the female germ line during meiotic arrest. Nature. 444:624–628. 2006.PubMed/NCBI View Article : Google Scholar | |
Su X, Napoli M, Abbas HA, Venkatanarayan A, Bui NHB, Coarfa C, Gi YJ, Kittrell F, Gunaratne PH, Medina D, et al: TAp63 suppresses mammary tumorigenesis through regulation of the Hippo pathway. Oncogene. 36:2377–2393. 2017.PubMed/NCBI View Article : Google Scholar | |
Urist MJ, Di Como CJ, Lu M-L, Charytonowicz E, Verbel D, Crum CP, Ince TA, McKeon FD and Cordon-Cardo C: Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol. 161:1199–1206. 2002.PubMed/NCBI View Article : Google Scholar | |
Barbieri CE, Tang LJ, Brown KA and Pietenpol JA: Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 66:7589–7597. 2006.PubMed/NCBI View Article : Google Scholar | |
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, et al: A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 137:87–98. 2009.PubMed/NCBI View Article : Google Scholar | |
Tan EH, Morton JP, Timpson P, Tucci P, Melino G, Flores ER, Sansom OJ, Vousden KH and Muller PA: Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene. 33:3325–3333. 2014.PubMed/NCBI View Article : Google Scholar | |
Lin YL, Sengupta S, Gurdziel K, Bell GW, Jacks T and Flores ER: p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet. 5(e1000680)2009.PubMed/NCBI View Article : Google Scholar | |
Marine JC and Berx G: Transforming growth factor-beta and mutant p53 conspire to induce metastasis by antagonizing p63: A (ternary) complex affair. Breast Cancer Res. 11(304)2009.PubMed/NCBI View Article : Google Scholar | |
Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-ejeh F, Evdokiou A, Lane DP and Callen DF: Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget. 2:1203–1217. 2011.PubMed/NCBI View Article : Google Scholar | |
Viticchiè G, Agostini M, Lena AM, Mancini M, Zhou H, Zolla L, Dinsdale D, Saintigny G, Melino G and Candi E: p63 supports aerobic respiration through hexokinase II. Proc Natl Acad Sci USA. 112:11577–11582. 2015.PubMed/NCBI View Article : Google Scholar | |
Yan W and Chen X: GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J Biol Chem. 281:7856–7862. 2006.PubMed/NCBI View Article : Google Scholar | |
Senoo M, Pinto F, Crum CP and McKeon F: p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 129:523–536. 2007.PubMed/NCBI View Article : Google Scholar | |
Pignon JC, Grisanzio C, Geng Y, Song J, Shivdasani RA and Signoretti S: P63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc Natl Acad Sci USA. 110:8105–8110. 2013.PubMed/NCBI View Article : Google Scholar | |
Rocco JW, Leong CO, Kuperwasser N, DeYoung MP and Ellisen LW: P63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell. 9:45–56. 2006.PubMed/NCBI View Article : Google Scholar | |
Di Como CJ, Urist MJ, Babayan I, Drobnjak M, Hedvat CV, Teruya-Feldstein J, Pohar K, Hoos A and Cordon-Cardo C: P63 expression profiles in human normal and tumor tissues. Clin Cancer Res. 8:494–501. 2002.PubMed/NCBI | |
Deyoung MP and Ellisen LW: P63 and P73 in human cancer: Defining the network. Oncogene. 26:5169–5183. 2007.PubMed/NCBI View Article : Google Scholar | |
Leong CO, Vidnovic N, DeYoung MP, Sgroi D and Ellisen LW: The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 117:1370–1380. 2007.PubMed/NCBI View Article : Google Scholar | |
Fukushima H, Koga F, Kawakami S, Fujii Y, Yoshida S, Ratovitski E, Trink B and Kihara K: Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Res. 69:9263–9270. 2009.PubMed/NCBI View Article : Google Scholar | |
Yang X, Lu H, Yan B, Romano RA, Bian Y, Friedman J, Duggal P, Allen C, Chuang R, Ehsanian R, et al: ΔNp63 versatilely regulates a broad NF-κB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res. 71:3688–3700. 2011.PubMed/NCBI View Article : Google Scholar | |
Basturk O, Khanani F, Sarkar F, Levi E, Cheng JD and Adsay NV: DeltaNp63 expression in pancreas and pancreatic neoplasia. Mod Pathol. 18:1193–1198. 2005.PubMed/NCBI View Article : Google Scholar | |
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89:755–764. 1997.PubMed/NCBI View Article : Google Scholar | |
Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, et al: Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 89:765–771. 1997.PubMed/NCBI View Article : Google Scholar | |
Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian JB, et al: Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 63:2631–2637. 2003.PubMed/NCBI | |
Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA, van Wijnen AJ, Stein JL, Languino LR, Altieri DC, et al: Runx2 association with progression of prostate cancer in patients: Mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene. 29:811–821. 2010.PubMed/NCBI View Article : Google Scholar | |
Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS and Lian JB: The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 25:8581–8591. 2005.PubMed/NCBI View Article : Google Scholar | |
Kuo Y, Zaidi SK, Gornostaeva S, Komori T, Stein GS and Castilla LH: Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood. 113:3323–3333. 2019.PubMed/NCBI View Article : Google Scholar | |
Kayed H, Jiang X, Keleg S, Jesnowski R, Giese T, Berger M, Esposito I, Löhr M, Friess H and Kleeff J: Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer. 97:1106–1115. 2007.PubMed/NCBI View Article : Google Scholar | |
Boregowda R, Olabisi O, Abushahba W, Jeong B, Haenssen K, Chen W, Chekmareva M, Lasfar A, Foran DJ, Goydos JS and Cohen-Solal KA: RUNX2 is overexpressed in melanoma cells and mediates their migration and invasion. Cancer Lett. 348:61–70. 2014.PubMed/NCBI View Article : Google Scholar | |
Zelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S and Olsen BR: Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev. 106:97–106. 2001.PubMed/NCBI View Article : Google Scholar | |
Ozaki T, Wu D, Sugimoto H, Nagase H and Nakagawara A: Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis. 4(e610)2013.PubMed/NCBI View Article : Google Scholar | |
Sugimoto H, Nakamura M, Yoda H, Hiraoka K, Shinohara K, Sang M, Fujiwara K, Shimozato O, Nagase H and Ozaki T: Silencing of RUNX2 enhances gemcitabine sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the stimulation of TAp63-mediated cell death. Cell Death Dis. 6(e1914)2015.PubMed/NCBI View Article : Google Scholar | |
Ozaki T, Sugimoto H, Nakamura M, Hiraoka K, Yoda H, Sang M, Fujiwara K and Nagase H: Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity. FEBS J. 282:114–128. 2015.PubMed/NCBI View Article : Google Scholar | |
Stojanovic N, Hassan Z, Wirth M, Wenzel P, Beyer M, Schäfer C, Brand P, Kroemer A, Stauber RH, Schmid RM, et al: HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene. 36:1804–1815. 2017.PubMed/NCBI View Article : Google Scholar | |
Grant S, Easley C and Kirkpatrick P: Vorinostat. Nat Rev Drug Discov. 6:21–22. 2007.PubMed/NCBI View Article : Google Scholar | |
Gryder B, Sodji Q and Oyelere A: Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Futur Med Chem. 4:505–524. 2012.PubMed/NCBI View Article : Google Scholar | |
Ogata T, Nakamura M, Sang M, Yoda H, Hiraoka K, Yin D, Sang M, Shimozato O and Ozaki T: Depletion of runt-related transcription factor 2 (RUNX2) enhances SAHA sensitivity of p53-mutated pancreatic cancer cells through the regulation of mutant p53 and TAp63. PLoS One. 12(e0179884)2017.PubMed/NCBI View Article : Google Scholar | |
Ozaki T, Nakamura M, Ogata T, Sang M, Yoda H, Hiraoka K, Sang M and Shimozato O: Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63. Oncotarget. 7:71937–71950. 2016.PubMed/NCBI View Article : Google Scholar | |
Nakaya N, Ishigaki Y, Nakajima H, Murakami M, Shimasaki T, Takata T, Ozaki M, Dusetti NJ, Iovanna JL and Motoo Y: Meaning of tumor protein 53-induced nuclear protein 1 in the molecular mechanism of gemcitabine sensitivity. Mol Clin Oncol. 1:100–104. 2013.PubMed/NCBI View Article : Google Scholar | |
Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, Flores ER, Tsai KY, Jacks T, Vousden KH and Kaelin WG Jr: Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature. 407:645–648. 2000.PubMed/NCBI View Article : Google Scholar | |
Stiewe T and Putzer BM: Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet. 26:464–469. 2000.PubMed/NCBI View Article : Google Scholar | |
Xia X, Zhang K, Luo G, Cen G, Cao J, Huang K and Qiu Z: Downregulation of miR-301a-3p sensitizes pancreatic cancer cells to gemcitabine treatment via PTEN. Am J Transl Res. 9:1886–1895. 2017.PubMed/NCBI | |
Luo G, Xia X, Wang X, Zhang K, Cao J, Jiang T, Zhao Q and Qiu Z: miR-301a plays a pivotal role in hypoxia-induced gemcitabine resistance in pancreatic cancer. Exp Cell Res. 369:120–128. 2018.PubMed/NCBI View Article : Google Scholar | |
Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ and Schmittgen TD: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 120:1046–1054. 2007.PubMed/NCBI View Article : Google Scholar | |
Xia X, Zhang K, Cen G, Jiang T, Cao J, Huang K, Huang C, Zhao Q and Qiu Z: MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget. 6:21046–21063. 2015.PubMed/NCBI View Article : Google Scholar | |
Rohwer N and Cramer T: Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 14:191–201. 2011.PubMed/NCBI View Article : Google Scholar | |
Nakazawa MS, Keith B and Simon MC: Oxygen availability and metabolic adaptations. Nat Rev Cancer. 16:663–673. 2016.PubMed/NCBI View Article : Google Scholar | |
Rankin EB and Giaccia AJ: Hypoxic control of metastasis. Science. 352:175–180. 2016.PubMed/NCBI View Article : Google Scholar | |
Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, King RJ, Abrego J, Goode GD, Dasgupta A, et al: MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 32:71–87.e7. 2017.PubMed/NCBI View Article : Google Scholar | |
Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC and Colgan SP: Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62:3387–3394. 2002.PubMed/NCBI | |
He X, Wang J, Wei W, Shi M, Xin B, Zhang T and Shen X: Hypoxia regulates ABCG 2 activity through the activivation of ERK1/2/HIF-1α and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol Ther. 17:188–198. 2016.PubMed/NCBI View Article : Google Scholar | |
Choi W, Shah JB, Tran M, Svatek R, Marquis L, Lee I, Yu D, Adam L, Wen S, Shen Y, et al: p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS One. 7(e30206)2012.PubMed/NCBI View Article : Google Scholar | |
Dang TT, Westcott JM, Maine EA, Kanchwala M, Xing C and Pearson GW: ΔNp63α induces the expression of FAT2 and slug to promote tumor invasion. Oncotarget. 7:28592–28611. 2016.PubMed/NCBI View Article : Google Scholar | |
Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M, Knight RA, Green DR, Thompson C and Vousden KH: p75 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem. 279:8076–8083. 2004.PubMed/NCBI View Article : Google Scholar | |
John K, Alla V, Meier C and Pützer BM: GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ. 18:874–886. 2011.PubMed/NCBI View Article : Google Scholar | |
Deng Y and Wu X: Peg3/Pw1 promotes p53-mediated apoptosis by inducing Bax translocation from cytosol to mitochondria. Proc Natl Acad Sci USA. 97:12050–12055. 2000.PubMed/NCBI View Article : Google Scholar | |
Stantic M, Sakil HAM, Zirath H, Fang T, Sanz G, Fernandez-Woodbridge A, Marin A, Susanto E, Mak TW, Arsenian Henriksson M and Wilhelm MT: TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1α activity. Proc Natl Acad Sci USA. 112:220–225. 2015.PubMed/NCBI View Article : Google Scholar | |
Amelio I, Inoue S, Markert EK, Levine AJ, Knight RA, Mak TW and Melino G: TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation. Proc Natl Acad Sci USA. 112:226–231. 2015.PubMed/NCBI View Article : Google Scholar | |
Dulloo I, Hooi PB and Sabapathy K: Hypoxia-induced DNp73 stabilization regulates Vegf-A expression and tumor angiogenesis similar to TAp73. Cell Cycle. 14:3533–3539. 2015.PubMed/NCBI View Article : Google Scholar | |
Dulloo I, Phang BH, Othman R, Tan SY, Vijayaraghavan A, Goh LK, Martin-Lopez M, Marques MM, Li CW, Wang de Y, et al: Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol. 17:511–523. 2015.PubMed/NCBI View Article : Google Scholar | |
Fernandez-Alonso R, Martin-Lopez M, Gonzalez-Cano L, Garcia S, Castrillo F, Diez-Prieto I, Fernandez-Corona A, Lorenzo-Marcos ME, Li X, Claesson-Welsh L, et al: p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death Differ. 22:1287–1299. 2015.PubMed/NCBI View Article : Google Scholar | |
Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, Khan F, Itie-Youten A, Wakeham A, Tsao MS, et al: TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22:2677–2691. 2008.PubMed/NCBI View Article : Google Scholar | |
Tomasini R, Tsuchihara K, Tsuda C, Lau SK, Wilhelm M, Ruffini A, Tsao MS, Iovanna JL, Jurisicova A, Melino G and Mak TW: TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc Natl Acad Sci USA. 106:797–802. 2009.PubMed/NCBI View Article : Google Scholar | |
Vikhreva P, Petrova V, Gokbulut T, Pestlikis I, Mancini M, Di Daniele N, Knight RA and Melino G: TAp73 upregulates IL-1β in cancer cells: Potential biomarker in lung and breast cancer? Biochem Biophys Res Commun. 482:498–505. 2017.PubMed/NCBI View Article : Google Scholar | |
Galtsidis S, Logotheti S, Pavlopoulou A, Zampetidis CP, Papachristopoulou G, Scorilas A, Vojtesek B, Gorgoulis V and Zoumpourlis V: Unravelling a p73-regulated network: The role of a novel p73-dependent target, MIR3158, in cancer cell migration and invasiveness. Cancer Lett. 388:96–106. 2017.PubMed/NCBI View Article : Google Scholar | |
Ory B, Ramsey MR, Wilson C, Vadysirisack DD, Forster N, Rocco JW, Rothenberg SM and Ellisen LW: A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma. J Clin Invest. 121:809–820. 2011.PubMed/NCBI View Article : Google Scholar | |
Bardeesy N, Cheng K, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D and DePinho RA: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20:3130–3146. 2006.PubMed/NCBI View Article : Google Scholar | |
de la Fuente M, Jones MC, Santander-Ortega MJ, Mirenska A, Marimuthu P, Uchegbu I and Schätzlein A: A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer. Nanomedicine. 11:369–377. 2015.PubMed/NCBI View Article : Google Scholar | |
Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R and Gandhi V: Gemcitabine: Metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 22 (4 Suppl 11):S3–S10. 1995.PubMed/NCBI | |
Huang P, Chubb S, Hertel L, Grindey G and Plunkett W: Action of 2',2'-difluorodeoxycytidine on DNA synthesis. Cancer Res. 51:6110–6117. 1991.PubMed/NCBI | |
Achanta G, Pelicano H, Feng L, Plunkett W and Huang P: Interaction of p53 and DNA-PK in response to nucleoside analogues: Potential role as a sensor complex for DNA damage. Cancer Res. 61:8723–8729. 2001.PubMed/NCBI | |
Galmarini CM, Clarke ML, Falette N, Puisieux A, Mackey JR and Dumontet C: Expression of a non-functional p53 affects the sensitivity of cancer cells to gemcitabine. Int J Cancer. 97:439–445. 2002.PubMed/NCBI View Article : Google Scholar | |
Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, Kaelin WG Jr, Oren M, Chen J and Lu H: MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol. 19:3257–3266. 1999.PubMed/NCBI View Article : Google Scholar | |
Su J, Zhou X, Yin X, Wang L, Zhao Z, Hou Y, Zheng N, Xia J and Wang Z: The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer. Biochem Pharmacol. 140:28–40. 2017.PubMed/NCBI View Article : Google Scholar | |
Yang SH, Lee JC, Guo JC, Kuo SH, Tien YW, Kuo TC, Cheng AL and Yeh KH: Association of MDM2 expression with shorter progression-free survival and overall survival in patients with advanced pancreatic cancer treated with gemcitabine-based chemotherapy. PLoS One. 12(e0180628)2017.PubMed/NCBI View Article : Google Scholar | |
Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH and Mohammad RM: MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur J Cancer. 46:1122–1131. 2010.PubMed/NCBI View Article : Google Scholar | |
Azmi AS, Ali S, Banerjee S, Bao B, Maitah M, Padhye S, Philip PA, Mohammad RM and Sarkar FH: Network modeling of CDF treated pancreatic cancer cells reveals a novel c-myc-p73 dependent apoptotic mechanism. Am J Transl Res. 3:374–382. 2011.PubMed/NCBI | |
Hamilton G, Abraham A, Morton J, Sampson O, Pefani D, Khoronenkova S, Grawenda A, Papaspyropoulos A, Jamieson N, McKay C, et al: AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget. 5:6142–6167. 2014.PubMed/NCBI View Article : Google Scholar | |
Bid HK, Roberts RD, Cam M, Audino A, Kurmasheva RT, Lin J, Houghton PJ and Cam H: ΔNp63 promotes pediatric neuroblastoma and osteosarcoma by regulating tumor angiogenesis. Cancer Res. 74:320–329. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Zeng SX, Hao Q and Lu H: Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner. Dev Biol. 423:34–45. 2017.PubMed/NCBI View Article : Google Scholar | |
Vassilev LT, Vu BT, Craves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–848. 2004.PubMed/NCBI View Article : Google Scholar | |
Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR, et al: Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem. 48:909–912. 2005.PubMed/NCBI View Article : Google Scholar | |
Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LGGC, Masucci M, Pramanik A and Selivanova G: Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 10:1321–1328. 2004.PubMed/NCBI View Article : Google Scholar | |
Yu X, Vazquez A, Levine AJ and Carpizo DR: Allele-specific p53 mutant reactivation. Cancer Cell. 21:614–625. 2012.PubMed/NCBI View Article : Google Scholar | |
Lambert JMR, Moshfegh A, Hainaut P, Wiman KG and Bykov VJ: Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 29:1329–1338. 2010.PubMed/NCBI View Article : Google Scholar | |
Tang X, Zhu Y, Han L, Kim AL, Kopelovich L, Bickers DR and Athar M: CP-31398 restores mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. J Clin Invest. 117:3753–3764. 2007.PubMed/NCBI View Article : Google Scholar | |
Bykov VJN, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG and Selivanova G: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 8:282–288. 2002.PubMed/NCBI View Article : Google Scholar | |
Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F and Moll UM: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 9:577–588. 2011.PubMed/NCBI View Article : Google Scholar | |
Li D, Marchenko ND and Moll UM: SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 18:1904–1913. 2011.PubMed/NCBI View Article : Google Scholar | |
Liu J, Zhang C and Feng Z: Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin (Shanghai). 46:170–179. 2014.PubMed/NCBI View Article : Google Scholar | |
Stindt MH, Muller PAJ, Ludwig RL, Kehrloesser S, Dötsch V and Vousden KH: Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene. 34:4300–4310. 2015.PubMed/NCBI View Article : Google Scholar | |
Ludes-Meyers JH, Subler MA, Shivakumar CV, Munoz RM, Jiang P, Bigger JE, Brown DR, Deb SP and Deb S: Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol. 16:6009–6019. 1996.PubMed/NCBI View Article : Google Scholar | |
Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M and Rotter V: Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res. 64:8318–8327. 2004.PubMed/NCBI View Article : Google Scholar | |
Scian MJ, Stagliano KER, Anderson MAE, Hassan S, Bowman M, Miles MF, Deb SP and Deb S: Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol. 25:10097–10110. 2005.PubMed/NCBI View Article : Google Scholar | |
Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A and Blandino G: Mutant p53: An oncogenic transcription factor. Oncogene. 26:2212–2219. 2007.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Selth LA and Callen DF: MiR-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4. Oncotarget. 8:29914–29924. 2017.PubMed/NCBI View Article : Google Scholar |