1
|
Emerson JJ and Li WH: The genetic basis of
evolutionary change in gene expression levels. Philos Trans R Soc
Lond B Biol Sci. 365:2581–2590. 2010.PubMed/NCBI View Article : Google Scholar
|
2
|
Breidbach O and Ghiselin MT: Evolution and
development: past, present, and future. Theory Biosci. 125:157–171.
2007.PubMed/NCBI View Article : Google Scholar
|
3
|
Reilly SK and Noonan JP: Evolution of Gene
Regulation in Humans. Annu Rev Genomics Hum Genet. 17:45–67.
2016.PubMed/NCBI View Article : Google Scholar
|
4
|
García-Sánchez A and Marqués-García F:
Review of Methods to Study Gene Expression Regulation Applied to
Asthma. Methods Mol Biol. 1434:71–89. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Gibney ER and Nolan CM: Epigenetics and
gene expression. Heredity. 105:4–13. 2010. View Article : Google Scholar
|
6
|
Preziosi P: 2.06-Drug Development. In:
Comprehensive Medicinal Chemistry II. Taylor JB and Triggle DJ
(eds). Elsevier, Oxford, pp173-202, 2007.
|
7
|
Atkinson TJ and Halfon MS: Regulation of
gene expression in the genomic context. Comput Struct Biotechnol J.
9(e201401001)2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Laker RC and Ryall JG: DNA Methylation in
Skeletal Muscle Stem Cell Specification, Proliferation, and
Differentiation. Stem Cells Int. 2016(5725927)2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Latchman DS: Transcription factors: An
overview. Int J Biochem Cell Biol. 29:1305–1312. 1997.PubMed/NCBI View Article : Google Scholar
|
10
|
Lambert SA, Jolma A, Campitelli LF, Das
PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT:
The Human Transcription Factors. Cell. 172:650–665. 2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Klenk H-P and Doolittle WF: Evolution.
Archaea and eukaryotes versus bacteria? Curr Biol. 4:920–922.
1994.PubMed/NCBI View Article : Google Scholar
|
12
|
Lee DJ, Minchin SD and Busby SJ:
Activating transcription in bacteria. Annu Rev Microbiol.
66:125–152. 2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Venters BJ and Pugh BF: How eukaryotic
genes are transcribed. Crit Rev Biochem Mol Biol. 44:117–141.
2009.PubMed/NCBI View Article : Google Scholar
|
14
|
Gehring AM, Walker JE and Santangelo TJ:
Transcription Regulation in Archaea. J Bacteriol. 198:1906–1917.
2016.PubMed/NCBI View Article : Google Scholar
|
15
|
Adcock IM and Caramori G: Transcription
Factors. In: Asthma and COPD. Barnes PJ, Drazen JM, Rennard SI and
Thomson NC (eds). 2nd edition. Academic Press, Oxford, pp373-380,
2009.
|
16
|
Powell RV, Willett CR, Goertzen LR and
Rashotte AM: Lineage specific conservation of cis-regulatory
elements in Cytokinin Response Factors. Sci Rep.
9(13387)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Wilkinson AC, Nakauchi H and Göttgens B:
Mammalian Transcription Factor Networks: Recent Advances in
Interrogating Biological Complexity. Cell Syst. 5:319–331.
2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Rebeiz M and Tsiantis M: Enhancer
evolution and the origins of morphological novelty. Curr Opin Genet
Dev. 45:115–123. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Yesudhas D, Batool M, Anwar MA,
Panneerselvam S and Choi S: Proteins Recognizing DNA: Structural
Uniqueness and Versatility of DNA-Binding Domains in Stem Cell
Transcription Factors. Genes (Basel). 8(E192)2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Cheatle Jarvela AM and Hinman VF:
Evolution of transcription factor function as a mechanism for
changing metazoan developmental gene regulatory networks. Evodevo.
6(3)2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhaxybayeva O, Lapierre P and Gogarten JP:
Ancient gene duplications and the root(s) of the tree of life.
Protoplasma. 227:53–64. 2005.PubMed/NCBI View Article : Google Scholar
|
22
|
Albalat R and Cañestro C: Evolution by
gene loss. Nat Rev Genet. 17:379–391. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Rosanova A, Colliva A, Osella M and
Caselle M: Modelling the evolution of transcription factor binding
preferences in complex eukaryotes. Sci Rep. 7(7596)2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Pérez-Rueda E, Collado-Vides J and Segovia
L: Phylogenetic distribution of DNA-binding transcription factors
in bacteria and archaea. Comput Biol Chem. 28:341–350.
2004.PubMed/NCBI View Article : Google Scholar
|
25
|
Duttke SH: Evolution and diversification
of the basal transcription machinery. Trends Biochem Sci.
40:127–129. 2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Nowick K and Stubbs L: Lineage-specific
transcription factors and the evolution of gene regulatory
networks. Brief Funct Genomics. 9:65–78. 2010.PubMed/NCBI View Article : Google Scholar
|
27
|
Charoensawan V, Wilson D and Teichmann SA:
Genomic repertoires of DNA-binding transcription factors across the
tree of life. Nucleic Acids Res. 38:7364–7377. 2010.PubMed/NCBI View Article : Google Scholar
|
28
|
Inukai S, Kock KH and Bulyk ML:
Transcription factor-DNA binding: Beyond binding site motifs. Curr
Opin Genet Dev. 43:110–119. 2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Siepel A and Arbiza L: Cis-regulatory
elements and human evolution. Curr Opin Genet Dev. 29:81–89.
2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Tuğrul M, Paixão T, Barton NH and Tkačik
G: Dynamics of Transcription Factor Binding Site Evolution. PLoS
Genet. 11(e1005639)2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Berg J, Willmann S and Lässig M: Adaptive
evolution of transcription factor binding sites. BMC Evol Biol.
4(42)2004.PubMed/NCBI View Article : Google Scholar
|
32
|
Yang S, Yalamanchili HK, Li X, Yao KM,
Sham PC, Zhang MQ and Wang J: Correlated evolution of transcription
factors and their binding sites. Bioinformatics. 27:2972–2978.
2011.PubMed/NCBI View Article : Google Scholar
|
33
|
Morgunova E and Taipale J: Structural
perspective of cooperative transcription factor binding. Curr Opin
Struct Biol. 47:1–8. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Amoutzias GD, Robertson DL, Van de Peer Y
and Oliver SG: Choose your partners: Dimerization in eukaryotic
transcription factors. Trends Biochem Sci. 33:220–229.
2008.PubMed/NCBI View Article : Google Scholar
|
35
|
Long HK, Prescott SL and Wysocka J:
Ever-Changing Landscapes: Transcriptional Enhancers in Development
and Evolution. Cell. 167:1170–1187. 2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Miller JA and Widom J: Collaborative
competition mechanism for gene activation in vivo. Mol Cell Biol.
23:1623–1632. 2003.PubMed/NCBI View Article : Google Scholar
|
37
|
Rosenfeld MG, Lunyak VV and Glass CK:
Sensors and signals: A coactivator/corepressor/epigenetic code for
integrating signal-dependent programs of transcriptional response.
Genes Dev. 20:1405–1428. 2006.PubMed/NCBI View Article : Google Scholar
|
38
|
Everett L, Hansen M and Hannenhalli S:
Regulating the regulators: Modulators of transcription factor
activity. Methods Mol Biol. 674:297–312. 2010.PubMed/NCBI View Article : Google Scholar
|
39
|
Tootle TL and Rebay I: Post-translational
modifications influence transcription factor activity: A view from
the ETS superfamily. BioEssays. 27:285–298. 2005.PubMed/NCBI View Article : Google Scholar
|
40
|
Reiter F, Wienerroither S and Stark A:
Combinatorial function of transcription factors and cofactors. Curr
Opin Genet Dev. 43:73–81. 2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Lynch VJ, May G and Wagner GP: Regulatory
evolution through divergence of a phosphoswitch in the
transcription factor CEBPB. Nature. 480:383–386. 2011.PubMed/NCBI View Article : Google Scholar
|
42
|
Lynch VJ and Wagner GP: Resurrecting the
role of transcription factor change in developmental evolution.
Evolution. 62:2131–2154. 2008.PubMed/NCBI View Article : Google Scholar
|
43
|
Vaquerizas JM, Kummerfeld SK, Teichmann SA
and Luscombe NM: A census of human transcription factors: Function,
expression and evolution. Nat Rev Genet. 10:252–263.
2009.PubMed/NCBI View Article : Google Scholar
|
44
|
Lawrence M, Daujat S and Schneider R:
Lateral Thinking: How Histone Modifications Regulate Gene
Expression. Trends Genet. 32:42–56. 2016.PubMed/NCBI View Article : Google Scholar
|
45
|
Xin B and Rohs R: Relationship between
histone modifications and transcription factor binding is protein
family specific. Genome Res. 28:321–333. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA Biogenesis, Mechanisms of Actions, and
Circulation. Front Endocrinol (Lausanne). 9(402)2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Chen K and Rajewsky N: The evolution of
gene regulation by transcription factors and microRNAs. Nat Rev
Genet. 8:93–103. 2007.PubMed/NCBI View Article : Google Scholar
|
48
|
Qiu C, Wang J, Yao P, Wang E and Cui Q:
microRNA evolution in a human transcription factor and microRNA
regulatory network. BMC Syst Biol. 4(90)2010.PubMed/NCBI View Article : Google Scholar
|
49
|
Rachez C, Lemon BD, Suldan Z, Bromleigh V,
Gamble M, Näär AM, Erdjument-Bromage H, Tempst P and Freedman LP:
Ligand-dependent transcription activation by nuclear receptors
requires the DRIP complex. Nature. 398:824–828. 1999.PubMed/NCBI View Article : Google Scholar
|
50
|
Sharma Y, Chilamakuri CS, Bakke M and
Lenhard B: Computational characterization of modes of
transcriptional regulation of nuclear receptor genes. PLoS One.
9(e88880)2014.PubMed/NCBI View Article : Google Scholar
|
51
|
Holzer G, Markov GV and Laudet V:
Evolution of Nuclear Receptors and Ligand Signaling: Toward a Soft
Key-Lock Model? Curr Top Dev Biol. 125:1–38. 2017.PubMed/NCBI View Article : Google Scholar
|
52
|
Carroll SB: Evo-devo and an expanding
evolutionary synthesis: A genetic theory of morphological
evolution. Cell. 134:25–36. 2008.PubMed/NCBI View Article : Google Scholar
|
53
|
de Mendoza A, Sebé-Pedrós A, Šestak MS,
Matejcic M, Torruella G, Domazet-Loso T and Ruiz-Trillo I:
Transcription factor evolution in eukaryotes and the assembly of
the regulatory toolkit in multicellular lineages. Proc Natl Acad
Sci USA. 110:E4858–E4866. 2013.PubMed/NCBI View Article : Google Scholar
|