
Ancestral cancer genes shaping evo-devo: An integrated biochemical and computational approach (Review)
- Authors:
- Dimitrios Vlachakis
- Eleni Papakonstantinou
- Aspasia Efthimiadou
- Flora Bacopoulou
- George Goulielmos
- George P. Chrousos
- Elias Eliopoulos
-
Affiliations: Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, Hellenic Agricultural Organization-Demeter, Institute of Soil and Water Resources, Department of Soil Science of Athens, 13561 Athens, Greece, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece, Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece, Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of The Academy of Athens, 11527 Athens, Greece - Published online on: April 28, 2020 https://doi.org/10.3892/wasj.2020.48
- Article Number: 7
-
Copyright: © Vlachakis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Hendrikse JL, Parsons TE and Hallgrímsson B: Evolvability as the proper focus of evolutionary developmental biology. Evol Dev. 9:393–401. 2007.PubMed/NCBI View Article : Google Scholar | |
Pavlicev M and Wagner GP: Coming to Grips with evolvability. Evolution: Educ Outreach. 5:231–244. 2012. | |
Tian T, Olson S, Whitacre JM and Harding A: The origins of cancer robustness and evolvability. Integr Biol (Camb). 3:17–30. 2011.PubMed/NCBI View Article : Google Scholar | |
Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC and Wilkinson GS: Cancer across the tree of life: Cooperation and cheating in multicellularity. Philos Trans R Soc Lond B Biol Sci. 370(pii: 20140219)2015.PubMed/NCBI View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar | |
Bussey KJ, Cisneros LH, Lineweaver CH and Davies PCW: Ancestral gene regulatory networks drive cancer. Proc Natl Acad Sci USA. 114:6160–6162. 2017.PubMed/NCBI View Article : Google Scholar | |
Chu XY, Jiang LH, Zhou XH, Cui ZJ and Zhang HY: Evolutionary origins of cancer driver genes and implications for cancer prognosis. Genes (Basel). 8(pii: E182)2017.PubMed/NCBI View Article : Google Scholar | |
Chen H, Lin F, Xing K and He X: The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat Comm. 6(6367)2015.PubMed/NCBI View Article : Google Scholar | |
Trigos AS, Pearson RB, Papenfuss AT and Goode DL: Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife. 8(pii: e40947)2019.PubMed/NCBI View Article : Google Scholar | |
Casás-Selves M and Degregori J: How cancer shapes evolution, and how evolution shapes cancer. Evolution (N Y). 4:624–634. 2011.PubMed/NCBI View Article : Google Scholar | |
Pruitt KD, Tatusova T and Maglott DR: NCBI reference sequence (RefSeq): A curated nonredundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33 (Database Issue):D501–D504. 2005.PubMed/NCBI View Article : Google Scholar | |
Sever R and Brugge JS: Signal transduction in cancer. Cold Spring Harb Perspect Med. 5(a006098)2015.PubMed/NCBI View Article : Google Scholar | |
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D and Darnell J: Oncogenic mutations affecting cell proliferation. In: Molecular Cell Biology. 4th edition. W. H. Freeman, New York, NY, 2000. | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013.PubMed/NCBI View Article : Google Scholar | |
Miller MA: Driver mutations take the wheel in invasive yet nonmalignant disease. Sci Transl Med. 9(pii: eaan8194)2017.PubMed/NCBI View Article : Google Scholar | |
McFarland CD, Yaglom JA, Wojtkowiak JW, Scott JG, Morse DL, Sherman MY and Mirny LA: The damaging effect of passenger mutations on cancer progression. Cancer Res. 77:4763–4772. 2017.PubMed/NCBI View Article : Google Scholar | |
McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR and Mirny LA: Impact of deleterious passenger mutations on cancer progression. Proc Natl Acad Sci USA. 110:2910–2915. 2013.PubMed/NCBI View Article : Google Scholar | |
Chen J, Sun M and Shen B: Deciphering oncogenic drivers: From single genes to integrated pathways. Brief Bioinform. 16:413–1428. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang J and Zhang S: Discovery of cancer common and specific driver gene sets. Nucleic Acids Res. 45(e86)2017.PubMed/NCBI View Article : Google Scholar | |
Vogelstein B and Kinzler KW: Cancer genes and the pathways they control. Nat Med. 10:789–799. 2004.PubMed/NCBI View Article : Google Scholar | |
Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 88:323–331. 1997.PubMed/NCBI View Article : Google Scholar | |
Lu WJ, Amatruda JF and Abrams JM: p53 ancestry: Gazing through an evolutionary lens. Nat Rev Cancer. 9:758–762. 2009.PubMed/NCBI View Article : Google Scholar | |
Jegga AG, Inga A, Menendez D, Aronow BJ and Resnick MA: Functional evolution of the p53 regulatory network through its target response elements. Proc Natl Acad Sci USA. 105:944–949. 2008.PubMed/NCBI View Article : Google Scholar | |
Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A and Levine AJ: The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol. 2(a001198)2010.PubMed/NCBI View Article : Google Scholar | |
Levine AJ and Oren M: The first 30 years of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009.PubMed/NCBI View Article : Google Scholar | |
Joerger AC and Fersht AR: The p53 pathway: Origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 85:375–404. 2016.PubMed/NCBI View Article : Google Scholar | |
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 2004.PubMed/NCBI View Article : Google Scholar | |
Philippon H, Brochier-Armanet C and Perrière G: Evolutionary history of phosphatidylinositol-3-kinases: Ancestral origin in eukaryotes and complex duplication patterns. BMC Evol Biol. 15(226)2015.PubMed/NCBI View Article : Google Scholar | |
Kriplani N, Hermida MA, Brown ER and Leslie NR: Class I PI 3-kinases: Function and evolution. Adv Biol Regul. 59:53–64. 2015.PubMed/NCBI View Article : Google Scholar | |
Bertucci MC and Mitchell CA: Phosphoinositide 3-kinase and INPP4B in human breast cancer. Ann N Y Acad Sci. 1280:1–5. 2013.PubMed/NCBI View Article : Google Scholar | |
LoPiccolo J, Blumenthal GM, Bernstein WB and Dennis PA: Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations. Drug Resist Updat. 11:32–50. 2008.PubMed/NCBI View Article : Google Scholar | |
Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C and Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 95:819–828. 2010.PubMed/NCBI View Article : Google Scholar | |
Polychronidou E, Vlachakis D, Vlamos P, Baumann M and Kossida S: Notch signaling and ageing. Adv Exp Med Biol. 822:25–36. 2015.PubMed/NCBI View Article : Google Scholar | |
Li L, Tang P, Li S, Qin X, Yang H, Wu C and Liu Y: Notch signaling pathway networks in cancer metastasis: A new target for cancer therapy. Med Oncol. 34(180)2017.PubMed/NCBI View Article : Google Scholar | |
Kwon OJ, Zhang L, Wang J, Su Q, Feng Q, Zhang XH, Mani SA, Paulter R, Creighton CJ, Ittmann MM and Xin L: Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model. J Clin Invest. 126:2626–2641. 2016.PubMed/NCBI View Article : Google Scholar | |
Weng AP, Ferrando AA, Lee W, Morris JP IV, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster JC: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 306:269–271. 2004.PubMed/NCBI View Article : Google Scholar | |
Lobry C, Oh P, Mansour MR, Look AT and Aifantis I: Notch signaling: Switching an oncogene to a tumor suppressor. Blood. 123:2451–2459. 2014.PubMed/NCBI View Article : Google Scholar | |
Mosedale G, Niedzwiedz W, Alpi A, Perrina F, Pereira-Leal JB, Johnson M, Langevin F, Pace P and Patel KJ: The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat Struct Mol Biol. 12:763–771. 2005.PubMed/NCBI View Article : Google Scholar | |
Murphy ME: The HSP70 family and cancer. Carcinogenesis. 34:1181–1188. 2013.PubMed/NCBI View Article : Google Scholar | |
Rosenzweig R, Nillegoda NB, Mayer MP and Bukau B: The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 20:665–680. 2019.PubMed/NCBI View Article : Google Scholar | |
Calderwood SK and Gong J: Molecular chaperones in mammary cancer growth and breast tumor therapy. J Cell Biochem. 113:1096–1103. 2012.PubMed/NCBI View Article : Google Scholar | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009.PubMed/NCBI View Article : Google Scholar | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956.PubMed/NCBI View Article : Google Scholar | |
Lunt SY and Vander Heiden MG: Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 27:441–464. 2011.PubMed/NCBI View Article : Google Scholar | |
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Bashir Adil HH, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ and Harguindey S: Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience. 1:777–802. 2014.PubMed/NCBI View Article : Google Scholar | |
DeBerardinis RJ and Chandel NS: Fundamentals of cancer metabolism. Sci Adv. 2(e1600200)2016.PubMed/NCBI View Article : Google Scholar | |
Dang CV: Links between metabolism and cancer. Genes Dev. 26:877–890. 2012.PubMed/NCBI View Article : Google Scholar | |
Phan LM, Yeung SC and Lee MH: Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 11:1–19. 2014.PubMed/NCBI View Article : Google Scholar | |
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015.PubMed/NCBI View Article : Google Scholar | |
Halestrap AP: The monocarboxylate transporter family-Structure and functional characterization. IUBMB Life. 64:1–9. 2012.PubMed/NCBI View Article : Google Scholar | |
Baltazar F, Pinheiro C, Morais-Santos F, Azevedo-Silva J, Queirós O, Preto A and Casal M: Monocarboxylate transporters as targets and mediators in cancer therapy response. Histol Histopathol. 29:1511–1524. 2014.PubMed/NCBI View Article : Google Scholar | |
Perez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L and Sonveaux P: Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta. 1863:2481–2497. 2016.PubMed/NCBI View Article : Google Scholar | |
Ullah MS, Davies AJ and Halestrap AP: The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 281:9030–9037. 2006.PubMed/NCBI View Article : Google Scholar | |
San-Millan I and Brooks GA: Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 38:119–133. 2017.PubMed/NCBI View Article : Google Scholar | |
Payen VL, Mina E, Van Hée VF, Porporato PE and Sonveaux P: Monocarboxylate transporters in cancer. Mol Metab. 33:48–66. 2020. | |
Martinez-Outschoorn UE, Curry JM, Ko YH, Lin Z, Tuluc M, Cognetti D, Birbe RC, Pribitkin E, Bombonati A, Pestell RG, et al: Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4. Cell Cycle. 12:2580–2597. 2013.PubMed/NCBI View Article : Google Scholar | |
Bovenzi CD, Hamilton J, Tassone P, Johnson J, Cognetti DM, Luginbuhl A, Keane WM, Zhan T, Tuluc M, Bar-Ad V, et al: Prognostic indications of elevated MCT4 and CD147 across cancer types: A Meta-analysis. Biomed Res Int. 2015(242437)2015.PubMed/NCBI View Article : Google Scholar | |
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.PubMed/NCBI View Article : Google Scholar | |
Wahlstrom T and Henriksson MA: Impact of MYC in regulation of tumor cell metabolism. Biochim Biophys Acta. 1849:563–569. 2015.PubMed/NCBI View Article : Google Scholar | |
Bott JA, Peng IC, Fan Y, Faubert B, Zhao L, Li J, Neidler S, Sun Y, Jaber N, Krokowski D, et al: Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation. Cell Metab. 22:1068–1077. 2015.PubMed/NCBI View Article : Google Scholar | |
Kumada Y, Benson DR, Hillemann D, Hosted TJ, Rochefort DA, Thompson CJ, Wohlleben W and Tateno Y: Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA. 90:3009–3013. 1993.PubMed/NCBI View Article : Google Scholar | |
Hill RT, Parker JR, Goodman HJ, Jones DT and Woods DR: Molecular analysis of a nove glutamine synthetase of the anaerobe Bacteroides fragilis. J Gen Microb. 135:3271–3279. 1989.PubMed/NCBI View Article : Google Scholar | |
Goodman HJ and Woods DR: Cloning and nucleotide sequence of the Butyrivibrio fibrisolvens gene encoding a type III glutamine synthetase. J Gen Micro. 139:1487–1493. 1993.PubMed/NCBI View Article : Google Scholar | |
Pesole G, Gissi C, Lanave C and Saccone C: Glutamine synthetase gene evolution in bacteria. Mol Biol Evol. 12:189–197. 1995.PubMed/NCBI View Article : Google Scholar | |
Shatters RG and Kahn JL: Glutamine synthetase II in Rhizobium: Reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes. J Mol Evol. 2:422–428. 1989.PubMed/NCBI View Article : Google Scholar | |
Lee TI and Young RA: Transcriptional regulation and its misregulation in disease. Cell. 152:1237–1251. 2013.PubMed/NCBI View Article : Google Scholar | |
Werner F and Grohmann D: Evolution of multi-subunit RNA polymerases in the three domains of life. Nat Rev Microbiol. 9:85–98. 2011.PubMed/NCBI View Article : Google Scholar | |
Shin DS, Pratt AJ and Tainer JA: Archaeal genome guardians give insights into eukaryotic DNA replication and damage response proteins. Archaea. 2014(206735)2014.PubMed/NCBI View Article : Google Scholar | |
Warner JR: The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 24:437–440. 1999.PubMed/NCBI View Article : Google Scholar | |
Drygin D, Rice WG and Grummt I: The RNA polymerase I transcription machinery: An emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol. 50:131–156. 2010.PubMed/NCBI View Article : Google Scholar | |
Arabi A, Wu S, Ridderstråle K, Bierhoff H, Shiue C, Fatyol K, Fahlén S, Hydbring P, Söderberg O, Grummt I, et al: c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol. 7:303–310. 2005.PubMed/NCBI View Article : Google Scholar | |
Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN and White RJ: c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol. 7:311–318. 2005.PubMed/NCBI View Article : Google Scholar | |
Mayer C and Grummt I: Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene. 25:6384–6391. 2006.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Comai L and Johnson DL: PTEN represses RNA Polymerase I transcription by disrupting the SL1 complex. Mol Cell Biol. 25:6899–6911. 2005.PubMed/NCBI View Article : Google Scholar | |
Grummt I: Life on a planet of its own: Regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17:1691–1702. 2003.PubMed/NCBI View Article : Google Scholar | |
Luo Z, Lin C, Guest E, Garrett AS, Mohaghegh N, Swanson S, Marshall S, Florens L, Washburn MP and Shilatifard A: The super elongation complex family of RNA polymerase II elongation factors: Gene target specificity and transcriptional output. Mol Cell Biol. 32:2608–2617. 2012.PubMed/NCBI View Article : Google Scholar | |
Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA and Young RA: c-Myc regulates transcriptional pause release. Cell. 141:432–445. 2010.PubMed/NCBI View Article : Google Scholar | |
Smith E, Lin C and Shilatifard A: The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25:661–672. 2011.PubMed/NCBI View Article : Google Scholar | |
Aguilo F, Zhou MM and Walsh MJ: Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res. 71:5365–5369. 2011.PubMed/NCBI View Article : Google Scholar | |
Sliwoski G, Kothiwale S, Meiler J and Lowe EW Jr: Computational methods in drug discovery. Pharmacol Rev. 66:334–395. 2014.PubMed/NCBI View Article : Google Scholar | |
Park H, Bahn YJ and Ryu SE: Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors. Bioorg Med Chem Lett. 19:4330–4334. 2009.PubMed/NCBI View Article : Google Scholar | |
Vangrevelinghe E, Zimmermann K, Schoepfer J, Portmann R, Fabbro D and Furet P: Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J Med Chem. 46:2656–2662. 2003.PubMed/NCBI View Article : Google Scholar | |
Kreeger PK and Lauffenburger DA: Cancer systems biology: A network modeling perspective. Carcinogenesis. 31:2–8. 2010.PubMed/NCBI View Article : Google Scholar | |
San Lucas FA, Fowler J, Chang K, Kopetz S, Vilar E and Scheet P: Cancer in silico drug discovery: A systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes. Mol Cancer Ther. 13:3230–3240. 2014.PubMed/NCBI View Article : Google Scholar | |
Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, Vogelstein B and Karchin R: Cancer-specific high-throughput annotation of somatic mutations: Computational prediction of driver missense mutations. Cancer Res. 69:6660–6667. 2009.PubMed/NCBI View Article : Google Scholar | |
Chen W, Li Y and Wang Z: Evolution of oncogenic signatures of mutation hotspots in tyrosine kinases supports the atavistic hypothesis of cancer. Sci Rep. 8(8256)2018.PubMed/NCBI View Article : Google Scholar | |
Trigos AS, Pearson RB, Papenfuss AT and Goode DL: Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc Natl Acad Sci USA. 114:6406–6411. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhou XH, Chu XY, Xue G, Xiong JH and Zhang HY: Identifying cancer prognostic modules by module network analysis. BMC Bioinformatics. 20(85)2019.PubMed/NCBI View Article : Google Scholar | |
DeGregori J: Evolved tumor suppression: Why are we so good at not getting cancer? Cancer Res. 71:3739–3744. 2011.PubMed/NCBI View Article : Google Scholar | |
Dunning Hotopp JC: Horizontal gene transfer between bacteria and animals. Trends Genet. 27:157–163. 2011.PubMed/NCBI View Article : Google Scholar | |
Robinson KM, Sieber KB and Dunning Hotopp JC: A review of bacteria-animal lateral gene transfer may inform our understanding of diseases like cancer. PLoS Genet. 9(e1003877)2013.PubMed/NCBI View Article : Google Scholar | |
Baba Y, Iwatsuki M, Yoshida N, Watanabe M and Baba H: Review of the gut microbiome and esophageal cancer: Pathogenesis and potential clinical implications. Ann Gastroenterol Surg. 1:99–104. 2017.PubMed/NCBI View Article : Google Scholar | |
Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A, Nourbakhsh S and Dunning Hotopp JC: Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol. 9(e1003107)2013.PubMed/NCBI View Article : Google Scholar | |
Cao Y: Tumorigenesis as a process of gradual loss of original cell identity and gain of properties of neural precursor/progenitor cells. Cell Biosci. 7(61)2017.PubMed/NCBI View Article : Google Scholar | |
Trigos AS, Pearson RB, Papenfuss AT and Goode DL: How the evolution of multicellularity set the stage for cancer. Br J Cancer. 118:145–152. 2018.PubMed/NCBI View Article : Google Scholar | |
Merlo LM, Pepper JW, Reid BJ and Maley CC: Cancer as an evolutionary and ecological process. Nat Rev Cancer. 6:924–935. 2006.PubMed/NCBI View Article : Google Scholar |