Association between non-coding circular RNAs and papillary thyroid carcinoma (Review)
- Authors:
- Negin Soghli
- Tooba Yousefi
- Durdi Qujeq
-
Affiliations: Dental Materials Research Center, Institute of Health, Babol University of Medical Sciences, Babol 47176-47745, Iran, Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran - Published online on: May 19, 2020 https://doi.org/10.3892/wasj.2020.51
- Article Number: 10
-
Copyright: © Soghli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 159:676–690. 2014.PubMed/NCBI View Article : Google Scholar | |
La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F and Negri E: Thyroid cancer mortality and incidence: A global overview. Int J Cancer. 136:2187–2195. 2015.PubMed/NCBI View Article : Google Scholar | |
Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A and Jemal A: Colorectal cancer statistics, 2017. CA Cancer J Clin. 67:177–193. 2017.PubMed/NCBI View Article : Google Scholar | |
Xing M: BRAF mutation in papillary thyroid cancer: Pathogenic role, molecular bases, and clinical implications. Endocr Rev. 28:742–762. 2007.PubMed/NCBI View Article : Google Scholar | |
Sheu SY, Grabellus F, Schwertheim S, Worm K, Broecker-Preuss M and Schmid KW: Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer. 102:376–382. 2010.PubMed/NCBI View Article : Google Scholar | |
Xu B, Shao Q, Xie K, Zhang Y, Dong T, Xia Y and Tang W: The long non-coding RNA ENST00000537266 and ENST00000426615 influence papillary thyroid cancer cell proliferation and motility. Cell Physiol Biochem. 38:368–378. 2016.PubMed/NCBI View Article : Google Scholar | |
Saporito D, Brock P, Hampel H, Sipos J, Fernandez S, Liyanarachchi S, de la Chapelle A and Nagy R: Penetrance of a rare familial mutation predisposing to papillary thyroid cancer. Fam Cancer. 17:431–434. 2018.PubMed/NCBI View Article : Google Scholar | |
Clarke CA, Reynolds P, Oakley-Girvan I, Lee E, Lu Y, Yang J, Moy LM, Bernstein L and Horn-Ross PL: Indicators of microbial-rich environments and the development of papillary thyroid cancer in the California teachers study. Cancer Epidemiol. 39:548–553. 2015.PubMed/NCBI View Article : Google Scholar | |
Viola D, Materazzi G, Valerio L, Molinaro E, Agate L, Faviana P, Seccia V, Sensi E, Romei C, Piaggi P, et al: Prophylactic central compartment lymph node dissection in papillary thyroid carcinoma: Clinical implications derived from the first prospective randomized controlled single institution study. J Clin Endocrinol Metab. 100:1316–1324. 2015.PubMed/NCBI View Article : Google Scholar | |
Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, et al: 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26:1–133. 2016.PubMed/NCBI View Article : Google Scholar | |
Yin Y, Hong S, Yu S, Huang Y, Chen S, Liu Y, Zhang Q, Li Y and Xiao H: miR-195 inhibits tumor growth and metastasis in papillary thyroid carcinoma cell lines by targeting CCND1 and FGF2. Int J Endocrinol. 2017(6180425)2017.PubMed/NCBI View Article : Google Scholar | |
Ren H, Liu Z, Liu S, Zhou X, Wang H, Xu J, Wang D and Yuan G: Profile and clinical implication of circular RNAs in human papillary thyroid carcinoma. PeerJ. 6(e5363)2018.PubMed/NCBI View Article : Google Scholar | |
Xing M, Tufano RP, Tufaro AP, Basaria S, Ewertz M, Rosenbaum E, Byrne PJ, Wang J, Sidransky D and Ladenson PW: Detection of BRAF mutation on fine needle aspiration biopsy specimens: A new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab. 89:2867–2872. 2004.PubMed/NCBI View Article : Google Scholar | |
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63:1454–1457. 2003.PubMed/NCBI | |
Kwak JY, Kim EK, Chung WY, Moon HJ, Kim MJ and Choi JR: Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology. 253:854–860. 2009.PubMed/NCBI View Article : Google Scholar | |
Haugen BR: 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: What is new and what has changed? Cancer. 123:372–381. 2017.PubMed/NCBI View Article : Google Scholar | |
Vriens MR, Weng J, Suh I, Huynh N, Guerrero MA, Shen WT, Duh QY, Clark OH and Kebebew E: MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer. 118:3426–3432. 2012.PubMed/NCBI View Article : Google Scholar | |
Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015.PubMed/NCBI View Article : Google Scholar | |
Kos A, Dijkema R, Arnberg AC, van der Meide PH and Schellekens H: The hepatitis delta (delta) virus possesses a circular RNA. Nature. 323:558–560. 1986.PubMed/NCBI View Article : Google Scholar | |
Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C and Conn SJ: A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 3(17053)2017.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Li C, Tan C and Liu X: Circular RNAs: A new frontier in the study of human diseases. J Med Genet. 53:359–365. 2016.PubMed/NCBI View Article : Google Scholar | |
Qian L, Yu S, Chen Z, Meng Z, Huang S and Wang P: The emerging role of circRNAs and their clinical significance in human cancers. Biochim Biophys Acta Rev Cancer. 1870:247–260. 2018.PubMed/NCBI View Article : Google Scholar | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar | |
Li Y, Hu J, Li L, Cai S, Zhang H, Zhu X, Guan G and Dong X: Upregulated circular RNA circ_0016760 indicates unfavorable prognosis in NSCLC and promotes cell progression through miR-1287/GAGE1 axis. Biochem Biophys Res Commun. 503:2089–2094. 2018.PubMed/NCBI View Article : Google Scholar | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. | |
Soghli N, Qujeq D, Yousefi T and Soghli N: The regulatory functions of circular RNAs in osteosarcoma. Genomics. S0888-7543:31052–31053. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu B, Yang T, Wang Z, Zhang Y, Liu S and Shen M: CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value. Cancer Manag Res. 10:4871–4880. 2018.PubMed/NCBI View Article : Google Scholar | |
Kai D, Yannian L, Yitian C, Dinghao G, Xin Z and Wu J: Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem Biophys Res Commun. 503:863–869. 2018.PubMed/NCBI View Article : Google Scholar | |
Ling H, Fabbri M and Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 12:847–865. 2013.PubMed/NCBI View Article : Google Scholar | |
Huang H, Wei L, Qin T, Yang N, Li Z and Xu Z: Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB signals. Cancer Biol Ther. 20:73–80. 2019.PubMed/NCBI View Article : Google Scholar | |
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. 58:90–99. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen F, Feng Z, Zhu J, Liu P, Yang C, Huang R and Deng Z: Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther. 19:1139–1152. 2018.PubMed/NCBI View Article : Google Scholar | |
Kulcheski FR, Christoff AP and Margis R: Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 238:42–51. 2016.PubMed/NCBI View Article : Google Scholar | |
Peng N, Shi L, Zhang Q, Hu Y, Wang N and Ye H: Microarray profiling of circular RNAs in human papillary thyroid carcinoma. PLoS One. 12(e0170287)2017.PubMed/NCBI View Article : Google Scholar | |
Teng H, Mao F, Liang J, Xue M, Wei W, Li X, Zhang K, Feng D, Liu B and Sun Z: Transcriptomic signature associated with carcinogenesis and aggressiveness of papillary thyroid carcinoma. Theranostics. 8:4345–4358. 2018.PubMed/NCBI View Article : Google Scholar | |
Griffith OL, Melck A, Jones SJ and Wiseman SM: Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol. 24:5043–5051. 2006.PubMed/NCBI View Article : Google Scholar | |
Yao Y, Chen X, Yang H, Chen W, Qian Y, Yan Z, Liao T, Yao W, Wu W, Yu T, et al: Hsa_circ_0058124 promotes papillary thyroid cancer tumorigenesis and invasiveness through the NOTCH3/GATAD2A axis. J Exp Clin Cancer Res. 38(318)2019.PubMed/NCBI View Article : Google Scholar | |
Pan Y, Xu T, Liu Y, Li W and Zhang W: Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR-1231 and miR-1304. Biochem Biophys Res Commun. 510:334–338. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Ding L, Li Y and Xuan C: Hsa_circ_0039411 promotes tumorigenesis and progression of papillary thyroid cancer by miR-1179/ABCA9 and miR-1205/MTA1 signaling pathways. J Cell Physiol. 235:1321–1329. 2020.PubMed/NCBI View Article : Google Scholar | |
Cai X, Zhao Z, Dong J, Lv Q, Yun B, Liu J, Shen Y, Kang J and Li J: Circular RNA circBACH2 plays a role in papillary thyroid carcinoma by sponging miR-139-5p and regulating LMO4 expression. Cell Death Dis. 10(184)2019.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Zhang J, Qiu W, Zhang J, Li Y, Kong E, Lu A, Xu J and Lu X: MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma. J Neurooncol. 139:547–562. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang H, Wu J, Luo W and Hu J: Low expression of miR-1231 in patients with glioma and its prognostic significance. Eur Rev Med Pharmacol Sci. 22:8399–8405. 2018.PubMed/NCBI View Article : Google Scholar | |
Li CG, Pu MF, Li CZ, Gao M, Liu MX, Yu CZ, Yan H, Peng C, Zhao Y, Li Y, et al: MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1. Acta Pharmacol Sin. 38:110–119. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhou GK, Zhang GY, Yuan ZN, Pei R and Liu DM: Has_circ_0008274 promotes cell proliferation and invasion involving AMPK/mTOR signaling pathway in papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 22:8772–8780. 2018.PubMed/NCBI View Article : Google Scholar | |
Cargnello M, Tcherkezian J and Roux PP: The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis. 30:169–176. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu F, Zhang J, Qin L, Yang Z, Xiong J, Zhang Y, Li R, Li S, Wang H, Yu B, et al: Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY). 10:3806–3820. 2018.PubMed/NCBI View Article : Google Scholar | |
Xiao W, Lou N, Ruan H, Bao L, Xiong Z, Yuan C, Tong J, Xu G, Zhou Y, Qu Y, et al: Mir-144-3p promotes cell proliferation, metastasis, sunitinib resistance in clear cell renal cell carcinoma by downregulating ARID1A. Cellular Cell Physiol Biochem. 43:2420–2433. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Xie Z, Lin J and Liu P: MiR-144-3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am J Transl Res. 9:2437–2446. 2017.PubMed/NCBI | |
Bi W, Huang J, Nie C, Liu B, He G, Han J, Pang R, Ding Z, Xu J and Zhang J: CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin Cancer Res. 37(275)2018.PubMed/NCBI View Article : Google Scholar | |
Fu X, Zhu X, Qin F, Zhang Y, Lin J, Ding Y, Yang Z, Shang Y, Wang L, Zhang Q and Gao Q: Linc00210 drives Wnt/β-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent manner. Mol Cancer. 17(73)2018.PubMed/NCBI View Article : Google Scholar | |
Li X, Tian Y, Hu Y, Yang Z, Zhang L and Luo J: CircNUP214 sponges miR-145 to promote the expression of ZEB2 in thyroid cancer cells. Biochem Biophys Res Commun. 507:168–172. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu Q, Chen J, Wang B, Zheng Y, Wan Y, Wang Y, Zhou L, Liu S, Li G and Yan Y: miR-145 modulates epithelial-mesenchymal transition and invasion by targeting ZEB2 in non-small cell lung cancer cell lines. J Cell Biochem: Dec 7, 2018 (Epub ahead of print). | |
Brown CY, Dayan S, Wong SW, Kaczmarek A, Hope CM, Pederson SM, Arnet V, Goodall GJ, Russell D, Sadlon TJ and Barry SC: FOXP3 and miR-155 cooperate to control the invasive potential of human breast cancer cells by down regulating ZEB2 independently of ZEB1. Oncotarget. 9:27708–27727. 2018.PubMed/NCBI View Article : Google Scholar | |
Jin X, Wang Z, Pang W, Zhou J, Liang Y, Yang J, Yang L and Zhang Q: Upregulated hsa_circ_0004458 contributes to progression of papillary thyroid carcinoma by inhibition of miR-885-5p and activation of RAC1. Med Sci Monit. 24:5488–5500. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen QY, Zheng Y, Jiao DM, Chen FY, Hu HZ, Wu YQ, Song J, Yan J, Wu LJ and Lv GY: Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway. J Nutr Biochem. 25:177–185. 2014.PubMed/NCBI View Article : Google Scholar | |
Becker MS, Müller PM, Bajorat J, Schroeder A, Giaisi M, Amin E, Ahmadian MR, Rocks O, Köhler R, Krammer PH and Li-Weber M: The anticancer phytochemical rocaglamide inhibits Rho GTPase activity and cancer cell migration. Oncotarget. 7:51908–51921. 2016.PubMed/NCBI View Article : Google Scholar | |
Ren S, Xin Z, Xu Y, Xu J and Wang G: Construction and analysis of circular RNA molecular regulatory networks in liver cancer. Cell Cycle. 16:2204–2211. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu T, Liu S, Xu Y, Shu R, Wang F, Chen C, Zeng Y and Luo H: Circular RNA-ZFR inhibited cell proliferation and promoted apoptosis in gastric cancer by sponging miR-130a/miR-107 and modulating PTEN. Cancer Res Treat. 50:1396–1417. 2018.PubMed/NCBI View Article : Google Scholar | |
Wei H, Pan L, Tao D and Li R: Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression. Biochem Biophys Res Commun. 503:56–61. 2018.PubMed/NCBI View Article : Google Scholar | |
Sunde M, McGrath KC, Young L, Matthews JM, Chua EL, Mackay JP and Death AK: TC-1 is a novel tumorigenic and natively disordered protein associated with thyroid cancer. Cancer Res. 64:2766–2773. 2004.PubMed/NCBI View Article : Google Scholar | |
Lei J, Li W, Yang Y, Lu Q, Zhang N, Bai G, Zhong D, Su K, Liu B, Li X, et al: TC-1 overexpression promotes cell proliferation in human non-small cell lung cancer that can be inhibited by PD173074. PLoS One. 9(e100075)2014.PubMed/NCBI View Article : Google Scholar | |
Tao L, Yang L, Tian P, Guo X and Chen Y: Knockdown of circPVT1 inhibits progression of papillary thyroid carcinoma by sponging miR-126. RSC Adv. 9:13316–13324. 2019. | |
Kitano M, Rahbari R, Patterson EE, Xiong Y, Prasad NB, Wang Y, Zeiger MA and Kebebew E: Expression profiling of difficult-to-diagnose thyroid histologic subtypes shows distinct expression profiles and identify candidate diagnostic microRNAs. Ann Surg Oncol. 18:3443–34452. 2011.PubMed/NCBI View Article : Google Scholar | |
Wu G, Zhou W, Lin X, Sun Y, Li J, Xu H, Shi P, Gao L and Tian X: CircRASSF2 Acts as ceRNA and promotes papillary thyroid carcinoma progression through miR-1178/TLR4 signaling pathway. Mol Ther Nucleic Acids. 19:1153–1163. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Zhang H and Zhao X: Circ_0005273 promotes thyroid carcinoma progression by SOX2 expression. Endocr Relat Cancer. 27:11–21. 2020.PubMed/NCBI View Article : Google Scholar | |
Li F, Ma K, Sun M and Shi S: Identification of the tumor-suppressive function of circular RNA ITCH in glioma cells through sponging miR-214 and promoting linear ITCH expression. Am J Transl Res. 10:1373–1386. 2018.PubMed/NCBI | |
Wang M, Chen B, Ru Z and Cong L: CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway. Biochem Biophys Res Commun. 504:283–288. 2018.PubMed/NCBI View Article : Google Scholar | |
Shashar M, Siwak J, Tapan U, Lee SY, Meyer RD, Parrack P, Tan J, Khatami F, Francis J, Zhao Q, et al: C-Cbl mediates the degradation of tumorigenic nuclear β-catenin contributing to the heterogeneity in Wnt activity in colorectal tumors. Oncotarget. 7:71136–71150. 2016.PubMed/NCBI View Article : Google Scholar | |
Lupi C, Giannini R, Ugolini C, Proietti A, Berti P, Minuto M, Materazzi G, Elisei R, Santoro M, Miccoli P and Basolo F: Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab. 92:4085–4090. 2007.PubMed/NCBI View Article : Google Scholar | |
Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R, Romei C, Miccoli P, Pinchera A and Basolo F: BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: A 15-year median follow-up study. J Clin Endocrinol Metab. 93:3943–3949. 2008.PubMed/NCBI View Article : Google Scholar | |
Lan X, Cao J, Xu J, Chen C, Zheng C, Wang J, Zhu X, Zhu X and Ge M: Decreased expression of hsa_circ_0137287 predicts aggressive clinicopathologic characteristics in papillary thyroid carcinoma. J Clin Lab Anal. 32(e22573)2018.PubMed/NCBI View Article : Google Scholar | |
Siegel RL, Miller KD and Jemal A: Cancer statistics 2018. CA Cancer J Clin. 68:7–30. 2018.PubMed/NCBI View Article : Google Scholar | |
Lan X, Xu J, Chen C, Zheng C, Wang J, Cao J, Zhu X and Ge M: The landscape of circular RNA expression profiles in papillary thyroid carcinoma based on RNA sequencing. Cell Physiol Biochem. 47:1122–1132. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu Q, Pan LZ, Hu M and Ma JY: Molecular Network-Based identification of circular RNA-Associated ceRNA network in papillary thyroid cancer. Pathol Oncol Res 2019 [Epub ahead of print]. |