1
|
Weikum ER, Liu X and Ortlund EA: The nuclear receptor superfamily: A structural perspective. Protein Sci. 27:1876–1892. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Robinson-Rechavi M, Garcia HE and Laudet V: The nuclear receptor superfamily. J Cell Sci. 116:585–586. 2003.PubMed/NCBI View Article : Google Scholar
|
3
|
Porter BA, Ortiz MA, Bratslavsky G and Kotula L: Structure and function of the nuclear receptor superfamily and current targeted therapies of prostate cancer. Cancers (Basel). 11(1852)2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Zuo H and Wan Y: Nuclear receptors in skeletal homeostasis. Curr Top Dev Biol. 125:71–107. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Karki K, Li X, Jin UH, Mohankumar K, Zarei M, Michelhaugh SK, Mittal S, Tjalkens R and Safe S: Nuclear receptor 4A2 (NR4A2) is a druggable target for glioblastomas. J Neurooncol. 146:25–39. 2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Bakke D and Sun J: Ancient nuclear receptor VDR with new functions: Microbiome and inflammation. Inflamm Bowel Dis. 24:1149–1154. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Cecchin E, De Mattia E and Toffoli G: Nuclear receptors and drug metabolism for the personalization of cancer therapy. Expert Opin Drug Metab Toxicol. 12:291–306. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Schierle S and Merk D: Development of nuclear receptor modulators. Methods Mol Biol. 1824:245–260. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Safe S, Jin UH, Hedrick E, Reeder A and Lee SO: Minireview: Role of orphan nuclear receptors in cancer and potential as drug targets. Mol Endocrinol. 28:157–172. 2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Shi Y: Orphan nuclear receptors in drug discovery. Drug discovery today. 12:440–445. 2007.PubMed/NCBI View Article : Google Scholar
|
11
|
Blumberg B and Evans RM: Orphan nuclear receptors-new ligands and new possibilities. Genes Dev. 12:3149–3155. 1998.PubMed/NCBI View Article : Google Scholar
|
12
|
De Bosscher K, Desmet SJ, Clarisse D, Estebanez-Perpina E and Brunsveld L: Nuclear receptor crosstalk-defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol. 16:363–377. 2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Vlachakis D and Kossida S: Molecular modeling and pharmacophore elucidation study of the classical swine fever virus helicase as a promising pharmacological target. PeerJ. 1(e85)2013.PubMed/NCBI View Article : Google Scholar
|
14
|
Gronemeyer H, Gustafsson JA and Laudet V: Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov. 3:950–964. 2004.PubMed/NCBI View Article : Google Scholar
|
15
|
Holzer G, Markov GV and Laudet V: Evolution of nuclear receptors and ligand signaling: Toward a soft key-lock model? Curr Top Dev Biol. 125:1–38. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Bridgham JT, Eick GN, Larroux C, Deshpande K, Harms MJ, Gauthier MEA, Ortlund EO, Degnan BM and Thornton JW: Protein evolution by molecular tinkering: Diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol. 8(e1000497)2010.PubMed/NCBI View Article : Google Scholar
|
17
|
Beato M, Chávez S and Truss M: Transcriptional regulation by steroid hormones. Steroids. 61:240–251. 1996.PubMed/NCBI View Article : Google Scholar
|
18
|
Nicolaides NC, Chrousos G and Kino T: Glucocorticoid Receptor. In: Endotext. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Grossman A, Hershman JM, Hofland J, Kalra S, Kaltsas G, KochC, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrere B, McGee EA, McLachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Stratakis CA, Trence DL and Wilson DP (eds). MDText.com, Inc., South Dartmouth, MA, 2000.
|
19
|
Vandevyver S, Dejager L and Libert C: Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev. 35:671–693. 2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Charmandari E: Primary generalized glucocorticoid resistance and hypersensitivity: The end-organ involvement in the stress response. Sci Signal. 5(pt5)2012.PubMed/NCBI View Article : Google Scholar
|
21
|
Nicolaides NC, Kino T, Chrousos G and Charmandari E: Primary generalized glucocorticoid resistance or chrousos syndrome. In: Endotext. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Grossman A, Hershman JM, Hofland J, Kalra S, Kaltsas G, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrere B, McGee EA, McLachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Stratakis CA, Trence DL and Wilson DP (eds). MDText.com, Inc., South Dartmouth, MA, 2000.
|
22
|
Papageorgiou L, Papakonstantinou E, Salis C, Raftopoulou S, Mitsis T, Nicolaides N, Hagidimitriou M, Eliopoulos E, Charmandari E, Chrousos GP and Vlachakis D: An updated evolutionary study in glucocorticoid receptors; insights from a comprehensive phylogenetic, snp's and mutation's analysis of the nuclear receptors family. 57th Annual ESPE Meeting, Vol. 89, 2018. https://abstracts.eurospe.org/hrp/0089/hrp0089LB-P4.
|
23
|
Papageorgiou L, Shalzi L, Efthimiadou A, Bacopoulou F, Chrousos GP, Eliopoulos E and Vlachakis D: Conserved functional motifs of the nuclear receptor superfamily as potential pharmacological targets. Int J Epigen. 1(3)2021.
|
24
|
Sobie EA: An introduction to MATLAB. Sci Signal. 4(tr7)2011.PubMed/NCBI View Article : Google Scholar
|
25
|
Vlachakis D, Papageorgiou L, Papadaki A, Georga M, Kossida S and Eliopoulos E: An updated evolutionary study of the Notch family reveals a new ancient origin and novel invariable motifs as potential pharmacological targets. PeerJ. 8(e10334)2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Papageorgiou L, Loukatou S, Sofia K, Maroulis D and Vlachakis D: An updated evolutionary study of flaviviridae NS3 helicase and NS5 RNA-dependent RNA polymerase reveals novel invariable motifs as potential pharmacological targets. Mol Biosyst. 12:2080–2093. 2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Amidi S, Amidi A, Vlachakis D, Paragios N and Zacharaki EI: Automatic single- and multi-label enzymatic function prediction by machine learning. PeerJ. 5(e3095)2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Papageorgiou L, Megalooikonomou V and Vlachakis D: Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents. PeerJ. 5(e3061)2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Gibbons FD and Roth FP: Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res. 12:1574–1581. 2002.PubMed/NCBI View Article : Google Scholar
|
30
|
Kumar S, Stecher G and Tamura K: MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33:1870–1874. 2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Pawlak M, Lefebvre P and Staels B: General molecular biology and architecture of nuclear receptors. Curr Top Med Chem. 12:486–504. 2012.PubMed/NCBI View Article : Google Scholar
|
32
|
Novac N and Heinzel T: Nuclear receptors: Overview and classification. Curr Drug Targets Inflamm Allergy. 3:335–346. 2004.PubMed/NCBI View Article : Google Scholar
|
33
|
Mitsis T, Papageorgiou L, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos GP and Eliopoulos E: A comprehensive structural and functional analysis of the ligand binding domain of the nuclear receptor superfamily reveals highly conserved signaling motifs and two distinct canonical forms through evolution. World Acad Sci J. 1:264–274. 2020.
|
34
|
Mirza AZ, Althagafi II and Shamshad H: Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem. 166:502–513. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Abaya R, Jones L and Zorc JJ: Dexamethasone compared to prednisone for the treatment of children with acute asthma exacerbations. Pediatr Emerg Care. 34:53–58. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB and Galigniana MD: The nuclear receptor field: A historical overview and future challenges. Nucl Receptor Res. 5(101320)2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Vlachakis D, Nicolaides NC, Papageorgiou L, Lamprokostopoulou A and Charmandari E: Tracing the Glucocorticoid Receptor Evolutionary Pedigree: Insights from a Comprehensive Phylogenetic Analysis of the Full NR Super-Family. 55th ESPE Meeting, Paris, France, Vol 82: 2016. https://abstracts.eurospe.org/hrp/0086/hrp0086rfc1.1.
|
38
|
Penvose A, Keenan JL, Bray D, Ramlall V and Siggers T: Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat Commun. 10(2514)2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Khorasanizadeh S and Rastinejad F: Nuclear-receptor interactions on DNA-response elements. Trends Biochem Sci. 26:384–390. 2001.PubMed/NCBI View Article : Google Scholar
|
40
|
Lisse TS, Hewison M and Adams JS: Hormone response element binding proteins: Novel regulators of vitamin D and estrogen signaling. Steroids. 76:331–339. 2011.PubMed/NCBI View Article : Google Scholar
|
41
|
Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ and Stallcup MR: Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): Multiple motifs with different binding specificities. Mol Endocrinol. 12:302–313. 1998.PubMed/NCBI View Article : Google Scholar
|
42
|
Kumar R and McEwan JI: Allosteric modulators of steroid hormone receptors: Structural dynamics and gene regulation. Endocr Rev. 33:271–299. 2012.PubMed/NCBI View Article : Google Scholar
|
43
|
Klinge C and Rao C: The steroid hormone receptors. Glob. libr. women's med. ISSN: 1756-2228, 2008. DOI 10.3843/GLOWM.10281.
|