1
|
Sharma S and Chatterjee S: Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ Sci Pollut Res Int. 24:21530–21547. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Barboza LG, Dick Vethaak A, Lavorante B, Lundebye AK and Guilhermino L: Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar Pollut Bull. 133:336–348. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Rist S, Carney Almroth B, Hartmann NB and Karlsson TM: A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ. 626:720–726. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Smith M, Love DC, Rochman CM and Neff RA: Microplastics in seafood and the implications for human health. Curr Environ Health Rep. 5:375–386. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Bocqué M, Voirin C, Lapinte V, Caillol S and Robin JJ: Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. J Polymer Sci Part A: Polymer Chem. 54:11–33. 2016.
|
6
|
Heudorf U, Mersch-Sundermann V and Angerer J: Phthalates: Toxicology and exposure. Int J Hyg Environ Health. 210:623–634. 2007.PubMed/NCBI View Article : Google Scholar
|
7
|
Köksal C, Nalbantsoy A and Karabay Yavasoglu NÜ: Cytotoxicity and genotoxicity of butyl cyclohexyl phthalate. Cytotechnology. 68:213–222. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Paluselli A, Fauvelle V, Galgani F and Sempere R: Phthalate release from plastic fragments and degradation in seawater. Environ Sci Technol. 53:166–175. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Schettler T: Human exposure to phthalates via consumer products. Int J Androl. 29:134–139. 2006.PubMed/NCBI View Article : Google Scholar : discussion 181-135.
|
10
|
Mankidy R, Wiseman S, Ma H and Giesy JP: Biological impact of phthalates. Toxicol Lett. 217:50–58. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Herrero O, Planello R and Morcillo G: The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. Chemosphere. 128:266–277. 2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Cui S, Wang L, Zhao H, Lu F, Wang W and Yuan Z: Benzyl butyl phthalate (BBP) triggers the migration and invasion of hemangioma cells via upregulation of Zeb1. Toxicol In Vitro. 60:323–329. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Yavasoglu NÜ, Köksal C, Dagdeviren M, Aktug H and Yavasoglu A: Induction of oxidative stress and histological changes in liver by subacute doses of butyl cyclohexyl phthalate. Environ Toxicol. 29:345–353. 2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Lyche JL, Gutleb AC, Bergman A, Eriksen GS, Murk AT, Ropstad E, Saunders M and Skaare JU: Reproductive and developmental toxicity of phthalates. J Toxicol Environ Health B Crit Rev. 12:225–249. 2009.PubMed/NCBI View Article : Google Scholar
|
15
|
Moore NP: The oestrogenic potential of the phthalate esters. Reprod Toxicol. 14:183–192. 2000.PubMed/NCBI View Article : Google Scholar
|
16
|
Matsumoto M, Hirata-Koizumi M and Ema M: Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction. Regul Toxicol Pharmacol. 50:37–49. 2008.PubMed/NCBI View Article : Google Scholar
|
17
|
Shanle EK and Xu W: Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action. Chem Res Toxicol. 24:6–19. 2011.PubMed/NCBI View Article : Google Scholar
|
18
|
Yang O, Kim HL, Weon JI and Seo YR: Endocrine-disrupting chemicals: Review of toxicological mechanisms using molecular pathway analysis. J Cancer Prev. 20:12–24. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Paterni I, Granchi C, Katzenellenbogen JA and Minutolo F: Estrogen receptors alpha (ERα) and beta (ERβ): Subtype-selective ligands and clinical potential. Steroids. 90:13–29. 2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B and Katzenellenbogen J: Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiol Rev. 97:1045–1087. 2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Marino M, Galluzzo P and Ascenzi P: Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics. 7:497–508. 2006.PubMed/NCBI View Article : Google Scholar
|
22
|
Jia M, Dahlman-Wright K and Gustafsson JA: Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. 29:557–568. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al: PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 47:D1102–D1109. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN and Bourne PE: The protein data bank. Nucleic Acids Res. 28:235–242. 2000.PubMed/NCBI View Article : Google Scholar
|
25
|
Stender JD, Nwachukwu JC, Kastrati I, Kim Y, Strid T, Yakir M, Srinivasan S, Nowak J, Izard T, Rangarajan ES, et al: Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol Cell. 65:1122–1135 e5. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS and Olson AJ: AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility. J Comput Chem. 30:2785–2791. 2009.PubMed/NCBI View Article : Google Scholar
|
27
|
Humphrey W, Dalke A and Schulten K: VMD: Visual molecular dynamics. J Mol Graph. 14:33–38, 27-28. 1996.PubMed/NCBI View Article : Google Scholar
|
28
|
Böckers M, Paul NW and Efferth T: Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor α. Toxicol Appl Pharmacol. 399(115030)2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Böckers M, Paul NW and Efferth T: Organophosphate ester tri-o-cresyl phosphate interacts with estrogen receptor α in MCF-7 breast cancer cells promoting cancer growth. Toxicol Appl Pharmacol. 395(114977)2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Böckers M, Paul NW and Efferth T: Indeno[1,2,3-cd]pyrene and picene mediate actions via estrogen receptor α signaling pathway in in vitro cell systems, altering gene expression. Toxicol Appl Pharmacol. 396(114995)2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitiative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar
|
32
|
Castoria G, Migliaccio A, Giovannelli P and Auricchio F: Cell proliferation regulated by estradiol receptor: Therapeutic implications. Steroids. 75:524–527. 2010.PubMed/NCBI View Article : Google Scholar
|
33
|
Jäger R, Friedrichs N, Heim I, Büttner R and Schorle H: Dual role of AP-2γ in ErbB-2-induced mammary tumorigenesis. Breast Cancer Res Treat. 90:273–280. 2005.PubMed/NCBI View Article : Google Scholar
|
34
|
Pellikainen JM and Kosma VM: Activator protein-2 in carcinogenesis with a special reference to breast cancer-A mini review. Int J Cancer. 120:2061–2067. 2007.PubMed/NCBI View Article : Google Scholar
|
35
|
Wong PP, Miranda F, Chan KV, Berlato C, Hurst HC and Scibetta AG: Histone demethylase KDM5B collaborates with TFAP2C and Myc to repress the cell cycle inhibitor p21(cip) (CDKN1A). Mol Cell Biol. 32:1633–1644. 2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Rosonina E, Ip JY, Calarco JA, Bakowski MA, Emili A, McCracken S, Tucker P, Ingles CJ and Blencowe BJ: Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo. Mol Cell Biol. 25:6734–6746. 2005.PubMed/NCBI View Article : Google Scholar
|
37
|
Tao Y, Ma C, Fan Q, Wang Y, Han T and Sun C: MicroRNA-1296 facilitates proliferation, migration and invasion of colorectal cancer cells by targeting SFPQ. J Cancer. 9:2317–2326. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Wang G, Cui Y, Zhang G, Garen A and Song X: Regulation of proto-oncogene transcription, cell proliferation, and tumorigenesis in mice by PSF protein and a VL30 noncoding RNA. Proc Natl Acad Sci USA. 106:16794–16798. 2009.PubMed/NCBI View Article : Google Scholar
|
39
|
Ward BK, Mark PJ, Ingram DM, Minchin RF and Ratajczak T: Expression of the estrogen receptor-associated immunophilins, cyclophilin 40 and FKBP52, in breast cancer. Breast Cancer Res Treat. 58:267–280. 1999.PubMed/NCBI View Article : Google Scholar
|
40
|
Yang WS, Moon HG, Kim HS, Choi EJ, Yu MH, Noh DY and Lee C: Proteomic approach reveals FKBP4 and S100A9 as potential prediction markers of therapeutic response to neoadjuvant chemotherapy in patients with breast cancer. J Proteome Res. 11:1078–1088. 2012.PubMed/NCBI View Article : Google Scholar
|
41
|
Daniel AR, Hagan CR and Lange CA: Progesterone receptor action: Defining a role in breast cancer. Expert Rev Endocrinol Metab. 6:359–369. 2011.PubMed/NCBI View Article : Google Scholar
|
42
|
Boland MR, Ryan EJ, Dunne E, Aherne TM, Bhatt NR and Lowery AJ: Meta-analysis of the impact of progesterone receptor status on oncological outcomes in oestrogen receptor-positive breast cancer. Br J Surg. 107:33–43. 2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Du F, Sun L, Chu Y, Li T, Lei C, Wang X, Jiang M, Min Y, Lu Y, Zhao X, et al: DDIT4 promotes gastric cancer proliferation and tumorigenesis through the p53 and MAPK pathways. Cancer Commun (Lond). 38(45)2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Tirado-Hurtado I, Fajardo W and Pinto JA: DNA damage inducible transcript 4 gene: The switch of the metabolism as potential target in cancer. Front Oncol. 8(106)2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Cheng Z, Dai Y, Pang Y, Jiao Y, Liu Y, Cui L, Quan L, Qian T, Zeng T, Si C, et al: Up-regulation of DDIT4 predicts poor prognosis in acute myeloid leukaemia. J Cell Mol Med. 24:1067–1075. 2020.PubMed/NCBI View Article : Google Scholar
|
46
|
Arlt A and Schäfer H: Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur J Cell Biol. 90:545–552. 2011.PubMed/NCBI View Article : Google Scholar
|
47
|
Jin H, Suh DS, Kim TH, Yeom JH, Lee K and Bae J: IER3 is a crucial mediator of TAp73β-induced apoptosis in cervical cancer and confers etoposide sensitivity. Sci Rep. 5(8367)2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Nebert DW, Dalton TP, Okey AB and Gonzalez FJ: Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem. 279:23847–23850. 2004.PubMed/NCBI View Article : Google Scholar
|
49
|
Shimada T and Fujii-Kuriyama Y: Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 95:1–6. 2004.PubMed/NCBI View Article : Google Scholar
|
50
|
Bhutia YD, Babu E, Ramachandran S and Ganapathy V: Amino acid transporters in cancer and their relevance to ‘glutamine addiction’: Novel targets for the design of a new class of anticancer drugs. Cancer Res. 75:1782–1788. 2015.PubMed/NCBI View Article : Google Scholar
|
51
|
Cha YJ, Kim ES and Koo JS: Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci. 19(907)2018.PubMed/NCBI View Article : Google Scholar
|
52
|
Lin Z, Yin P, Reierstad S, O'Halloran M, Coon VJS, Pearson EK, Mutlu GM and Bulun SE: Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene. 29:1114–1122. 2010.PubMed/NCBI View Article : Google Scholar
|
53
|
Zhou J, Fan X, Chen N, Zhou F, Dong J, Nie Y and Fan D: Identification of CEACAM5 as a biomarker for prewarning and prognosis in gastric cancer. J Histochem Cytochem. 63:922–930. 2015.PubMed/NCBI View Article : Google Scholar
|
54
|
Duffy MJ: Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin Chem. 47:624–630. 2001.PubMed/NCBI
|
55
|
Lin Z, Li S, Feng C, Yang S, Wang H, Ma D, Zhang J, Gou M, Bu D, Zhang T, et al: Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nat Genet. 48:1508–1516. 2016.PubMed/NCBI View Article : Google Scholar
|
56
|
Bolling MC and Jonkman MF: KLHL24: Beyond skin fragility. J Invest Dermatol. 139:22–24. 2019.PubMed/NCBI View Article : Google Scholar
|
57
|
Chu SJ, Zhang J, Zhang R, Lu WW and Zhu JS: Evolution and functions of stanniocalcins in cancer. Int J Immunopathol Pharmacol. 28:14–20. 2015.PubMed/NCBI View Article : Google Scholar
|
58
|
Bouras T, Southey MC, Chang AC, Reddel RR, Willhite D, Glynne R, Henderson MA, Armes JE and Venter DJ: Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res. 62:1289–1295. 2002.PubMed/NCBI
|
59
|
Esseghir S, Kennedy A, Seedhar P, Nerurkar A, Poulsom R, Reis-Filho JS and Isacke CM: Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins. Clin Cancer Res. 13:3164–3173. 2007.PubMed/NCBI View Article : Google Scholar
|
60
|
Wang H, Wu K, Sun Y, Li Y, Wu M, Qiao Q, Wei Y, Han ZG and Cai B: STC2 is upregulated in hepatocellular carcinoma and promotes cell proliferation and migration in vitro. BMB Rep. 45:629–634. 2012.PubMed/NCBI View Article : Google Scholar
|
61
|
Wang Y, Gao Y, Cheng H, Yang G and Tan W: Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer. Biochem Biophys Res Commun. 466:362–368. 2015.PubMed/NCBI View Article : Google Scholar
|