1
|
Maahs DM, West NA, Lawrence JM and
Mayer-Davis EJ: Epidemiology of type 1 diabetes. Endocrinol Metab
Clin North Am. 39:481–497. 2010.PubMed/NCBI View Article : Google Scholar
|
2
|
Mayer-Davis EJ, Lawrence JM, Dabelea D,
Divers J, Isom S, Dolan L, Imperatore G, Linder B, Marcovina S,
Pettitt DJ, et al: Incidence trends of type 1 and type 2 diabetes
among youths, 2002-2012. N Engl J Med. 376:1419–1429.
2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Chiang JL, Maahs DM, Garvey KC, Hood KK,
Laffel LM, Weinzimer SA, Wolfsdorf JI and Schatz D: Type 1 diabetes
in children and adolescents: A Position statement by the american
diabetes association. Diabetes Care. 41:2026–2044. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Chobot A, Polanska J, Brandt A, Deja G,
Glowinska-Olszewska B, Pilecki O, Szadkowska A, Mysliwiec M and
Jarosz-Chobot P: Updated 24-year trend of type 1 diabetes incidence
in children in Poland reveals a sinusoidal pattern and sustained
increase. Diabet Med. 34:1252–1258. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
DiMeglio LA, Evans-Molina C and Oram RA:
Type 1 diabetes. Lancet. 391:2449–2462. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Sandor AM, Jacobelli J and Friedman RS:
Immune cell trafficking to the islets during type 1 diabetes. Clin
Exp Immunol. 198:314–325. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Yang CL, Sun F, Wang FX, Rong SJ, Yue TT,
Luo JH, Zhou Q, Wang CY and Liu SW: The interferon regulatory
factors, a double-edged sword, in the pathogenesis of type 1
diabetes. Cell Immunol. 379(104590)2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Al-Ghamdi BA, Al-Shamrani JM, El-Shehawi
AM, Al-Johani I and Al-Otaibi BG: Role of mitochondrial DNA in
diabetes mellitus type I and type II. Saudi J Biol Sci.
29(103434)2022.PubMed/NCBI View Article : Google Scholar
|
9
|
Hull CM, Peakman M and Tree TIM:
Regulatory T cell dysfunction in type 1 diabetes: What's broken and
how can we fix it? Diabetologia. 60:1839–1850. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Culina S, Brezar V and Mallone R: Insulin
and type 1 diabetes: Immune connections. Eur J Endocrinol.
168:R19–R31. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Fakhfakh R: Genetic markers, serological
auto antibodies and prediction of type 1 diabetes. In: Wagner D
(ed). Type 1 Diabetes-Pathogenesis, Genetics and Immunotherapy.
IntechOpen Limited, London, pp631-646, 2011.
|
12
|
Scherm MG, Wyatt RC, Serr I, Anz D,
Richardson SJ and Daniel C: Beta cell and immune cell interactions
in autoimmune type 1 diabetes: How they meet and talk to each
other. Mol Metab. 64(101565)2022.PubMed/NCBI View Article : Google Scholar
|
13
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld
AL, Brucker SY and Layland SL: Type 1 diabetes and engineering
enhanced islet transplantation. Adv Drug Deliv Rev.
189(114481)2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Mathis D, Vence L and Benoist C: Beta-Cell
death during progression to diabetes. Nature. 414:792–798.
2001.PubMed/NCBI View
Article : Google Scholar
|
15
|
Lebastchi J and Herold KC: Immunologic and
metabolic biomarkers of β-cell destruction in the diagnosis of type
1 diabetes. Cold Spring Harb Perspect Med.
2(a007708)2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Bhatt MP, Lim YC, Kim YM and Ha KS:
C-peptide activates AMPKα and prevents ROS-mediated mitochondrial
fission and endothelial apoptosis in diabetes. Diabetes.
62:3851–3862. 2013.PubMed/NCBI View Article : Google Scholar
|
17
|
Ghazanfari Z, Haghdoost AA, Alizadeh SM,
Atapour J and Zolala F: A comparison of HbA1c and fasting blood
sugar tests in general population. Int J Prev Med. 1:187–194.
2010.PubMed/NCBI
|
18
|
Fard MT, Najaf F, Rezaeian S, Kohsari M
and Moradinazar M: Association between serum liver enzymes and
hypertension using propensity score matching analysis: Evidence
from a large kurdish prospective cohort study. BMC Cardiovasc
Disord. 22(476)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Couchoud C, Pozet N, Labeeuw M and
Pouteil-Noble C: Screening early renal failure: Cut-off values for
serum creatinine as an indicator of renal impairment. Kidney Int.
55:1878–1884. 1999.PubMed/NCBI View Article : Google Scholar
|
20
|
Kaczmarska E, Kępka C, Dzielińska Z,
Pracoń R, Kryczka K, Petryka J, Pręgowski J, Kruk M and Demkow M:
What is the optimal cut-off point for low coronary artery calcium
score assessed by computed tomography? Multi-detector computed
tomography ANIN registry. Postepy Kardiol Interwencyjnej. 1:9–15.
2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Wu Q, Ren J, Yang LC, Liu J, Wei J, Zhang
W, Li N, Wang YJ, Yan LH, Ma JR and Yang XG: Cut-off values of
diagnostic indices to detect iron deficiency in Chinese breast-fed
infants. Biomed Environ Sci. 29:829–833. 2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Kim EH, Kang H, Park CH, Choi HS, Jung DH,
Chung H, Park JC, Shin SK, Lee SK and Lee YC: The optimal serum
pepsinogen cut-off value for predicting histologically confirmed
atrophic gastritis. Dig Liver Dis. 47:663–668. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Akbari H, Ghardashi M, Soleimani A,
Mohammadi H and Nikoueinejad H: T helper 22 pathway evaluation in
type 1 diabetes and its complications. Iran J Allergy Asthma
Immunol. 17:258–264. 2018.PubMed/NCBI
|
24
|
Pathan SB, Jawade P and Lalla P:
Correlation of Serum Urea and Serum Creatinine in Diabetics
patients and normal individuals. Int J Clin Biochem Res. 7:45–48.
2020.
|
25
|
Elngar EF, Shora HA, Bayoumi N, Boulos SW
and Sayed E: Iron-deficiency Anemia in Egyptian type 1 diabetic
children at Suez Canal University Hospital. Acta Sci Med Sci.
5:67–73. 2021.
|
26
|
Brownlee M: Biochemistry and molecular
cell biology of diabetic complications. Nature. 414:813–820.
2001.PubMed/NCBI View
Article : Google Scholar
|
27
|
McGrowder DA, Anderson-Jackson L and
Crawford TV: Biochemical evaluation of oxidative stress in type 1
diabetes. In: Escher AP, Li A (eds). Type 1 Diabetes. IntechOpen
Limited, London, pp223-237, 2013.
|
28
|
Fatima N, Faisal SM, Zubair S, Ajmal M,
Siddiqui SS, Moin S and Owais M: Role of pro-inflammatory cytokines
and biochemical markers in the pathogenesis of type 1 diabetes:
Correlation with age and glycemic condition in diabetic human
subjects. PLoS One. 11(e0161548)2016.PubMed/NCBI View Article : Google Scholar
|
29
|
Szypowska A, Groele L, Wysocka-Mincewicz
M, Mazur A, Lisowicz L, Ben-Skowronek I, Sieniawska J, Klonowska B,
Charemska D, Nawrotek J, et al: Factors associated with
preservation of C-peptide levels at the diagnosis of type 1
diabetes. J Diabetes Complications. 32:570–574. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Overgaard AJ, Madsen JOB, Pociot F,
Johannesen J and Størling J: Systemic TNFα correlates with residual
β-cell function in children and adolescents newly diagnosed with
type 1 diabetes. BMC Pediatr. 20(446)2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Szabo CE, Man OI, Istrate A, Kiss E,
Catana A, Creț V, Șerban RS and Pop IV: Role of adiponectin and
tumor necrosis factor-alpha in the pathogenesis and evolution of
type 1 diabetes mellitus in children and adolescents. Diagnostics
(Basel). 10(945)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Luppi P, Cifarelli V, Tse H, Piganelli J
and Trucco M: Human C-peptide antagonises high glucose-induced
endothelial dysfunction through the nuclear factor-kappaB pathway.
Diabetologia. 51:1534–1543. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Haidet J, Cifarelli V, Trucco M and Luppi
P: Anti-inflammatory properties of C-peptide. Rev Diabet Stud.
6:168–179. 2009.PubMed/NCBI View Article : Google Scholar
|
34
|
Williams KV, Becker DJ, Orchard TJ and
Costacou T: Persistent C-peptide levels and microvascular
complications in childhood onset type 1 diabetes of long duration.
J Diabetes Complications. 33:657–661. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Vasic D and Walcher D: Proinflammatory
effects of C-peptide in different tissues. Int J Inflam.
2012(932725)2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Al-Rammahi TMM, Al-Rubaye H and Ashor AW:
The association of higher composite biomarker score of antioxidant
vitamins with lower cardiovascular diseases risk: A cross-sectional
study. Curr Res Nutr Food Sci J. 9:945–952. 2021.
|
37
|
Russell MA and Morgan NG: The impact of
anti-inflammatory cytokines on the pancreatic β-cell. Islets.
6(e950547)2014.PubMed/NCBI View Article : Google Scholar
|
38
|
Kukreja A, Cost G, Marker J, Zhang C, Sun
Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, et al: Multiple
immuno-regulatory defects in type-1 diabetes. J Clin Invest.
109:131–140. 2002.PubMed/NCBI View
Article : Google Scholar
|
39
|
Kent SC, Chen Y, Clemmings SM, Viglietta
V, Kenyon NS, Ricordi C, Hering B and Hafler DA: Loss of IL-4
secretion from human type 1a diabetic pancreatic draining lymph
node NKT cells. J Immunol. 175:4458–4464. 2005.PubMed/NCBI View Article : Google Scholar
|
40
|
Lu J, Liu J, Li L, Lan Y and Liang Y:
Cytokines in type 1 diabetes: Mechanisms of action and
immunotherapeutic targets. Clin Transl Immunology.
9(e1122)2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Vonberg AD, Acevedo-Calado M, Cox AR,
Pietropaolo SL, Gianani R, Lundy SK and Pietropaolo M: CD19+IgM+
cells demonstrate enhanced therapeutic efficacy in type 1 diabetes
mellitus. JCI Insight. 3(e99860)2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Pfleger C, Meierhoff G, Kolb H and Schloot
NC: p520/521 Study Group. Association of T-cell reactivity with
beta-cell function in recent onset type 1 diabetes patients. J
Autoimmun. 34:127–135. 2010.PubMed/NCBI View Article : Google Scholar
|