1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
2
|
International Agency for Research on
Cancer: Globocan 2012. World Health Organization, International
Agency for Research on Cancer, Lyon, 2013.
|
3
|
Anothaisintawee T, Wiratkapun C,
Lerdsitthichai P, Kasamesup V, Wongwaisayawan S, Srinakarin J,
Hirunpat S, Woodtichartpreecha P, Boonlikit S, Teerawattananon Y
and Thakkinstian A: Risk factors of breast cancer: A systematic
review and meta-analysis. Asia Pac J Public Health. 25:368–387.
2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Shoukry M, Broccard S, Kaplan J and
Gabriel E: The emerging role of circulating tumor DNA in the
management of breast cancer. Cancers (Basel).
13(3813)2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z,
Zhang L, Ji X, Liu W, Huang B, Luo W, et al: Breast cancer
development and progression: Risk factors, cancer stem cells,
signaling pathways, genomics, and molecular pathogenesis. Genes
Dis. 5:77–106. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Butti R, Gunasekaran VP, Kumar TV,
Banerjee P and Kundu GC: Breast cancer stem cells: Biology and
therapeutic implications. Int J Biochem Cell Biol. 107:38–52.
2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu
Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al:
Breast cancer stem cells transition between epithelial and
mesenchymal states reflective of their normal counterparts. Stem
Cell Reports. 2:78–91. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Bao L, Cardiff RD, Steinbach P, Messer KS
and Ellies LG: Multipotent luminal mammary cancer stem cells model
tumor heterogeneity. Breast Cancer Res. 17(137)2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Sin WC and Lim CL: Breast cancer stem
cells-from origins to targeted therapy. Stem Cell Investig.
4(96)2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Lagadec C, Vlashi E, Della Donna L,
Dekmezian C and Pajonk F: Radiation-induced reprogramming of breast
cancer cells. Stem Cells. 30:833–844. 2012.PubMed/NCBI View Article : Google Scholar
|
11
|
Chaffer CL, Marjanovic ND, Lee T, Bell G,
Kleer CG, Reinhardt F, D'Alessio AC, Young RA and Weinberg RA:
Poised chromatin at the ZEB1 promoter enables breast cancer cell
plasticity and enhances tumorigenicity. Cell. 154:61–74.
2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Koren S, Reavie L, Couto JP, De Silva D,
Stadler MB, Roloff T, Britschgi A, Eichlisberger T, Kohler H, Aina
O, et al: PIK3CAH1047R induces multipotency and multi-lineage
mammary tumours. Nature. 525:114–118. 2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Colditz GA, Kaphingst KA, Hankinson SE and
Rosner B: Family history and risk of breast cancer: Nurses' health
study. Breast Cancer Res Treat. 133:1097–1104. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Allison KH: Molecular pathology of breast
cancer: What a pathologist needs to know. Am J Clin Pathol.
138:770–780. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Dykes IM and Emanueli C: Transcriptional
and post-transcriptional gene regulation by long non-coding RNA.
Genomics Proteomics Bioinformatics. 15:177–186. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
O'Rourke JR, Swanson MS and Harfe BD:
MicroRNAs in mammalian development and tumorigenesis. Birth Defects
Res C Embryo Today. 78:172–179. 2006.PubMed/NCBI View Article : Google Scholar
|
17
|
Saito Y, Nakaoka T and Saito H:
microRNA-34a as a therapeutic agent against human cancer. J Clin
Med. 4:1951–1959. 2015.PubMed/NCBI View Article : Google Scholar
|
18
|
Tordonato C, Di Fiore PP and Nicassio F:
The role of non-coding RNAs in the regulation of stem cells and
progenitors in the normal mammary gland and in breast tumors. Front
Genet. 6(72)2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Rusca N and Monticelli S: MiR-146a in
immunity and disease. Mol Biol Int. 2011(437301)2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Tordonato C, Marzi MJ, Giangreco G, Freddi
S, Bonetti P, Tosoni D, Di Fiore PP and Nicassio F: miR-146
connects stem cell identity with metabolism and pharmacological
resistance in breast cancer. J Cell Biol.
220(e202009053)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Gao W, Hua J, Jia Z, Ding J, Han Z, Dong
Y, Lin Q and Yao Y: Expression of miR 146a 5p in breast cancer and
its role in proliferation of breast cancer cells. Oncol Lett.
15:9884–9888. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Chen J, Jiang Q, Jiang XQ, Li DQ, Jiang
XC, Wu XB and Cao YL: miR-146a promoted breast cancer proliferation
and invasion by regulating NM23-H1. J Biochem. 167:41–48.
2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Del Rio D, Stewart AJ and Pellegrini N: A
review of recent studies on malondialdehyde as toxic molecule and
biological marker of oxidative stress. Nutr Metab Cardiovasc Dis.
15:316–328. 2005.PubMed/NCBI View Article : Google Scholar
|
24
|
Nair V, O'Neil CL and Wang PG:
Malondialdehyde. In: Encyclopedia of Reagents for Organic
Synthesis. John Wiley & Sons, Hoboken, NJ, 2001.
|
25
|
Mateos R, Goya L and Bravo L:
Determination of malondialdehyde by liquid chromatography as the 2,
4-dinitrophenylhydrazone derivative: A marker for oxidative stress
in cell cultures of human hepatoma HepG2. J Chromatogr B Analyt
Technol Biomed Life Sci. 805:33–39. 2004.PubMed/NCBI View Article : Google Scholar
|
26
|
Al-Khafaji ASK, Pantazi P, Acha-Sagredo A,
Schache A, Risk JM, Shaw RJ and Liloglou T: Overexpression of HURP
mRNA in head and neck carcinoma and association with in vitro
response to vinorelbine. Oncol Lett. 19:2502–2507. 2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Al-Khafaji AS, Davies MP, Risk JM, Marcus
MW, Koffa M, Gosney JR, Shaw RJ, Field JK and Liloglou T: Aurora B
expression modulates paclitaxel response in non-small cell lung
cancer. Br J Cancer. 116:592–599. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Al-Khafaji ASK, Marcus MW, Davies MPA,
Risk JM, Shaw RJ, Field JK and Liloglou T: AURKA mRNA expression is
an independent predictor of poor prognosis in patients with
non-small cell lung cancer. Oncol Lett. 13:4463–4468.
2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Tarannum J, Manaswini P, Deekshitha C,
Reddy BP and Sunder AS: Elucidative Histopathological study in
female cancer patients: Histopathology in female cancers. Iraq J
Sci. 61:720–726. 2020.
|
30
|
Lei B, Liu J, Yao Z, Xiao Y, Zhang X,
Zhang Y and Xu J: NF-κB-Induced Upregulation of miR-146a-5p
promoted hippocampal neuronal oxidative stress and pyroptosis via
TIGAR in a Model of Alzheimer's Disease. Front Cell Neurosci.
15(653881)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Jin X, Liu J, Chen YP, Xiang Z, Ding JX
and Li YM: Effect of miR-146 targeted HDMCP up-regulation in the
pathogenesis of nonalcoholic steatohepatitis. PLoS One.
12(e0174218)2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Mao H and Xu G: Protective effect and
mechanism of microRNA-146a on ankle fracture. Exp Ther Med.
20(3)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
34
|
Kagiya T: MicroRNAs: Potential biomarkers
and therapeutic targets for alveolar bone loss in periodontal
disease. Int J Mol Sci. 17(1317)2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Jansson MD and Lund AH: MicroRNA and
cancer. Mol Oncol. 6:590–610. 2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Ohtsuka M, Ling H, Doki Y, Mori M and
Calin GA: MicroRNA processing and human cancer. J Clin Med.
4:1651–1667. 2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Blenkiron C, Goldstein LD, Thorne NP,
Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE,
Green AR, Ellis IO, et al: MicroRNA expression profiling of human
breast cancer identifies new markers of tumor subtype. Genome Biol.
8(R214)2007.PubMed/NCBI View Article : Google Scholar
|
38
|
Sahu A, Varma M and Kachhawa K: A
prognostic study of MDA, SOD and catalase in breast cancer
patients. Int J Sci Res. 4:157–159. 2015.
|
39
|
Didžiapetrienė J, Bublevič J, Smailytė G,
Kazbarienė B and Stukas R: Significance of blood serum catalase
activity and malondialdehyde level for survival prognosis of
ovarian cancer patients. Medicina (Kaunas). 50:204–208.
2014.PubMed/NCBI View Article : Google Scholar
|
40
|
Sadati Zarrini A, Moslemi D, Parsian H,
Vessal M, Mosapour A and Shirkhani Kelagari Z: The status of
antioxidants, malondialdehyde and some trace elements in serum of
patients with breast cancer. Caspian J Intern Med. 7:31–36.
2016.PubMed/NCBI
|
41
|
Bakan E, Taysi S, Polat MF, Dalga S,
Umudum Z, Bakan N and Gumus M: Nitric oxide levels and lipid
peroxidation in plasma of patients with gastric cancer. Jpn J Clin
Oncol. 32:162–166. 2002.PubMed/NCBI View Article : Google Scholar
|
42
|
Gupta A, Srivastava S, Prasad R, Natu SM,
Mittal B, Negi MP and Srivastava AN: Oxidative stress in non-small
cell lung cancer patients after chemotherapy: Association with
treatment response. Respirology. 15:349–356. 2010.PubMed/NCBI View Article : Google Scholar
|
43
|
Tao D, Zhou Z, Xu X and Luo H: Lipid
disorders and lipid peroxidation associated with the malignant
transformation of colorectal adenoma. Chin Ger J Clin Oncol.
10:270–273. 2011.
|
44
|
Bhattacharjee J, Jogdand S, Shinde RK and
Goswami S: Assessment of oxidative stress in breast cancer
patients: A hospital based study. Int J Basic Clin Pharmacol.
7:966–970. 2018.
|
45
|
Gubaljevic J, Srabović N, Jevrić-Čaušević
A, Softić A, Rifatbegović A, Mujanović-Mustedanagić J, Dautović E,
Smajlović A and Mujagić Z: Serum levels of oxidative stress marker
malondialdehyde in breast cancer patients in relation to
pathohistological factors, estrogen receptors, menopausal status,
and age. J Health Sci. 8:154–161. 2018.
|
46
|
Sener DE, Gönenç A, Akıncı M and Torun M:
Lipid peroxidation and total antioxidant status in patients with
breast cancer. Cell Biochem Funct. 25:377–382. 2007.PubMed/NCBI View Article : Google Scholar
|
47
|
Qebesy HS, Zakhary MM, Abd-Alaziz MA,
Abdel Ghany AA and Maximus DW: Tissue levels of oxidative stress
markers and antioxidants in breast cancer patients in relation to
tumor grade. Al-Azhar Assiut Med J. 13:10–17. 2015.
|
48
|
Hauck AK and Bernlohr DA: Oxidative stress
and lipotoxicity. J Lipid Res. 57:1976–1986. 2016.PubMed/NCBI View Article : Google Scholar
|
49
|
Gönenç A, Erten D, Aslan S, Akıncı M,
Şimşek B and Torun M: Lipid peroxidation and antioxidant status in
blood and tissue of malignant breast tumor and benign breast
disease. Cell Biol Int. 30:376–380. 2006.PubMed/NCBI View Article : Google Scholar
|
50
|
Kilic N, Yavuz Taslipinar M, Guney Y,
Tekin E and Onuk E: An investigation into the serum thioredoxin,
superoxide dismutase, malondialdehyde, and advanced oxidation
protein products in patients with breast cancer. Ann Surg Oncol.
21:4139–4143. 2014.PubMed/NCBI View Article : Google Scholar
|
51
|
Himmetoglu S, Dincer Y, Ersoy YE,
Bayraktar B, Celik V and Akcay T: DNA oxidation and antioxidant
status in breast cancer. J Investig Med. 57:720–723.
2009.PubMed/NCBI View Article : Google Scholar
|
52
|
Mena S, Ortega A and Estrela JM: Oxidative
stress in environmental-induced carcinogenesis. Mutat Res.
674:36–44. 2009.PubMed/NCBI View Article : Google Scholar
|
53
|
Didžiapetrienė J, Kazbarienė B, Tikuišis
R, Dulskas A, Dabkevičienė D, Lukosevičienė V, Kontrimavičiūtė E,
Sužiedėlis K and Ostapenko V: Oxidant/antioxidant status of breast
cancer patients in pre-and post-operative periods. Medicina
(Kaunas). 56(70)2020.PubMed/NCBI View Article : Google Scholar
|
54
|
Wan RJ and Li YH: MicroRNA-146a/NAPDH
oxidase4 decreases reactive oxygen species generation and
inflammation in a diabetic nephropathy model. Mol Med Rep.
17:4759–4766. 2018.PubMed/NCBI View Article : Google Scholar
|
55
|
Li K, Ching D, Luk FS and Raffai RL:
Apolipoprotein E enhances microRNA-146a in monocytes and
macrophages to suppress nuclear factor-κB-driven inflammation and
atherosclerosis. Circ Res. 117:e1–e11. 2015.PubMed/NCBI View Article : Google Scholar
|
56
|
Lo WY, Peng CT and Wang HJ:
MicroRNA-146a-5p mediates high glucose-induced endothelial
inflammation via targeting interleukin-1 receptor-associated kinase
1 expression. Front Physiol. 8(551)2017.PubMed/NCBI View Article : Google Scholar
|
57
|
Qu X, Wang N, Cheng W, Xue Y, Chen W and
Qi M: MicroRNA-146a protects against intracerebral hemorrhage by
inhibiting inflammation and oxidative stress. Exp Ther Med.
18:3920–3928. 2019.PubMed/NCBI View Article : Google Scholar
|
58
|
Xie Y, Chu A, Feng Y, Chen L, Shao Y, Luo
Q, Deng X, Wu M, Shi X and Chen Y: MicroRNA-146a: A comprehensive
indicator of inflammation and oxidative stress status induced in
the brain of chronic T2DM rats. Front Pharmacol.
9(478)2018.PubMed/NCBI View Article : Google Scholar
|
59
|
Cui X, Gong J, Han H, He L, Teng Y, Tetley
T, Sinharay R, Chung KF, Islam T, Gilliland F and Grady S:
Relationship between free and total malondialdehyde, a
well-established marker of oxidative stress, in various types of
human biospecimens. J Thorac Dis. 10:3088–3097. 2018.PubMed/NCBI View Article : Google Scholar
|
60
|
Canakci CF, Cicek Y, Yildirim A, Sezer U
and Canakci V: Increased levels of 8-hydroxydeoxyguanosine and
malondialdehyde and its relationship with antioxidant enzymes in
saliva of periodontitis patients. Eur J Dent. 3:100–106.
2009.PubMed/NCBI
|