1
|
Amin RM, Andrade NS and Neuman BJ: Lumbar
disc herniation. Curr Rev Musculoskelet Med. 10:507–516.
2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Newell N, Little JP, Christou A, Adams MA,
Adam CJ and Masouros SD: Biomechanics of the human intervertebral
disc: A review of testing techniques and results. J Mech Behav
Biomed Mater. 69:420–434. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhang X, Zhao Z, Niu C, Ma Z, Hou J, Wang
G and Tang M: Spinal biomechanical modelling in the process of
lumbar intervertebral disc herniation in middle-aged and elderly. J
Healthc Eng. 2021(2869488)2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Iatridis JC, Nicoll SB, Michalek AJ,
Walter BA and Gupta MS: Role of biomechanics in intervertebral disc
degeneration and regenerative therapies: What needs repairing in
the disc and what are promising biomaterials for its repair? Spine
J. 13:243–262. 2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Fenton DS: CHAPTER 23-Disc Herniation:
Recurrent vs. Postoperative Scarring. In: Czervionke LF, Fenton DS,
eds. Imaging Painful Spine Disorders. W.B. Saunders; 2011: 174-179.
https://www.sciencedirect.com/science/article/abs/pii/B9781416029045000239.
|
6
|
Lewis G: Nucleus pulposus replacement and
regeneration/repair technologies: present status and future
prospects. J Biomed Mater Res Part B Appl Biomater. 100:1702–1720.
2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Allen MJ, Schoonmaker JE, Bauer TW,
Williams PF, Higham PA and Yuan HA: Preclinical evaluation of a
poly (vinyl alcohol) hydrogel implant as a replacement for the
nucleus pulposus. Spine (Phila Pa 1976). 29:515–523.
2004.PubMed/NCBI View Article : Google Scholar
|
8
|
Thomas JD, Lowman A and Marcolongo M:
Novel associated PVA/PVP hydrogels for nucleus pulposus
replacement. J. Biomed. Mater. Res. 67:1329–1337. 2003.PubMed/NCBI View Article : Google Scholar
|
9
|
Di Martino A, Vaccaro AR, Lee JY, Denaro V
and Lim MR: Nucleus pulposus replacement: Basic science and
indications for clinical use. Spine (Phila Pa 1976). 30(Suppl
16):S16–S22. 2005.PubMed/NCBI View Article : Google Scholar
|
10
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron
I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan
SE, et al: The PRISMA 2020 statement: An updated guideline for
reporting systematic reviews. Int J Surg. 88(105906)2021.PubMed/NCBI View
Article : Google Scholar
|
11
|
Binetti VR, Marcolongo M and Lowman AM:
Development of a chemically crosslinked poly (vinyl alcohol)
hydrogel for injectable nucleus pulposus replacement. In: 2012 38th
annual northeast bioengineering conference (NEBEC). IEEE; 2012:
378-379.
|
12
|
Wilke HJ, Neef P, Caimi M, Hoogland T and
Claes LE: New in vivo measurements of pressures in the
intervertebral disc in daily life. Spine (Phila Pa 1976).
24:755–762. 1999.PubMed/NCBI View Article : Google Scholar
|
13
|
Schmitz TC, Salzer E, Crispim JF, Fabra
GT, LeVisage C, Pandit A, Tryfonidou M, Maitre CL and Ito K:
Characterization of biomaterials intended for use in the nucleus
pulposus of degenerated intervertebral discs. Acta Biomater.
114:1–15. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Leckie S and Kang J: Recent advances in
nucleus pulposus replacement technology. Curr Orthop Pract.
20:222–226. 2009.
|
15
|
Yang X and Li X: Nucleus pulposus tissue
engineering: A brief review. Eur Spine J. 18:1564–1572.
2009.PubMed/NCBI View Article : Google Scholar
|
16
|
Carl A, Ledet E, Yuan H and Sharan A: New
developments in nucleus pulposus replacement technology. Spine J.
4(Suppl 6):S325–S329. 2004.PubMed/NCBI View Article : Google Scholar
|
17
|
Jia H, Lin X, Wang D, Wang J, Shang Q, He
X, Wu K, Zhao B, Peng P, Wang H, et al: Injectable hydrogel with
nucleus pulposus-matched viscoelastic property prevents
intervertebral disc degeneration. J Orthop Transl. 33:162–173.
2022.PubMed/NCBI View Article : Google Scholar
|
18
|
Joshi A, Fussell G, Thomas J, Hsuan A,
Lowman A, Karduna A, Vresilovic E and Marcolongo M: Functional
compressive mechanics of a PVA/PVP nucleus pulposus replacement.
Biomaterials. 27:176–184. 2006.PubMed/NCBI View Article : Google Scholar
|
19
|
Neo PY, Shi P, Goh JCH and Toh SL:
Characterization and mechanical performance study of silk/PVA
cryogels: Towards nucleus pulposus tissue engineering. Biomed
Mater. 9(65002)2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Charron PN, Blatt SE, McKenzie C and
Oldinski RA: Dynamic mechanical response of polyvinyl
alcohol-gelatin theta-gels for nucleus pulposus tissue replacement.
Biointerphases. 12(02C409)2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Kita BK: Characterization of in-situ
curing PVA-PEG hydrogels for nucleus pulposus replacement. Thesis.
1:125–142. 2010.
|
22
|
Mahanta N, Teow Y and Valiyaveettil S:
Viscoelastic hydrogels from poly (vinyl alcohol)-Fe (iii) complex.
Biomater Sci. 1:519–527. 2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Binetti VR, Fussell GW and Lowman AM:
Evaluation of two chemical crosslinking methods of poly (vinyl
alcohol) hydrogels for injectable nucleus pulposus replacement. J
Appl Polym Sci. 131:2014.
|
24
|
Heo M and Park S: Biphasic properties of
PVAH (polyvinyl alcohol hydrogel) reflecting biomechanical behavior
of the nucleus pulposus of the human intervertebral disc. Materials
(Basel). 15(1125)2022.PubMed/NCBI View Article : Google Scholar
|
25
|
Cloyd JM, Malhotra NR, Weng L, Chen W,
Mauck RL and Elliott DM: Material properties in unconfined
compression of human nucleus pulposus, injectable hyaluronic
acid-based hydrogels and tissue engineering scaffolds. Eur spine J.
16:1892–1898. 2007.PubMed/NCBI View Article : Google Scholar
|