1
|
García-Giustiniani D and Stein R: Genetics
of Dyslipidemia. Arq Bras Cardiol. 106:434–438. 2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Fuster JJ: Integrated stress response
inhibition in atherosclerosis. Preventing the Stressed-Out Plaque.
J Am Coll Cardiol. 73:1170–1172. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Engin F and Hotamisligil GS: Restoring
endoplasmic reticulum function by chemical chaperones: An emerging
therapeutic approach for metabolic diseases. Diabetes Obes Metab.
12 (Suppl 2):S108–S115. 2010.PubMed/NCBI View Article : Google Scholar
|
4
|
Dandekar A, Mendez R and Zhang K: Cross
talk between er stress, oxidative stress, and inflammation in
health and disease. Methods Mol Biol. 1292:205–214. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Kruzliak P, Sabo J and Zulli A:
Endothelial endoplasmic reticulum and nitrative stress in
endothelial dysfunction in the atherogenic rabbit model. Acta
Histochemica. 117:762–766. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhang C, Syed TW, Liu R and Yu J: Role of
endoplasmic reticulum stress, autophagy, and inflammation in
cardiovascular disease. Front Cardiovasc Med. 4(29)2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Esser N, Legrand-Poels S, Piette J, Scheen
AJ and Paquot N: Inflammation as a link between obesity, metabolic
syndrome and type 2 diabetes. Diabetes Res Clin Pract. 105:141–150.
2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Krause M, Bock PM, Takahashi HK, Homem De
Bittencourt PI Jr and Newsholme P: The regulatory roles of NADPH
oxidase, intra- and extra-cellular HSP70 in pancreatic islet
function, dysfunction and diabetes. Clin Sci (Lond). 128:789–803.
2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Gottesman RF, Albert MS, Alonso A, Coker
LH, Coresh J, Davis SM, Deal JA, McKhann GM, Mosley TH, Sharrett
AR, et al: Associations Between Midlife Vascular Risk Factors and
25-Year Incident Dementia in the Atherosclerosis Risk in
Communities (ARIC) Cohort. JAMA Neurol. 74:1246–1254.
2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Vekic J, Zeljkovic A, Stefanovic A,
Jelic-Ivanovic Z and Spasojevic-Kalimanovska V: Obesity and
dyslipidemia. Metabolism. 92:71–81. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Lin XL, Xiao LL, Tang ZH, Jiang ZS and Liu
MH: Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed
Pharmacother. 104:36–44. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Chen W, Lu H, Yang J, Xiang H and Peng H:
Sphingosine 1-phosphate in metabolic syndrome (Review). Int J Mol
Med. 38:1030–1038. 2016.PubMed/NCBI View Article : Google Scholar
|
13
|
Beaven SW and Tontonoz P: Nuclear
receptors in lipid metabolism: Targeting the heart of dyslipidemia.
Annu Rev Med. 57:313–329. 2006.PubMed/NCBI View Article : Google Scholar
|
14
|
Botta M, Audano M, Sahebkar A, Sirtori CR,
Mitro N and Ruscica M: PPAR Agonists and Metabolic Syndrome: An
Established Role? Int J Mol Sci. 19(1197)2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang B and Tontonoz P: Liver X receptors
in lipid signalling and membrane homeostasis. Nat Rev Endocrinol.
14:452–463. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Akhtar DH, Iqbal U, Vazquez-Montesino LM,
Dennis BB and Ahmed A: Pathogenesis of insulin resistance and
atherogenic dyslipidemia in nonalcoholic fatty liver disease. J
Clin Transl Hepatol. 7:362–370. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Ke C, Zhu X, Zhang Y and Shen Y:
Metabolomic characterization of hypertension and dyslipidemia.
Metabolomics. 14(117)2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Csonka C, Baranyai T, Tiszlavicz L, Fébel
H, Szűcs G, Varga ZV, Sárközy M, Puskás LG, Antal O, Siska A, et
al: Isolated hypercholesterolemia leads to steatosis in the liver
without affecting the pancreas. Lipids Health Dis.
16(144)2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Begg MJ, Sturrock ED and van der
Westhuyzen DR: Soluble LDL-R are formed by cell surface cleavage in
response to phorbol esters. Eur J Biochem. 271:524–533.
2004.PubMed/NCBI View Article : Google Scholar
|
20
|
Streicher R, Kotzka J, Müller-Wieland D,
Siemeister G, Munck M, Avci H and Krone W: SREBP-1 Mediates
Activation of the Low Density Lipoprotein Receptor Promoter by
Insulin and Insulin-like Growth Factor-I. J Biol Chem.
271:7128–7133. 1996.PubMed/NCBI View Article : Google Scholar
|
21
|
Kwon HJ, Lagace TA, McNutt MC, Horton JD
and Deisenhofer J: Molecular basis for LDL receptor recognition by
PCSK9. Proc Natl Acad Sci USA. 105:1820–1825. 2008.PubMed/NCBI View Article : Google Scholar
|
22
|
Demers A, Samami S, Lauzier B, Des Rosiers
C, Ngo Sock ET, Ong H and Mayer G: PCSK9 Induces CD36 Degradation
and Affects Long-Chain Fatty Acid Uptake and Triglyceride
Metabolism in Adipocytes and in Mouse Liver. Arterioscler Thromb
Vasc Biol. 35:2517–2525. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Pepino MY, Kuda O, Samovski D and Abumrad
NA: Structure-Function of CD36 and Importance of Fatty Acid Signal
Transduction in Fat Metabolism. Annu Rev Nutr. 34:281–303.
2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Greco D, Kotronen A, Westerbacka J, Puig
O, Arkkila P, Kiviluoto T, Laitinen S, Kolak M, Fisher RM, Hamsten
A, et al: Gene expression in human NAFLD. Am J Physiol Gastrointest
Liver Physiol. 294:G1281–G1287. 2008.PubMed/NCBI View Article : Google Scholar
|
25
|
Zaid A, Roubtsova A, Essalmani R,
Marcinkiewicz J, Chamberland A, Hamelin J, Tremblay M, Jacques H,
Jin W, Davignon J, et al: Proprotein convertase subtilisin/kexin
type 9 (PCSK9): Hepatocyte-specific low-density lipoprotein
receptor degradation and critical role in mouse liver regeneration.
Hepatology. 48:646–654. 2008.PubMed/NCBI View Article : Google Scholar
|
26
|
Seidah NG, Poirier S, Denis M, Parker R,
Miao B, Mapelli C, Prat A, Wassef H, Davignon J, Hajjar KA and
Mayer G: Annexin A2 is a natural extrahepatic inhibitor of the
PCSK9-Induced LDL receptor degradation. PLoS One.
7(e41865)2012.PubMed/NCBI View Article : Google Scholar
|
27
|
Németh K, Tóth B, Sarnyai F, Koncz A,
Lenzinger D, Kereszturi É, Visnovitz T, Kestecher BM, Osteikoetxea
X, Csala M, et al: High fat diet and PCSK9 knockout modulates lipid
profile of the liver and changes the expression of lipid
homeostasis related genes. Nutr Metab (Lond). 20(19)2023.PubMed/NCBI View Article : Google Scholar
|
28
|
Agrawal S, Zaritsky JJ, Fornoni A and
Smoyer WE: Dyslipidaemia in nephrotic syndrome: Mechanisms and
treatment. Nat Rev Nephrol. 14:57–70. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Kongmalai T, Chuanchaiyakul N,
Srinoulprasert Y and Thongtang N: Injection of an improperly stored
proprotein convertase subtilisin/kexin type 9 monoclonal antibody
in a patient with secondary dyslipidemia from nephrotic syndrome: A
case report. J Med Case Rep. 17(89)2023.PubMed/NCBI View Article : Google Scholar
|
30
|
Almanza A, Carlesso A, Chintha C,
Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N,
Montibeller L, More S, et al: Endoplasmic reticulum stress
signalling – from basic mechanisms to clinical applications. FEBS
J. 286:241–278. 2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Fu XL and Gao DS: Endoplasmic reticulum
proteins quality control and the unfolded protein response: The
regulative mechanism of organisms against stress injuries.
BioFactors. 40:569–585. 2014.PubMed/NCBI View Article : Google Scholar
|
32
|
Williams DB: Beyond lectins: The
calnexin/calreticulin chaperone system of the endoplasmic
reticulum. J Cell Sci. 119(Pt 4):615–623. 2006.PubMed/NCBI View Article : Google Scholar
|
33
|
Ishida Y and Nagata K: Hsp47 as a
collagen-specific molecular chaperone. Methods Enzymol.
499:167–182. 2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Hirsch C, Gauss R, Horn SC, Neuber O and
Sommer T: The ubiquitylation machinery of the endoplasmic
reticulum. Nature. 458:453–460. 2009.PubMed/NCBI View Article : Google Scholar
|
35
|
Coe H and Michalak M: Calcium binding
chaperones of the endoplasmic reticulum. Gen Physiol Biophys 28
Spec No Focus: F96-F103, 2009.
|
36
|
Bhandary B, Marahatta A, Kim HR and Chae
HJ: An involvement of oxidative stress in endoplasmic reticulum
stress and its associated diseases. Int J Mol Sci. 14:434–456.
2012.PubMed/NCBI View Article : Google Scholar
|
37
|
Al Zaidi M, Repges E, Sommer-Weisel S,
Jansen F, Zimmer S, Tiyerili V, Nickenig G and Aksoy A: Serum
levels of the endoplasmic-reticulum-stress chaperone GRP78 identify
patients with coronary artery disease and predict mortality. Eur
Heart J. 43 Suppl2(ehac544.1137)2022.
|
38
|
Sannino S and Brodsky JL: Targeting
protein quality control pathways in breast cancer. BMC Biol.
15(109)2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Bertolotti A, Zhang Y, Hendershot LM,
Harding HP and Ron D: Dynamic interaction of BiP and ER stress
transducers in the unfolded-protein response. Nat Cell Biol.
2:326–332. 2000.PubMed/NCBI View
Article : Google Scholar
|
40
|
Shen J, Chen X, Hendershot L and Prywes R:
ER Stress Regulation of ATF6 Localization by Dissociation of
BiP/GRP78 binding and unmasking of Golgi localization signals. Dev
Cell. 3:99–111. 2002.PubMed/NCBI View Article : Google Scholar
|
41
|
Han J and Kaufman RJ: The role of ER
stress in lipid metabolism and lipotoxicity. J Lipid Res.
57:1329–1338. 2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Liu X, Khalafalla M, Chung C, Gindin Y,
Hubchak S, LeCuyer B, Kriegermeier A, Zhang D, Qiu W, Ding X, et
al: Hepatic Deletion of X-Box Binding Protein 1 in FXR Null mice
leads to enhanced liver injury. J Lipid Res.
63(100289)2022.PubMed/NCBI View Article : Google Scholar
|
43
|
Tao YX and Conn PM: Chaperoning G
Protein-Coupled Receptors: From cell biology to therapeutics.
Endocr Rev. 35:602–647. 2014.PubMed/NCBI View Article : Google Scholar
|
44
|
Macario AJ and Conway de Macario E: Sick
chaperones, cellular stress, and disease. N Engl J Med.
353:1489–1501. 2005.PubMed/NCBI View Article : Google Scholar
|
45
|
Molina MN, Ferder L and Manucha W:
Emerging role of nitric oxide and heat shock proteins in insulin
resistance. Curr Hypertens Rep. 18(1)2015.PubMed/NCBI View Article : Google Scholar
|
46
|
Koroshi A and Idrizi A: Renoprotective
effects of Vitamin D and renin-angiotensin system. Hippokratia.
15:308–311. 2011.PubMed/NCBI
|
47
|
Adams JS, Chen H, Chun RF, Nguyen L, Wu S,
Ren SY, Barsony J and Gacad MA: Novel regulators of vitamin D
action and metabolism: Lessons learned at the Los Angeles zoo. J
Cell Biochem. 88:308–314. 2003.PubMed/NCBI View Article : Google Scholar
|
48
|
Bradley D: Clusterin as a potential
biomarker of obesity-related Alzheimer's disease risk. Biomark
Insights. 15(1177271920964108)2020.PubMed/NCBI View Article : Google Scholar
|
49
|
Berdowska I, Matusiewicz M and
Krzystek-Korpacka M: HDL Accessory proteins in parkinson's
disease-focusing on clusterin (Apolipoprotein J) in regard to its
involvement in pathology and diagnostics-A review. Antioxidants
(Basel). 11(524)2022.PubMed/NCBI View Article : Google Scholar
|
50
|
Fareed MM, Qasmi M, Aziz S, Völker E,
Förster CY and Shityakov S: The role of clusterin transporter in
the pathogenesis of Alzheimer's disease at the blood-brain barrier
interface: A systematic review. Biomolecules.
12(1452)2022.PubMed/NCBI View Article : Google Scholar
|
51
|
Yuan W, Qiu T, Yao X, Wu C, Shi Y, Wang N,
Zhang J, Jiang L, Liu X, Yang G, et al: Hsp47 acts as a bridge
between NLRP3 inflammasome and hepatic stellate cells activation in
arsenic-induced liver fibrosis. Toxicol Lett. 370:7–14.
2022.PubMed/NCBI View Article : Google Scholar
|
52
|
Dhawan UK, Bhattacharya P, Narayanan S,
Manickam V, Aggarwal A and Subramanian M: Hypercholesterolemia
Impairs Clearance of Neutrophil Extracellular Traps and Promotes
Inflammation and Atherosclerotic Plaque Progression. Arterioscler
Thromb Vasc Biol. 41:2598–2615. 2021.PubMed/NCBI View Article : Google Scholar
|
53
|
Gungor B, Vanharanta L, Hölttä-Vuori M,
Pirhonen J, Petersen NHT, Gramolelli S, Ojala PM, Kirkegaard T and
Ikonen E: HSP70 induces liver X receptor pathway activation and
cholesterol reduction in vitro and in vivo. Mol Metab. 28:135–143.
2019.PubMed/NCBI View Article : Google Scholar
|
54
|
Wang X, Chen M, Zhou J and Zhang X: HSP27,
70 and 90, anti-apoptotic proteins, in clinical cancer therapy. Int
J Oncol. 45:18–30. 2014.PubMed/NCBI View Article : Google Scholar
|
55
|
Dong Y, Ma N, Fan L, Yuan L, Wu Q, Gong L,
Tao Z, Chen J and Ren J: GADD45β stabilized by direct interaction
with HSP72 ameliorates insulin resistance and lipid accumulation.
Pharmacol Res. 173(105879)2021.PubMed/NCBI View Article : Google Scholar
|
56
|
Johnson CN, McCoin CS, Kueck PJ, Hawley
AG, John CS, Thyfault JP, Swerdlow RH, Geiger PC and Morris JK:
Relationship of muscle apolipoprotein e expression with markers of
cellular stress, metabolism, and blood biomarkers in cognitively
healthy and impaired older adults. J Alzheimers Dis. 92:1027–1035.
2023.PubMed/NCBI View Article : Google Scholar
|
57
|
Wittwer J and Bradley D: Clusterin and its
role in insulin resistance and the cardiometabolic Syndrome. Front
Immunol. 12(612496)2021.PubMed/NCBI View Article : Google Scholar
|
58
|
Zhu H, Liu M, Zhai T, Pan H, Wang L, Yang
H, Yan K, Gong F and Zeng Y: High serum clusterin levels are
associated with premature coronary artery disease in a Chinese
population. Diabetes Metab Res Rev. 35(e3128)2019.PubMed/NCBI View Article : Google Scholar
|
59
|
Xu H, Shen Y, Liang C, Wang H, Huang J,
Xue P and Luo M: Inhibition of the mevalonate pathway improves
myocardial fibrosis. Exp Ther Med. 21(224)2021.PubMed/NCBI View Article : Google Scholar
|
60
|
Sepulveda D, Rojas-Rivera D, Rodríguez DA,
Groenendyk J, Köhler A, Lebeaupin C, Ito S, Urra H, Carreras-Sureda
A, Hazari Y, et al: Interactome screening identifies the ER Luminal
Chaperone Hsp47 as a regulator of the unfolded protein response
transducer IRE1α. Mol Cell. 69:238–252.e7. 2018.PubMed/NCBI View Article : Google Scholar
|
61
|
Fiorentino TV, Procopio T, Mancuso E,
Arcidiacono GP, Andreozzi F, Arturi F, Sciacqua A, Perticone F,
Hribal ML and Sesti G: SRT1720 counteracts glucosamine-induced
endoplasmic reticulum stress and endothelial dysfunction.
Cardiovasc Res. 107:295–306. 2015.PubMed/NCBI View Article : Google Scholar
|
62
|
Sun Y, Zhang D, Liu X, Li X, Liu F, Yu Y,
Jia S, Zhou Y and Zhao Y: Endoplasmic reticulum stress affects
lipid metabolism in atherosclerosis via CHOP activation and
over-expression of miR-33. Cell Physiol Biochem. 48:1995–2010.
2018.PubMed/NCBI View Article : Google Scholar
|
63
|
Balamurugan K, Medishetti R, Kotha J,
Behera P, Chandra K, Mavuduru VA, Joshi MB, Samineni R, Katika MR,
Ball WB, et al: PHLPP1 promotes neutral lipid accumulation through
AMPK/ChREBP-dependent lipid uptake and fatty acid synthesis
pathways. iScience. 25(103766)2022.PubMed/NCBI View Article : Google Scholar
|
64
|
Gao F, Chen J and Zhu H: A potential
strategy for treating atherosclerosis: Improving endothelial
function via AMP-activated protein kinase. Sci China Life Sci.
61:1024–1029. 2018.PubMed/NCBI View Article : Google Scholar
|
65
|
Zhao WB, Fu H, Chang F, Liu J, Wang J, Li
F and Zhao J: Effects of various doses of atorvastatin on vascular
endothelial cell apoptosis and autophagy in vitro. Mol Med Rep.
19:1919–1925. 2019.PubMed/NCBI View Article : Google Scholar
|
66
|
Carnuta MG, Deleanu M, Barbalata T, Toma
L, Raileanu M, Sima AV and Stancu CS: Zingiber officinale extract
administration diminishes steroyl-CoA desaturase gene expression
and activity in hyperlipidemic hamster liver by reducing the
oxidative and endoplasmic reticulum stress. Phytomedicine.
48:62–69. 2018.PubMed/NCBI View Article : Google Scholar
|
67
|
Zhu H, Fan Y, Sun H, Chen L and Man X:
Curcumin inhibits endoplasmic reticulum stress induced by cerebral
ischemia-reperfusion injury in rats. Exp Ther Med. 14:4047–4052.
2017.PubMed/NCBI View Article : Google Scholar
|
68
|
Cai M, Wang H, Li JJ, Zhang YL, Xin L, Li
F and Lou SJ: The signaling mechanisms of hippocampal endoplasmic
reticulum stress affecting neuronal plasticity-related protein
levels in high fat diet-induced obese rats and the regulation of
aerobic exercise. Brain Behav Immun. 57:347–359. 2016.PubMed/NCBI View Article : Google Scholar
|