1
|
Kadomatsu T, Tabata M and Oike Y:
Angiopoietin-like proteins: Emerging targets for treatment of
obesity and related metabolic diseases. FEBS J. 278:559–564.
2011.PubMed/NCBI View Article : Google Scholar
|
2
|
Endo M: The roles of ANGPTL families in
cancer progression. J UOEH. 41:317–325. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Yan Q, Jiang L, Liu M, Yu D, Zhang Y, Li
Y, Fang S, Li Y, Zhu YH, Yuan YF and Guan XY: ANGPTL1 interacts
with integrin α1β1 to suppress HCC angiogenesis and metastasis by
inhibiting JAK2/STAT3 signaling. Cancer Res. 77:5831–5845.
2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Tabata M, Kadomatsu T, Fukuhara S, Miyata
K, Ito Y, Endo M, Urano T, Zhu HJ, Tsukano H, Tazume H, et al:
Angiopoietin-like protein 2 promotes chronic adipose tissue
inflammation and obesity-related systemic insulin resistance. Cell
Metab. 10:178–188. 2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Aoi J, Endo M, Kadomatsu T, Miyata K,
Ogata A, Horiguchi H, Odagiri H, Masuda T, Fukushima S, Jinnin M,
et al: Angiopoietin-like protein 2 accelerates carcinogenesis by
activating chronic inflammation and oxidative stress. Mol Cancer
Res. 12:239–249. 2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Aoi J, Endo M, Kadomatsu T, Miyata K,
Nakano M, Horiguchi H, Ogata A, Odagiri H, Yano M, Araki K, et al:
Angiopoietin-like protein 2 is an important facilitator of
inflammatory carcinogenesis and metastasis. Cancer Res.
71:7502–7512. 2011.PubMed/NCBI View Article : Google Scholar
|
7
|
Arca M, Minicocci I and Maranghi M: The
angiopoietin-like protein 3: A hepatokine with expanding role in
metabolism. Curr Opin Lipidol. 24:313–320. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang L, Geng T, Guo X, Liu J, Zhang P,
Yang D, Li J, Yu S and Sun Y: Co-expression of immunoglobulin-like
transcript 4 and angiopoietin-like proteins in human non-small cell
lung cancer. Mol Med Rep. 11:2789–2796. 2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Marchiò S, Soster M, Cardaci S, Muratore
A, Bartolini A, Barone V, Ribero D, Monti M, Bovino P, Sun J, et
al: A complex of α6 integrin and E-cadherin drives liver metastasis
of colorectal cancer cells through hepatic angiopoietin-like 6.
EMBO Mol Med. 4:1156–1175. 2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Yoon JC, Chickering TW, Rosen ED, Dussault
B, Qin Y, Soukas A, Friedman JM, Holmes WE and Spiegelman BM:
Peroxisome proliferator-activated receptor gamma target gene
encoding a novel angiopoietin-related protein associated with
adipose differentiation. Mol Cell Biol. 20:5343–5349.
2000.PubMed/NCBI View Article : Google Scholar
|
11
|
Guo L, Li SY, Ji FY, Zhao YF, Zhong Y, Lv
XJ, Wu XL and Qian GS: Role of Angptl4 in vascular permeability and
inflammation. Inflamm Res. 63:13–22. 2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Zhu P, Goh YY, Chin HFA, Kersten S and Tan
NS: Angiopoietin-like 4: A decade of research. Biosci Rep.
32:211–219. 2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Peng L, Ma J, Cui R, Chen X, Wei SY, Wei
QJ and Li B: The calcineurin inhibitor tacrolimus reduces
proteinuria in membranous nephropathy accompanied by a decrease in
angiopoietin-like-4. PLoS One. 9(e106164)2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Chugh SS, Clement LC and Macé C: New
insights into human minimal change disease: Lessons from animal
models. Am J Kidney Dis. 59:284–292. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Clement LC, Macé C, Avila-Casado C, Joles
JA, Kersten S and Chugh SS: Circulating angiopoietin-like 4 links
proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat
Med. 20:37–46. 2014.PubMed/NCBI View
Article : Google Scholar
|
16
|
Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC,
Pal M, Lam CRI, Boukamp P, Pan JY, Tan SH, et al: Angiopoietin-like
4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio
and confers anoikis resistance to tumors. Cancer Cell. 19:401–415.
2011.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhang T, Niu X, Liao L, Cho EA and Yang H:
The contributions of HIF-target genes to tumor growth in RCC. PLoS
One. 8(e80544)2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Dong D, Jia L, Zhou Y, Ren L, Li J and
Zhang J: Serum level of ANGPTL4 as a potential biomarker in renal
cell carcinoma. Urol Oncol. 35:279–285. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Ge H, Yang G, Yu X, Pourbahrami T and Li
C: Oligomerization state-dependent hyperlipidemic effect of
angiopoietin-like protein 4. J Lipid Res. 45:2071–2079.
2004.PubMed/NCBI View Article : Google Scholar
|
20
|
Yin W, Romeo S, Chang S, Grishin NV, Hobbs
HH and Cohen JC: Genetic variation in ANGPTL4 provides insights
into protein processing and function. J Biol Chem. 284:13213–13222.
2009.PubMed/NCBI View Article : Google Scholar
|
21
|
Clement LC, Avila-Casado C, Macé C, Soria
E, Bakker WW, Kersten S and Chugh SS: Podocyte-secreted
angiopoietin-like-4 mediates proteinuria in
glucocorticoid-sensitive nephrotic syndrome. Nat Med. 17:117–122.
2011.PubMed/NCBI View
Article : Google Scholar
|
22
|
La Paglia L, Listì A, Caruso S, Amodeo V,
Passiglia F, Bazan V and Fanale D: Potential role of ANGPTL4 in the
cross talk between metabolism and cancer through PPAR signaling
pathway. PPAR Res. 2017(8187235)2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Wang Q, Oliver-Williams C, Raitakari OT,
Viikari J, Lehtimäki T, Kähönen M, Järvelin MR, Salomaa V, Perola
M, Danesh J, et al: Metabolic profiling of angiopoietin-like
protein 3 and 4 inhibition: A drug-target Mendelian randomization
analysis. Eur Heart J. 42:1160–1169. 2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Kubo H, Kitajima Y, Kai K, Nakamura J,
Miyake S, Yanagihara K, Morito K, Tanaka T, Shida M and Noshiro H:
Regulation and clinical significance of the hypoxia-induced
expression of ANGPTL4 in gastric cancer. Oncol Lett. 11:1026–1034.
2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Vivarelli M, Massella L, Ruggiero B and
Emma F: Minimal change disease. Clin J Am Soc Nephrol. 12:332–345.
2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Shalhoub RJ: Pathogenesis of lipoid
nephrosis: A disorder of T-cell function. Lancet. 2:556–560.
1974.PubMed/NCBI View Article : Google Scholar
|
27
|
Yokoyama H, Kida H, Tani Y, Abe T,
Tomosugi N, Koshino Y and Hattori N: Immunodynamics of minimal
change nephrotic syndrome in adults T and B lymphocyte subsets and
serum immunoglobulin levels. Clin Exp Immunol. 61:601–607.
1985.PubMed/NCBI
|
28
|
Kimata H, Fujimoto M and Furusho K:
Involvement of interleukin (IL)-13, but not IL-4, in spontaneous
IgE and IgG4 production in nephrotic syndrome. Eur J Immunol.
25:1497–1501. 1995.PubMed/NCBI View Article : Google Scholar
|
29
|
Kanai T, Shiraishi H, Yamagata T, Ito T,
Odaka J, Saito T, Aoyagi J and Momoi MY: Th2 cells predominate in
idiopathic steroid-sensitive nephrotic syndrome. Clin Exp Nephrol.
14:578–583. 2010.PubMed/NCBI View Article : Google Scholar
|
30
|
Nachman PH, Jennette JC and Falk R:
Primary glomerular disease. In: The Kidney. Brenner BM (ed). 8th
edition. Elsevier, Philadelphia, PA, pp987-1066, 2008.
|
31
|
Pei Y, Cattran D, Delmore T, Katz A, Lang
A and Rance P: Evidence suggesting under-treatment in adults with
idiopathic focal segmental glomerulosclerosis. Regional
glomerulonephritis registry study. Am J Med. 82:938–944.
1987.PubMed/NCBI View Article : Google Scholar
|
32
|
Reiser J, von Gersdorff G, Loos M, Oh J,
Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H,
Schwarz K, et al: Induction of B7-1 in podocytes is associated with
nephrotic syndrome. J Clin Invest. 113:1390–1397. 2004.PubMed/NCBI View
Article : Google Scholar
|
33
|
Liu S and Chen J: New insight in
pathogenesis of podocyte disfunction in minimal change disease.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 45:214–218. 2016.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
34
|
Kaneko K, Tsuji S, Kimata T, Kitao T,
Yamanouchi S and Kato S: Pathogenesis of childhood idiopathic
nephrotic syndrome: A paradigm shift from T-cells to podocytes.
World J Pediatr. 11:21–28. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Chugh SS, Macé C, Clement LC, Del Nogal
Avila M and Marshall CB: Angiopoietin-like 4 based therapeutics for
proteinuria and kidney disease. Front Pharmacol.
5(23)2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Li Y, Xu Z, Deng H, Liu M, Lin X, Zhang M,
Li G, Yue S and Gao X: ANGPTL4 promotes nephrotic syndrome by
downregulating podocyte expression of ACTN4 and podocin. Biochem
Biophys Res Commun. 639:176–182. 2023.PubMed/NCBI View Article : Google Scholar
|
37
|
McCarthy KJ and Wassenhove-McCarthy DJ:
The glomerular basement membrane as a model system to study the
bioactivity of heparan sulfate glycosaminoglycans. Microsc
Microanal. 18:3–21. 2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Jia S, Peng X, Liang L, Zhang Y, Li M,
Zhou Q, Shen X, Wang Y, Wang C, Feng S, et al: The study of
Angptl4-modulated podocyte injury in IgA nephropathy. Front
Physiol. 11(575722)2021.PubMed/NCBI View Article : Google Scholar
|
39
|
Zuo Y, He Z, Chen Y and Dai L: Dual role
of ANGPTL4 in inflammation. Inflamm Res. 72:1303–1313.
2023.PubMed/NCBI View Article : Google Scholar
|
40
|
Davin JC: The glomerular permeability
factors in idiopathic nephrotic syndrome. Pediatr Nephrol.
31:207–215. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Li Y, Gong W, Liu J, Chen X, Suo Y, Yang H
and Gao X: Angiopoietin-like protein 4 promotes
hyperlipidemia-induced renal injury by down-regulating the
expression of ACTN4. Biochem Biophys Res Commun. 595:69–75.
2022.PubMed/NCBI View Article : Google Scholar
|
42
|
Bertelli R, Bonanni A, Caridi G, Canepa A
and Ghiggeri GM: Molecular and cellular mechanisms for proteinuria
in minimal change disease. Front Med (Lausanne).
5(170)2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Li JS, Chen X, Peng L, Wei SY, Zhao SL,
Diao TT, He YX, Liu F, Wei QJ, Zhang QF and Li B:
Angiopoietin-like-4, a potential target of tacrolimus, predicts
earlier podocyte injury in minimal change disease. PLoS One.
10(e0137049)2015.PubMed/NCBI View Article : Google Scholar
|
44
|
Li S, Nagothu K, Ranganathan G, Ali SM,
Shank B, Gokden N, Ayyadevara S, Megyesi J, Olivecrona G, Chugh SS,
et al: Reduced kidney lipoprotein lipase and renal tubule
triglyceride accumulation in cisplatin-mediated acute kidney
injury. Am J Physiol Renal Physiol. 303:F437–F448. 2012.PubMed/NCBI View Article : Google Scholar
|
45
|
Avila-Casado Mdel C, Perez-Torres I, Auron
A, Soto V, Fortoul TI and Herrera-Acosta J: Proteinuria in rats
induced by serum from patients with collapsing glomerulopathy.
Kidney Int. 66:133–143. 2004.PubMed/NCBI View Article : Google Scholar
|
46
|
Shen X, Weng C, Wang Y, Wang C, Feng S, Li
X, Li H, Jiang H, Wang H and Chen J: Lipopolysaccharide-induced
podocyte injury is regulated by calcineurin/NFAT and
TLR4/MyD88/NF-κB signaling pathways through angiopoietin-like
protein 4. Genes Dis. 9:443–455. 2020.PubMed/NCBI View Article : Google Scholar
|
47
|
Hayek SS, Sever S, Ko YA, Trachtman H,
Awad M, Wadhwani S, Altintas MM, Wei C, Hotton AL, French AL, et
al: Soluble urokinase receptor and chronic kidney disease. N Engl J
Med. 373:1916–1925. 2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Schulz CA, Persson M, Christensson A,
Hindy G, Almgren P, Nilsson PM, Melander O, Engström G and
Orho-Melander M: Soluble urokinase-type plasminogen activator
receptor (suPAR) and impaired kidney function in the
population-based Malmö diet and cancer study. Kidney Int Rep.
2:239–247. 2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Siligato R, Cernaro V, Nardi C, De
Gregorio F, Gembillo G, Costantino G, Conti G, Buemi M and Santoro
D: Emerging therapeutic strategies for minimal change disease and
focal and segmental glomerulosclerosis. Expert Opin Investig Drugs.
27:839–879. 2018.PubMed/NCBI View Article : Google Scholar
|
50
|
Botta M, Audano M, Sahebkar A, Sirtori CR,
Mitro N and Ruscica M: PPAR agonists and metabolic syndrome: An
established role? Int J Mol Sci. 19(1197)2018.PubMed/NCBI View Article : Google Scholar
|
51
|
Yang HC, Ma LJ, Ma J and Fogo AB:
Peroxisome proliferator-activated receptor-gamma agonist is
protective in podocyte injury-associated sclerosis. Kidney Int.
69:1756–1764. 2006.PubMed/NCBI View Article : Google Scholar
|
52
|
Qiu W, Huang L, Li Y, Liu Q and Lv Y:
Dysregulation of angiopoietin-like-4 associated with
hyperlipidemia-induced renal injury by AMPK/ACC pathway. Curr Pharm
Des. 29:300–309. 2023.PubMed/NCBI View Article : Google Scholar
|
53
|
Kersten S, Mandard S, Tan NS, Escher P,
Metzger D, Chambon P, Gonzalez FJ, Desvergne B and Wahli W:
Characterization of the fasting-induced adipose factor FIAF, a
novel peroxisome proliferator-activated receptor target gene. J
Biol Chem. 275:28488–28493. 2000.PubMed/NCBI View Article : Google Scholar
|
54
|
Chen S, McLean S, Carter DE and Leask A:
The gene expression profile induced by Wnt 3a in NIH 3T3
fibroblasts. J Cell Commun Signal. 1:175–183. 2007.PubMed/NCBI View Article : Google Scholar
|
55
|
Lu R and Zhou J, Liu B, Liang N, He Y, Bai
L, Zhang P, Zhong Y, Zhou Y and Zhou J: Paeoniflorin ameliorates
adriamycin-induced nephrotic syndrome through the PPARγ/ANGPTL4
pathway in vivo and vitro. Biomed Pharmacother. 96:137–147.
2017.PubMed/NCBI View Article : Google Scholar
|
56
|
Xin X, Rodrigues M, Umapathi M,
Kashiwabuchi F, Ma T, Babapoor-Farrokhran S, Wang S, Hu J, Bhutto
I, Welsbie DS, et al: Hypoxic retinal Muller cells promote vascular
permeability by HIF-1-dependent up-regulation of angiopoietin-like
4. Proc Natl Acad Sci USA. 110:E3425–E3434. 2013.PubMed/NCBI View Article : Google Scholar
|
57
|
Hu K, Babapoor-Farrokhran S, Rodrigues M,
Deshpande M, Puchner B, Kashiwabuchi F, Hassan SJ, Asnaghi L, Handa
JT, Merbs S, et al: Hypoxia-inducible factor 1 upregulation of both
VEGF and ANGPTL4 is required to promote the angiogenic phenotype in
uveal melanoma. Oncotarget. 7:7816–7828. 2016.PubMed/NCBI View Article : Google Scholar
|
58
|
Wang X, Qi D, Fu F, Li X, Liu Y, Ji K, Gao
Z, Kong L, Yu C, Xie H, et al: Therapeutic and antiproteinuric
effects of salvianolic acid A in combined with low-dose prednisone
in minimal change disease rats: Involvement of PPARγ/Angptl4 and
Nrf2/HO-1 pathways. Eur J Pharmacol. 858(172342)2019.PubMed/NCBI View Article : Google Scholar
|
59
|
Liu G and He L: Epigallocatechin-3-gallate
attenuates adriamycin-induced focal segmental glomerulosclerosis
via suppression of oxidant stress and apoptosis by targeting
hypoxia-inducible factor-1α/angiopoietin-like 4 pathway.
Pharmacology. 103:303–314. 2019.PubMed/NCBI View Article : Google Scholar
|
60
|
Del Nogal-Avila M, Donoro-Blazquez H, Saha
MK, Marshall CB, Clement LC, Macé CE and Chugh SS: Novel
therapeutic approaches for chronic kidney disease due to glomerular
disorders. Am J Physiol Renal Physiol. 311:F63–F65. 2016.PubMed/NCBI View Article : Google Scholar
|